Что такое алюминий
Лёгкий, прочный, стойкий к коррозии и функциональный – именно это сочетание качеств сделало алюминий главным конструкционным материалом нашего времени. Алюминий есть в домах, в которых мы живем, автомобилях, поездах и самолетах, на которых мы преодолеваем расстояния, в мобильных телефонах и компьютерах, на полках холодильников и в современных интерьерах. А ведь еще 200 лет назад об этом металле мало что было известно.
Рубины, сапфиры, изумруды и аквамарин являются минералами алюминия.
Первые два относятся к корундам – это оксид алюминия (Al2O3) в кристаллической форме. Он обладает природной прозрачностью, а по прочности уступает только алмазам. Пуленепробиваемые стекла, иллюминаторы в самолетах, экраны смартфонов производятся именно с применением сапфира.
А один из менее ценных минералов корунда – наждак используется как абразивный материал, в том числе для создания наждачной бумаги.
На сегодняшний день известно почти 300 различных соединений и минералов алюминия – от полевого шпата, являющегося основным породообразующим минералом на Земле, до рубина, сапфира или изумруда, уже не столь распространенных.
Ханс Кристиан Эрстед (1777–1851) – датский физик, почетный член Петербургской академии наук (1830). Родился в городе Рудкёрбинге в семье аптекаря. В 1797 году окончил Копенгагенский университет, в 1806 – стал профессором.
Но каким бы распространенным ни был алюминий, его открытие стало возможным только, когда в распоряжении ученых появился новый инструмент, позволяющий расщеплять сложные вещества на простые, – электрический ток.
И в 1824 году с помощью процесса электролиза датский физик Ханс Кристиан Эрстед получил алюминий. Он был загрязнен примесями калия и ртути, задействованных в химических реакциях, однако это был первый случай получения алюминия.
Используя электролиз, алюминий производят и в наши дни.
Сырьем для производства алюминия сегодня служит еще одна распространенная в природе алюминиевая руда – бокситы. Это глинистая горная порода, состоящая из разнообразных модификаций гидроксида алюминия с примесью оксидов железа, кремния, титана, серы, галлия, хрома, ванадия, карбонатных солей кальция, железа и магния – чуть ли не половины таблицы Менделеева. В среднем из 4-5 тонн бокситов производится 1 тонна алюминия.
Бокситы в 1821 году открыл геолог Пьер Бертье на юге Франции. Порода получила свое название в честь местности Ле-Бо (Les Baux), где была найдена. Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов – в Гвинее, Австралии, Вьетнаме, Бразилии, Индии и на Ямайке.
Из бокситов получают глинозем. Это оксид алюминия Al2O3, который имеет форму белого порошка и из которого путем электролиза на алюминиевых заводах производят металл.
Производство алюминия требует огромного количества электроэнергии. Для производства одной тонны металла необходимо около 15 МВт*ч энергии – столько потребляет 100-квартирный дом в течение целого месяца.Поэтому разумнее всего строить алюминиевые заводы поблизости от мощных и возобновляемых источников энергии. Самое оптимальное решение – гидроэлектростанции, представляющие самый мощный из всех видов «зеленой энергетики».
Свойства алюминия
Алюминий имеет редкое сочетание ценных свойств. Это один из самых легких металлов в природе: он почти в три раза легче железа, но при этом прочен, чрезвычайно пластичен и не подвержен коррозии, так как его поверхность всегда покрыта тончайшей, но очень прочной оксидной пленкой. Он не магнитится, отлично проводит электрический ток и образует сплавы практически со всеми металлами.
В три раза легче железа
Сравним по прочности со сталью
Поддается всем видам механической обработки
Тонкая оксидная пленка защищает от коррозии
Алюминий легко обрабатывается давлением, причем как в горячем, так и в холодном состоянии. Он поддается прокатке, волочению, штамповке. Алюминий не горит, не требует специальной окраски и не токсичен в отличие от пластика.
Очень высока ковкость алюминия: из него можно изготовить листы толщиной всего 4 микрона и тончайшую проволоку. А сверхтонкая алюминиевая фольга втрое тоньше человеческого волоса. Кроме того, по сравнению с другими металлами и материалами он более экономичен.
