Жидкое стекло для раствора пропорции: Сколько жидкого стекла добавлять в цементный раствор

Содержание

Гидроизоляция жидким стеклом. Миф и реальность. — Техинформатор

Нередко для гидроизоляции различных объектов – колодцы, резервуары, очистные сооружения используют так называемое «жидкое стекло». 

Работа по покрытию «жидким стеклом» подвальных и чердачных помещений похожа на силикатизацию бетонных конструкций. В этой статье мы попробуем разобраться, хороша ли подобная гидроизоляция, какие у нее плюсы и минусы.
Для начала разберемся с терминологией.  

  • В строительстве «жидким стеклом» называют гидроизоляционный материал, полученный путем смешивания истинного жидкого стекла с цементным или бетонным раствором.  
  • Промышленностью выпускаются жидкое натриевое стекло, жидкое калиевое стекло, а также их смеси в различных пропорциях. Натриевое и калиевое жидкие стекла абсолютно одинаковы по своему воздействию на цементные композиции.

 Основная доля производства приходится на натриевые жидкие стекла, поэтому в данной статье мы рассмотрим только их. 

Жидкое (растворимое) натриевое стекло — это коллоидный раствор силиката натрия в воде. Силикат натрия получают путем обжига смеси, состоящей из кварцевого песка и соды. Химический состав натриевого растворимого стекла может быть выражен формулой:
Na2O x nSiO2 + mh3O
Формула жидкого стекла не имеет постоянного состава, и соотношение между отдельными составными частями может меняться. 

Силикатным модулем стекла, (М) называют отношение SiO2: Na2 O. Он показывает, сколько кремнекислоты приходится на единицу окиси натрия. Величина его обычно колеблется в пределах от 2.2 до 3.5. Количество воды может быть различным. В зависимости от этого в коллоидном растворе растворимого стекла меняется его консистенция. 

Плотность жидкого стекла измеряется градусами шкалы Боме, (°

Ве) или показаниями удельного веса. Заводы обычно отпускают растворимое стекло плотностью 40 – 50°Be (плотностью 1.38 –1.50). Главным качеством жидкого стекла, из-за которого его применяют в строительстве, является его способность ускорять процессы твердения цементов. 

Какие процессы происходят при введении жидкого стекла в цементный раствор?

В результате химической реакции между щелочным силикатом (жидкое стекло) и составными частями цементного клинкера (гидроалюминат кальция) образуются коллоидные гидросиликат кальция и алюминат натрия.
3Na2O x SiO2 + 3CaO x Al2O3 x nh3O = 3CaSiO3 x nh3O + 3Na2O x Al2O3
Алюминат натрия (Na2O x Al2O3) является очень сильным ускорителем схватывания цементного раствора.  

Между жидким стеклом и известью, находящейся в цементе, проходит еще одна химическая реакция, c образованием силиката кальция:
Na2O x 2SiO2 + CaO = Na2O x SiO2 + CaSiO3
Силикат кальция (CaSiO3)

очень прочный и плотный материал. Отлагаясь в порах твердеющего цементного камня, силикат кальция, придает ему повышенную плотность и водонепроницаемость. 

Однако стоит отметить, что при нанесении смеси цементного раствора с жидким стеклом в качестве гидроизоляционного обмазочного материала толщина проникновения силиката кальция в бетон конструкции не превышает нескольких миллиметров.
В совокупности эти свойства (ускорение схватывания бетона и «зарастание» пор в цементном камне) обусловило применение жидкого стекла в качестве добавки для получения водонепроницаемого бетона для аварийных работ.
Подчеркнем, именно аварийных, так как скорость твердения цементных растворов с добавлением жидкого стекла предсказать сложно.

Ниже приведем плюсы и минусы применения «жидкого стекла» (по строительной терминологии) для гидроизоляции.

Плюсы:

  • хорошее сцепление с подготовленными минеральными основаниями;
  • образование водонепроницаемого барьера;
  • простота использования;
  • низкий расход материала;
  • сравнительно небольшая стоимость растворов.

Минусы:

  • необходима особо качественная подготовка поверхности, без которой слой гидроизоляции просто «отщелкнет»;
  • жидкое стекло нуждается в защите от механических повреждений;
  • жидкое стекло быстро кристаллизуется;
  • жидкое стекло обладает достаточно сильной щелочной реакцией, поэтому работы с ним следует проводить с соблюдением мер безопасности;
  • При добавлении жидкого стекла в цементные растворы и бетоны их прочность уменьшается.