Высокая способность к образованию соединений с различными химическими элементами породила множество сплавов алюминия. Даже незначительная доля примесей существенно меняет характеристики металла и открывает новые сферы для его применения. Например, сочетание алюминия с кремнием и магнием в повседневной жизни можно встретить буквально на дороге – в форме литых колесных дисков, двигателей, в элементах шасси и других частей современного автомобиля. А если добавить в алюминиевый сплав цинк, то, возможно, вы сейчас держите его в руках, ведь именно этот сплав используется при производстве корпусов мобильных телефонов и планшетов. Тем временем ученые продолжают изобретать новые и новые алюминиевые сплавы.
Сегодня существование строительной, автомобильной, авиационной, космической, электротехнической, энергетической, пищевой и других отраслей промышленности невозможно без алюминия. Более того, именно этот металл стал символом прогресса – все новейшие электронные устройства, средства передвижения изготавливаются из алюминия.
Если заменить всю медную проводку в автомобиле
на алюминиево-циркониевую, то его общий
вес уменьшится на 12 кг
По расчетам Международного института алюминия (IAI), в мире накопилось около 400 миллионов тонн алюминия в инфраструктуре, быту, транспорте.
Казалось бы, вышеперечисленный набор характеристик уже сам по себе достаточен для того, чтобы алюминий стал металлом приоритетного выбора в индустрии, однако есть еще одна, не менее значимая характеристика. Использование алюминия может быть бесконечно: этот металл и сплавы из него можно неоднократно переплавлять без утраты механических характеристик. Ученые подсчитали, что 1 кг собранных и сданных в переплавку алюминиевых банок позволяет сэкономить 8 кг боксита, 4 кг различных фторидов и 14 кВт/ч электроэнергии.
Около 75% алюминия, выпущенного за все время существования отрасли, используется до сих пор.
В статье использованы фотоматериалы © Shutterstock и © Rusal.
Алюминий — химические и физические свойства, сферы применения
Алюминий — химические и физические свойства, сферы применения
Алюминий (Al) от латинского Aluminium — лёгкий парамагнитный металл, серебристо-белого цвета, плотностью 2712 кг/м³, легко поддающийся формовке, литью и механической обработке. Металл с повышенной тепло- и электропроводностью, и стойкостью к коррозии, за счёт образования оксидной защищающей плёнки Al2O3. Температура плавления технического алюминия 658°C, с повышенной чистотой 660°C. Сопротивление литого алюминия 10-12 кг/мм², деформируемого 18-25 кг/мм², сплавов 38-42 кг/мм². Пластичность технического алюминия 35%, чистого 50%. Прокат с повышенной электропроводностью 37·106 cм/м, теплопроводностью 203,5 Вт/(м·К), и повышенной светоотражаемостью.
Масса доли элементов в сплавах алюминия
- Дуралюмин — дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава. Сплав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем (Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом для авиационного и транспортного машиностроения.
- Силумин — легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.
- Магналии — сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариваемостью, высокой пластичностью. Изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т.д. (деформируемые магналии).
Основные достоинства всех сплавов алюминия состоят в их малой плотности (2,5-2,8 г/см3), высокая прочность (в расчете на единицу веса), удовлетворительная стойкость против атмосферной коррозии, сравнительная дешевизна и простота получения и обработка.
Модули упругости алюминия и коэффициент Пуассона
Наименование материала | Модуль Юнга, кГ/мм2 | Модуль сдвига, кГ/мм2 | Коэффициент Пуассона |
---|---|---|---|
Алюминиевая бронза, литье | 10500 | 4200 | — |
Алюминиевая проволока тянутая | 7000 | — | — |
Алюминий катаный | 6900 | 2600-2700 | 0,32-0,36 |
Физические свойства алюминия
Алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Металл хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С. Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.
По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.
Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов.
Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.
Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства.
Металл обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.
На нашем сайте, в каталоге алюминиевого проката, вы можете ознакомится и приобрести следующие виды продукции из алюминия:
- Пруток алюминиевый
- Лента алюминиевая
- Алюминиевый лист
- Плита алюминиевая
- Тавр алюминиевый
- Полоса алюминиевая
- Уголок алюминиевый
- Швеллер алюминиевый
- Профильная алюминиевая труба
- Круглая алюминиевая труба
Области применения алюминия
Широко применяется как конструкционный профиль, при изготовлении кухонной посуды, фольги в пищевой промышленности. Также в авиационной и авиакосмической промышленности. Недостаток алюминия как конструкционного материала — малая прочность, поэтому для упрочнения алюминий сплавляют с медью и магнием, получая дюралюминий.
Алюминий применяется в электротехнике для изготовления проводов, экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем. Благодаря комплексу свойств алюминиевые трубы широко распространены в тепловом оборудова6нии. Профильные трубы используются в строительстве и производственных сборках конструкций, при изготовлении мебели. Сплавы алюминия не приобретают хрупкость при сверхнизких температурах, используется в криогенной технике. Повышенный коэффициент отражения в сочетании с дешевизной и лёгкостью вакуумного напыления делает алюминий оптимальным материалом для изготовления зеркал.
Для декора входных и лестничных конструкций используется рифленые листы. При изготовлении облицовочных, противоскользящих и декоративных покрытий. В автомобилестроении для производства порогов и ступеней. Листовой прокат применяются в конструкциях, топливной, пищевой и химической промышленностях, также в строительстве и машиностроении. Производиться при помощи горячего, а затем холодного деформирования. Лист производят из сплава алюминия, и покрывают тонким слоем чистого алюминия. Материал обретает особую пластичность, прочность и устойчивость к негативным внешним факторам. Благодаря своим эксплуатационным характеристикам листы используются в строительстве чаще всего применяют как изоляционный или отделочный материал.
В авиастроении алюминий используется как базовый материал, из-за своей легкости. Из прутков изготавливают детали силового каркаса самолетов и других узлов. Также прутки востребованы в автомобильной промышленности.
Проволока применяется главным образом в сварочных работах и электротехники. Также используется в строительстве, машиностроении, пищевой и мебельной промышленности. Как универсальный крепеж, применяется при изготовлении сеток, мебельной фурнитуры, пружин, заклёпок, различных декоративных элементов.
Для изготовления легких и прочных конструкций не заменим уголок. Он используется для элементов морских, речных и воздушных судов, комплектующих для автомобилей. Уголок применяют для ограждающих сооружений, декоративных и умеренно нагруженных несущих конструкций. Как заготовка для изготовления деталей посредством последующей обработки. Прочность увеличивается за счет термической обработки, для увеличения срока службы подвергают анодному оксидированию.
Швеллера выполняют функцию стыковочного, базового элемента, встречаются в различных перемычках, карнизах, дверных и оконных профилях. Конструкции, изготовленные с их применением, отличают высокая жесткость, прочность и легкость. Благодаря пластичности, из него можно создавать инженерные, дизайнерские системы разных форм. Анодированный швеллер обладает высокими электроизоляционными свойствами и не подвержен накапливанию статического заряда, что важно при возведении высотных зданий. Благодаря швеллерам возможно изготавливать конструкции без применения сварки. Получая разборные сооружения, которые можно перенести частично или полностью на другое место. Данная технология, к примеру, используется при создании сезонных или временных складов, построек.
Полосы используются для закрывания соединительных швов между плитами. Как материал для изготовления декоративных элементов в производстве автомобилей, из них штампуют элементы отделки салона. Также используют в авиастроении, промышленности и других областях. Полосы обладают водо- и паронепроницаемостью. Не токсичны, можно использовать в сложных климатических условиях. В электротехнике из полос делают экранирующие и токопроводящие изделия.
Без использования алюминия невозможно было бы создать современных сооружений, мощных и легких машин, сверхбыстрых ракет и самолетов, а также предметов быта.
Назад в блог статей
Что такое алюминий
Легкий, прочный и функциональный: эти качества делают алюминий одним из ключевых инженерных материалов нашего времени. Мы можем найти алюминий в домах, в которых живем, в автомобилях, на которых ездим, в поездах и самолетах, которые доставляют нас на большие расстояния, в мобильных телефонах и компьютерах, которыми мы пользуемся каждый день, на полках в наших холодильниках и в современных интерьера, но всего 200 лет назад об этом металле было известно очень мало.