Работая с жидким стеклом, надо придерживаться мер безопасности (силикаты имеют сильную щелочную реакцию). Вот важные рекомендации по гидроизоляции с использованием жидкого стекла:

Материал наносят кистью, распылителем или заливают небольшими порциями, в 3-4 слоя по 3-5 мм.При заливке следует обязательно обработать нанесенную массу игольчатым валиком чтобы удалить образовавшиеся пузыри.
Все работы проводятся исключительно в защитной одежде, в том числе обязательно в резиновых перчатках и сапогах. Под руками надо иметь нейтрализующий слабый раствор уксуса и чистую воду на случай попадания силикатов на кожу или в глаза.
Жидкое стекло очень быстро твердеет и повторно не разбавляется, поэтому готовитьраствор необходимо в количестве, достаточном для небольшой площади поверхности.
Работать следует быстро, особенно в больших помещениях. Каждый слой средства должен быть залит полностью, на всю площадь пола, до того как начнет затвердевать. Иначе образуются «швы», которые будут пропускать влагу.

В заключение хочется коснуться темы ремонтопригодности гидроизоляционных и иных покрытий, содержащих жидкое стекло. Дело в том, что после застывания, жидкое стекло превращается в стеклоподобную твердую субстанцию, с которой отделочные и ремонтные материалы имеют слабую степень адгезии. То есть для ремонта или отделки поверхности с нее следует удалить покрытие из жидкого стекла, вплоть до восстановления структуры бетона, а это — достаточно трудоемкий процесс.


Применение безобжиговых материалов из жидкого стекла в строительстве (материалы: грунтосиликаты)

Технология приготовления раствора для гидроизоляции своими руками

Многие строители и ремонтники раствор для гидроизоляции приготавливают своими руками. Процедура приготовления этого раствора несложная и довольно выгодная.

Для приготовления раствора необходимо иметь:

  • жидкое стекло,
  • бетонный раствор,
  • песчаный раствор,
  • кварцевый песок.

Каждый из перечисленных материалов требует свои дозы:

  • Количество жидкого стекла должно составлять 1,5 кг на 1 литр.
  • Бетонный раствор должен составлять 2,5 кг на 1 литр.
  • Песчаный раствор должен составлять 2,7 кг на 1 литр.
  • Кварцевый раствор применяется для слежавшегося и рыхлого песка.
  • Количество такого раствора для слежавшегося песка должно составлять 1,7 кг на 1 литр.
  • Для рыхлого песка понадобится количество раствора 1,5 кг на 1 литр.

Смесь, которую получили, применяют как для изоляции полов, так и для стен. Эксперты советуют, что перед нанесением раствора на поверхность ее требуется залить слоем жидкого стекла. Заливка дополнительного слоя перед нанесением дает увеличение прочности гидроизоляции.

Красящие работы

Силикатные краски можно купить уже в готовом виде и применять сразу. Но также можно смешивать своими руками купив нужные компоненты. В случае если поверхность уже красили, то необходимо ее тщательно отчистить от старой краски.

За счет того, что в создание таких красок применяют силикат калия сама смесь и краска образуют прочную структуру. За счет того, что цветовая гамма имеет высокий уровень щелочности, многие пигменты разрушаются. Поэтому цветовая гамма имеет низкий уровень.

Наружные работы

Известно, что в наружную работу входит штукатурка стен. Штукатурка стен применяется для защиты от влаги. Для стен применяется водостойкая штукатурка.

Также преимуществом этой штукатурки является то, что она предотвращает трещины, которые появляются во время зимнего периода, ведь в это время стены замерзают, и оттаивают.

Также эту штукатурку можно приготовить своими руками для этого понадобится: песок, цемент и жидкое стекло.

Все эти материалы требуется добавлять по пропорции 1:2:5. Перед тем как наносить штукатурку можно нанести один слой силиката, как и при создании гидроизоляции.

Грунтование

Как правило, грунтование применяется для двух видов работы для простой стяжки и для кладки плитки. Для простого грунтования стяжки необходимо использовать жидкое стекло и цемент по равномерному количеству. Если на стяжки будет ложиться плитка, то требуется провести грунтование с раствором жидкого стекла.

Для подобных работ требуется водостойкий цемент. Также кроме водостойкого цемента можно применять силикатные растворы, и за счет них проводить гидроизоляцию швов.

Пропитка поверхностей

Проводить пропитку необходимо для защиты материала. Пропитка деревянных элементов жидким стеклом пользуется популярностью. Жидкое стекло способно предотвратить появления грибов и плесени на дереве. Также пропитка дерева жидким стеклом предает ему огнестойкость.

Также деревянный материал можно пропитывать, полностью опустив его в жидкое стекло, это придает прочность. Такая процедура возможна только для материалов малого габарита.

Как пользоваться жидким стеклом при ремонтных работах – замазке трещин, щелей и пустот?

Для замазки трещин и пустот жидкое стекло идеально подходит. Ведь жидкое стекло способно проникнуть в саму глубь трещин, образуя плотную гидроизоляцию.