Такие драгоценные камни, как рубин, сапфир, аквамарин и изумруд, также являются минералами алюминия. Первые два представляют собой корунд, то есть оксид алюминия (Al 2 O 3 ) в кристаллической форме. Он по своей природе прозрачен и по прочности уступает только бриллиантам. Сапфир используется в пуленепробиваемых стеклах, окнах самолетов, устойчивых к царапинам экранах смартфонов. Тем временем один из менее ценных минералов корунда, наждак, используется в качестве абразива, например, в наждачной бумаге.
Сегодня нам известно около 300 различных соединений алюминия и минералов, содержащих алюминий, от полевого шпата, ключевого исходного минерала на Земле, до рубина, сапфира и изумруда, которые встречаются гораздо реже.
Хамфри Дэви. Британский физик и химик сэр Хамфри Дэви первым получил новый химический элемент с помощью электролиза: ему удалось получить бор из борной кислоты. Он продолжал использовать электролиз, чтобы изолировать еще шесть ранее неизвестных металлов: калий, натрий, барий, кальций, магний и стронций. Именно Дэви доказал существование алюминия, металла, содержащегося в глиноземе, и дал ему название.
Но каким бы распространенным ни был алюминий, он мог бы навсегда остаться скрытым, если бы не электричество. Открытие алюминия стало возможным, когда ученые смогли использовать электричество для расщепления химических соединений на их элементы. В 19 веке датский физик Кристиан Эрстед использовал электролиз для получения алюминия. Электролиз или электролитическое восстановление — это процесс, который и сегодня используется для производства алюминия.
Другой довольно распространенный минерал, боксит, используется сегодня в качестве основного сырья в производстве алюминия. Боксит представляет собой глинистый минерал, состоящий из различных модификаций гидроксида алюминия в смеси с оксидами железа, кремния, титана, серы, галлия, хрома, ванадия, а также сернистыми карбонатами кальция, железа и магния. Другими словами, ваш типичный боксит содержит почти половину таблицы Менделеева. Кстати, из-за текстуры боксита лет сто назад алюминий часто довольно поэтично называли серебром, полученным из глины. В среднем для производства 1 тонны алюминия требуется 4-5 тонн бокситов.
Бокситы были открыты в 1821 году геологом Пьером Бертье на юге Франции. Новые минералы были названы в честь района, в котором они были обнаружены: Les Baux. Около 90% мировых поставок бокситов приходится на тропические и субтропические районы, такие как Гвинея, Австралия, Вьетнам, Бразилия, Индия и Ямайка.
На первой стадии производства алюминия бокситы перерабатываются в глинозем или оксид алюминия Al 2 O 3 . Глинозем выглядит как белый порошок и затем перерабатывается в алюминий на алюминиевых заводах с помощью электролитического восстановления.
Производство алюминия требует огромного количества электроэнергии, около 15 МВтч на тонну продукции. Это примерно столько, сколько 100-квартирный дом потребляет в месяц. Поэтому лучшее место для алюминиевого завода находится рядом с мощным, желательно возобновляемым источником энергии. Гидроэлектростанции являются лучшим вариантом, поскольку они являются наиболее мощными «зелеными» источниками энергии, доступными сегодня.
Свойства алюминия
Алюминий предлагает редкое сочетание ценных свойств. Это один из самых легких металлов в мире: он почти в три раза легче железа, но при этом очень прочен, чрезвычайно гибок и устойчив к коррозии, поскольку его поверхность всегда покрыта чрезвычайно тонким, но очень прочным слоем оксидной пленки. Он не намагничивается, является отличным проводником электричества и образует сплавы практически со всеми другими металлами.
Три раза легче, чем железо
Практически столько же, сколько сталь
Легко при обработке
из -за тонкой поверхности Aluminum oxide
может быть легким поверхностным слоем Aluminum oxide
. давление как в жару, так и в холод. Его можно сворачивать, тянуть и штамповать. Алюминий не горит, не требует специальной покраски и в отличие от пластика не токсичен. Он также очень податлив, поэтому из него можно делать листы толщиной всего 4 микрона, а также очень тонкую проволоку. Сверхтонкая фольга, которую можно изготовить из алюминия, в три раза тоньше человеческого волоса. Кроме того, алюминий более экономичен, чем другие металлы и материалы.
Поскольку алюминий легко образует соединения с другими химическими элементами, было разработано огромное разнообразие алюминиевых сплавов. Даже очень небольшое количество примесей может резко изменить свойства металла, что позволит использовать его в новых областях. Например, в обычной жизни алюминий в смеси с кремнием и магнием можно встретить буквально на дороге, т.е. в алюминиевых колесах, в двигателях, шасси и других деталях современных автомобилей. Что касается алюминиево-цинкового сплава, скорее всего, вы держите его в руках прямо сейчас, поскольку именно этот сплав широко используется в производстве мобильных телефонов и планшетных компьютеров. Тем временем ученые продолжают разрабатывать новые алюминиевые сплавы.
Современное строительство, автомобилестроение, авиация, энергетика, пищевая и другие отрасли промышленности были бы невозможны без алюминия. Кроме того, алюминий стал символом прогресса: все современные устройства и транспортные средства сделаны из алюминия. (ссылка на раздел «Использование»)
Если бы в автомобиле все медные провода были заменены на алюминиево-циркониевые, вес автомобиля был бы на 12 кг меньше
По оценкам Международного института алюминия (IAI), в настоящее время существует 400 миллионов тонн алюминия используется в инфраструктуре, на транспорте и в быту
Казалось бы, сочетания перечисленных выше качеств уже достаточно, чтобы сделать алюминий лучшим выбором в промышленности, однако есть еще одно не менее важное свойство: алюминий можно использовать повторно снова и снова. И алюминий, и его сплавы можно переплавлять и использовать повторно без ущерба для механических свойств. Ученые подсчитали, что 1 кг переработанных алюминиевых банок может сэкономить до 8 кг бокситов, 4 кг различных фторидов и до 15 кВт/ч электроэнергии.
Около 75% алюминия, произведенного за время существования алюминиевой промышленности, все еще используется сегодня.
Фото: © Shutterstock и © Русал.
Алюминий | Использование, свойства и соединения
алюминий
Посмотреть все СМИ
- Ключевые люди:
- Ганс Кристиан Эрстед Эмиль Ратенау Фридрих Вёлер Чарльз Мартин Холл
- Похожие темы:
- химический элемент обработка алюминия элемент группы бора
См. все связанные материалы →
алюминий (Al) , также пишется как алюминий , химический элемент, легкий серебристо-белый металл основной группы 13 (IIIa, или группы бора) периодической таблицы. Алюминий является самым распространенным металлическим элементом в земной коре и наиболее широко используемым цветным металлом. В силу своей химической активности А. никогда не встречается в природе в металлическом виде, но его соединения в большей или меньшей степени присутствуют почти во всех горных породах, растительности и животных. Алюминий сосредоточен во внешних 16 км (10 милях) земной коры, из которых он составляет около 8 процентов по весу; его превосходят по количеству только кислород и кремний. Название алюминия происходит от латинского слова 9.0101 Alumen
, используемый для описания квасцов для калия, или алюминиевого сульфата калия, Kal (SO 4 ) 2 ∙ 12H 2 O.atomic weight | 26.9815384 |
---|---|
melting point | 660 °C (1,220 °F) |
boiling point | 2,467 °C (4,473 °F) |
specific gravity | 2.70 (at 20 °C [68 °F]) |
valence | 3 |
electron configuration | 1 s 2 2 s 2 2 p 6 3 S 2 3 P 1 |
ВКЛЮЧЕНИЕ И ИСТОРИЯ
Алюминиевые алюминиевые и вспыльчивые рамки; в полученной из них почве в виде глины; и при дальнейшем выветривании в виде бокситов и богатых железом латеритов. Бокситы, смесь гидратированных оксидов алюминия, являются основной алюминиевой рудой. Кристаллический оксид алюминия (наждак, корунд), встречающийся в некоторых магматических породах, добывается как природный абразив или в виде его более тонких разновидностей, таких как рубины и сапфиры. Алюминий присутствует в других драгоценных камнях, таких как топаз, гранат и хризоберилл. Из многих других алюминиевых минералов алунит и криолит имеют некоторое коммерческое значение.