Для смешивания требуется использовать цемент жидкое стекло и песок. Полученный раствор является очень густым, что не дает ему вытекать. Также за счет силиката раствор очень быстро застывает прочно схватывая.

Виды

Существует несколько видов жидкого стекла. Их подразделяют в зависимости от основного вещества, используемого в смеси.

Натриевое

Образование на основе солей натрия характеризуется вязкой структурой, высокой прочностью и проникающей способностью. Отлично сопротивляется открытому огню, высоким температурам, также состав способен сохранять форму даже при деформации основания, на которое он был нанесен.

Калиевое

Данный материал содержит в своем составе соли калия. Структура смеси рыхлая, состав обладает повышенной гигроскопичностью, образует матовую поверхность. Калиевые составы хорошо сопротивляются чрезмерному воздействию тепла и деформациям.

Литиевое

Применяется для придания обрабатываемой поверхности защиты от термического воздействия. Выпускается небольшими партиями. Для некоторых работ применяют комбинированные смеси.

Рекомендуемые соотношения

Смешивайте цемент с жидким стеклом со строгим соблюдением рекомендуемых пропорций. Ошибка может вызвать разрушение или растрескивание конструкции. Процентное соотношение добавок, вводимых в цементный раствор, определяется с учетом объема цемента.

Мнение эксперта: Жидкое стекло и цемент, пропорции

Чем больше ложить жидкого стекла, чем быстрее произойдет начальное схватывание смеси. Советуем не ложить более 5% растворимого стекла, так как это ухудшит характеристики смеси. Оптимально придерживаться пропорций в 3 % от общей массы раствора. После приобретения жидкого стекла внимательно прочитайте инструкцию и при замешивании бетона соблюдайте полностью все указания.

Дмитрий Орлов

Применение жидкого стекла в строительных растворах осуществляйте, согласно следующим рекомендациям:

  • Жидкое стекло как гидроизоляционная добавка позволяет приготовить водостойкую штукатурку. Для раствора используйте 15% состав композита и смешайте с песчано-цементной смесью, соотношением 2,5:1.
  • Жидкое стекло с цементом для выполнения гидроизоляции бассейнов смешивайте, соблюдая пропорцию: на 10 объемных частей смеси должна быть добавлена одна порция силиката.
  • Цемент и жидкое стекло, а также песок, используемые, как защитные составы при изготовлении колодцев, применяйте в соотношении 1:1:1. Общая консистенция смеси должна соответствовать вязкости густой сметаны.
  • Жидкое стекло для бытовых целей следует добавлять в бетон объемом не выше 10% от общего веса.
  • Жидкое стекло и цемент, совместно с песком, перемешивается в соотношении 1,5:1,5:4 для подготовки обмазочных составов, обладающих огнеупорными свойствами. Доля воды для этого рецепта составляет не более четверти от общего объема добавки.

    Где вы предпочли бы жить: в частном доме, или квартире?

    Однозначно квартира! Комфорт, уют и тепло, вокруг люди и инфраструктура

    834 ( 7.62 % )

    Только частный дом! Вокруг тишина, покой, много места и мало людей!

    4987 ( 45.55 % )

    Зачем выбирать что-то одно? В городе квартира, а за городом — частный дом.

    4639 ( 42.37 % )

    Я — свободный Гражданин Планеты Земля! Мне не нужна рукотворная клетка!

    489 ( 4.47 % )


    Назад

  • Жидкое стекло для подготовки обычного бетона применяйте, не превышая его концентрацию выше 3% от общего объема.
  • Цементный раствор с жидким стеклом смешивайте для грунтования в равных соотношениях. Песок для этой операции не применяется, а на общий объем силиката добавляйте четвертую часть воды. Разводить следует вначале цементный раствор. Затем полученный цемент порциями добавляйте в емкость с силикатом, непрерывно помешивая.

Обзор методов использования

Губительное влияние влаги на фундаменты, кровлю и фасады зданий, а также вымывание грунтов под автомобильными дорогами и постаментами памятников удается предотвратить с помощью щелочных гидрозолей силикатов. Чем разводить песчано-цементный раствор, зачем и сколько жидкого стекла добавлять в бетон — давно решили для себя строители.

При этом сокращается продолжительность застывания смеси, повышается стойкость монолита к агрессивному действию влажности, жары, кислотности и биологических патогенов. Деревянные изделия и конструкции, пропитанные ЖС, приобретают огнестойкость: не горят открытым пламенем, а тлеют. Растворимое стекло применяется в качестве добавки к смеси или для обработки в чистом виде.

Проникающая гидроизоляция

Если силикатный клей смешать с водой в соотношении 1:10, то он проникает в пористую бетонную поверхность на глубину до 5 мм. Образующиеся при высыхании монокристаллы натриевых или калиевых солей герметично закупоривают все встречающиеся дефекты. Трёх слоёв пропитки достаточно для создания полностью водостойкого покрытия, пригодного для дальнейшего нанесения битумной гидроизоляции.