Викторина по БританикеФакты, которые вы должны знать: Викторина по периодической таблице
До 5000 г. до н.э. люди в Месопотамии изготавливали прекрасную керамику из глины, состоящей в основном из соединений алюминия, а почти 4000 лет назад египтяне и вавилоняне использовали соединения алюминия в различных химических веществах и лекарствах. Плиний ссылается на квасцы, теперь известные как квасцы, соединение алюминия, широко используемое в древнем и средневековом мире для закрепления красителей в текстиле. Во второй половине 18 века такие химики, как Антуан Лавуазье, признали глинозем потенциальным источником металла.
Сырой алюминий был выделен (1825 г.) датским физиком Гансом Христианом Эрстедом путем восстановления хлорида алюминия амальгамой калия. Британский химик сэр Хамфри Дэви приготовил (1809 г.) железо-алюминиевый сплав путем электролиза плавленого оксида алюминия (оксида алюминия) и уже назвал этот элемент алюминием; слово позже было изменено на алюминий в Англии и некоторых других европейских странах. Немецкий химик Фридрих Велер, используя металлический калий в качестве восстановителя, получил алюминиевый порошок (1827 г.) и небольшие глобулы металла (1845 г.), по которым он смог определить некоторые его свойства.
Новый металл был представлен публике (1855 г.) на Парижской выставке примерно в то же время, когда он стал доступен (в небольших количествах за большие деньги) путем восстановления натрием расплавленного хлорида алюминия в процессе Девиля. Когда электроэнергия стала относительно обильной и дешевой, почти одновременно Шарль Мартин Холл в Соединенных Штатах и Поль-Луи-Туссен Эру во Франции открыли (1886 г. ) современный метод промышленного производства алюминия: электролиз очищенного оксида алюминия (Al 9).0005 2
O 3 ), растворенный в расплавленном криолите (Na 3 AlF 6 ). В 1960-е годы алюминий вышел на первое место, опередив медь, в мировом производстве цветных металлов. Для получения более подробной информации о добыче, переработке и производстве алюминия, см. обработка алюминия.Применение и свойства
Алюминий добавляют в небольших количествах к некоторым металлам для улучшения их свойств в определенных целях, например, в алюминиевые бронзы и большинство сплавов на основе магния; или, для сплавов на основе алюминия, к алюминию добавляются умеренные количества других металлов и кремния. Металл и его сплавы широко используются в авиастроении, строительных материалах, потребительских товарах длительного пользования (холодильники, кондиционеры, кухонная утварь), электрических проводниках, химическом и пищевом оборудовании.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас
Чистый алюминий (99,996%) довольно мягкий и непрочный; технический алюминий (чистота от 99 до 99,6%) с небольшими количествами кремния и железа отличается твердостью и прочностью. Ковкий и очень податливый алюминий можно вытягивать в проволоку или сворачивать в тонкую фольгу. Плотность металла составляет всего около одной трети плотности железа или меди. Несмотря на свою химическую активность, алюминий обладает высокой коррозионной стойкостью, так как на воздухе на его поверхности образуется прочная оксидная пленка.
Алюминий является отличным проводником тепла и электричества. Его теплопроводность примерно вдвое меньше, чем у меди; его электропроводность, около двух третей. Он кристаллизуется в гранецентрированной кубической структуре. Весь природный алюминий представляет собой стабильный изотоп алюминия-27. Металлический алюминий, его оксид и гидроксид нетоксичны.
Алюминий медленно подвергается воздействию большинства разбавленных кислот и быстро растворяется в концентрированной соляной кислоте. Однако концентрированную азотную кислоту можно перевозить в алюминиевых цистернах, поскольку она делает металл пассивным. Даже очень чистый алюминий подвергается энергичному воздействию щелочей, таких как гидроксид натрия и калия, с образованием водорода и иона алюмината. Из-за большого сродства к кислороду мелкодисперсный алюминий при возгорании сгорает в монооксиде или диоксиде углерода с образованием оксида и карбида алюминия, но при температурах до красного каления алюминий инертен к сере.
Алюминий может быть обнаружен в концентрациях до одной части на миллион с помощью эмиссионной спектроскопии. Алюминий может быть количественно проанализирован как оксид (формула Al 2 O 3 ) или как производное азоторганического соединения 8-гидроксихинолина. Производное имеет молекулярную формулу Al(C 9 H 6 ON) 3 .
Соединения
Обычно алюминий является трехвалентным. Однако при повышенных температурах было получено несколько газообразных одновалентных и двухвалентных соединений (AlCl, Al 2 O, AlO). В алюминии конфигурация трех внешних электронов такова, что в некоторых соединениях (например, в кристаллическом фториде алюминия [AlF 3 ] и хлориде алюминия [AlCl 3 ]) голый ион Al 3+ образован потеря этих электронов, как известно, происходит. Однако энергия, необходимая для образования иона Al 3+ , очень велика, и в большинстве случаев атому алюминия энергетически выгоднее образовывать ковалентные соединения путем sp 2 гибридизация, как это делает бор. Ион Al 3+ может быть стабилизирован гидратацией, а октаэдрический ион [Al(H 2 O) 6 ] 3+ встречается как в водном растворе, так и в некоторых солях.
Ряд соединений алюминия имеет важное промышленное применение. Глинозем, встречающийся в природе в виде корунда, также производится в промышленных масштабах в больших количествах для использования в производстве металлического алюминия, а также в производстве изоляторов, свечей зажигания и различных других изделий. При нагревании оксид алюминия образует пористую структуру, которая позволяет ему поглощать водяной пар. Эта форма оксида алюминия, известная как активированный оксид алюминия, используется для сушки газов и некоторых жидкостей. Он также служит носителем для катализаторов различных химических реакций.
Анодный оксид алюминия (ААО), обычно получаемый путем электрохимического окисления алюминия, представляет собой наноструктурированный материал на основе алюминия с очень уникальной структурой. AAO содержит цилиндрические поры, которые можно использовать для различных целей. Это термически и механически стабильное соединение, а также оптически прозрачное и электрическое изолятор. Размер пор и толщину AAO можно легко адаптировать для определенных приложений, в том числе в качестве шаблона для синтеза материалов в нанотрубки и наностержни.
Другим важным соединением является сульфат алюминия, бесцветная соль, полученная действием серной кислоты на гидратированный оксид алюминия. Коммерческая форма представляет собой гидратированное кристаллическое твердое вещество с химической формулой Al 2 (SO 4 ) 3 . Он широко используется в производстве бумаги в качестве связующего для красителей и в качестве поверхностного наполнителя. Сульфат алюминия соединяется с сульфатами одновалентных металлов с образованием гидратированных двойных сульфатов, называемых квасцами. Квасцы, двойные соли формулы MAl(SO 4 ) 2 ·12H 2 O (где M представляет собой однозарядный катион, такой как K + ), также содержат ион Al 3+ ; M может быть катионом натрия, калия, рубидия, цезия, аммония или таллия, а алюминий может быть заменен множеством других ионов M 3+ , например галлия, индия, титана, ванадия, хрома, марганца. , железо или кобальт. Наиболее важной из таких солей является сульфат алюминия-калия, также известный как квасцы калия или квасцы калия. Эти квасцы имеют множество применений, особенно в производстве лекарств, текстиля и красок.
Реакция газообразного хлора с расплавленным металлическим алюминием дает хлорид алюминия; последний является наиболее часто используемым катализатором в реакциях Фриделя-Крафтса, т. Е. Синтетических органических реакциях, связанных с получением самых разных соединений, включая ароматические кетоны, антрохинон и его производные. Гидратированный хлорид алюминия, широко известный как хлоргидрат алюминия, AlCl 3 ∙H 2 O, используется в качестве местного антиперспиранта или дезодоранта для тела, который сужает поры. Это одна из нескольких солей алюминия, используемых в косметической промышленности.
Гидроксид алюминия, Al(OH) 3 , используется для водонепроницаемости тканей и для производства ряда других соединений алюминия, включая соли, называемые алюминатами, которые содержат группу AlO − 2 .