Добавление в бетонные растворы

Цемент и наполнитель соединяются в необходимых соотношениях, затем в них вливается ЖС, разведённое водой 1:10, и перемешивается. Состав очень быстро схватывается, поэтому работать с ним надо оперативно. Здесь на помощь приходит специальный «растворный» пульверизатор. Широкое применение получили гидроизолирующие составы для панельных швов, монолитных стен и стыковочных элементов конструкций. Бетонные стяжки на основе силикатного клея используются при строительстве бассейнов, заливке фундаментов, выгребных и смотровых ям, подвалов и прочих водонепроницаемых сооружений.

Помимо придания гидрофобизирующих свойств конструкциям, регулярно контактирующим с влагой, ЖС незаменимо при строительстве печей и котлов. Для этого бетонные растворы готовят из марок цемента не ниже M300. При покупке обязательно надо проверить, какой срок годности стоит на упаковке, сохранена ли её герметичность. Важным является и наличие соответствующих сертификатов. Гелеобразная полупрозрачная жидкость не должна содержать комки и посторонние включения, её нельзя подвергать замораживанию-размораживанию, поскольку при этом пропадают потребительские свойства.

Жидкое стекло для бетона: инструкция по применению и изготовлению смеси

Приготовить смесь цемента и жидкого стекла можно даже в домашних условиях, соблюдая при этом ряд требований. Нарушение технологии изготовления раствора может повлечь за собой образование трещин на бетоне.

Жидкое стекло следует добавлять в сухую смесь. Для этого сначала в нужных пропорциях соединяют все сухие компоненты и тщательно их перемешивают, не используя при этом воду. Затем постепенно вливают в состав жидкое стекло, предварительно разбавленное водой.

Необходимо строго соблюдать соотношение всех ингредиентов при приготовлении раствора в соответствии с рецептом, применяемым для конкретного вида работ. Например, если речь идет о количестве стекла в бетоне, то оно не должно превышать 25% от общего веса смеси. Для приготовления грунтовки с использованием цементного состава и силикатного клея соотношение может составлять 1:1.

Следует учесть, что на ускорение скорости и плотности затвердевания раствора влияет именно жидкое стекло для бетона. Инструкция по применению рекомендует готовить смесь в небольшом количестве и быстро ее использовать.

Для гидроизоляции поверхности бетона наносят жидкое стекло в несколько слоев

Время схватывания зависит от количества жидкого стекла, добавленного в бетон. Если смесь содержит 2% данного вещества, то она начинает схватываться через час, если 5% – то уже через 40 минут. От пропорции зависит и процесс затвердевания. Если в раствор добавлено более 4% силикатного клея, то прочность бетона после полного затвердевания снизится примерно на 25%. Однако если бетон будет содержать всего 3% жидкого стекла, то прочность конструкции возрастет.

Технологические особенности смеси и виды пропитки бетона жидким стеклом

Жидкое стекло в растворе, замешанном в цементе М400 при температуре 20 °C, начинает схватываться уже через 2-3 часа, а полностью твердеет через сутки. Со временем монолитная основа только прочнеет. Максимальный эффект твердости достигается максимум через 4 недели.

Жидкое стекло применяется также в качестве пропитки разных поверхностей, обеспечивая их гладкость, ровность и гидроизоляцию. Обработка бетона жидким стеклом проводится для таких конструкций:

  • бетонного пола;
  • плоской кровли;
  • колодцев;
  • бассейнов;
  • подвалов;
  • цоколей;
  • бетонных стен и потолков.

После высыхания жидкого стекла происходит закупорка всех пор в бетоне

Процесс пропитки включает несколько этапов. Прежде всего, требуется подготовка основы. Для этого поверхность тщательно очищают от старого покрытия, краски, мусора, пыли и грязи. Далее проводят зачистку металлической щеткой, основание покрывают битумной эмульсией слоем в 2 мм. Основе дают время просохнуть.

Затем осуществляется пропитка поверхности раствором с жидким стеклом. Пропорции жидкого стекла в бетоне зависят от типа поверхности (в соответствии с инструкцией применения). Если поверхность горизонтальная, то на нее наносят слой в 2-3 мм и разглаживают смесь шпателем. Заливку пола и перекрытий производят в несколько слоев, делая перерыв на определенное количество часов. Использовать поверхность можно спустя пару суток.

Во время работ нужно придерживаться ряда рекомендаций. В частности, раствор необходимо распределять равномерно. Покрытие следует производить максимально быстро, не допуская затвердевания состава. Надежную пропитку обеспечивает нанесение смеси в два или даже в три слоя. Для изоляции стен и потолка используют специальный пульверизатор, который способствует равномерному распределению раствора. Покрывают поверхность в два-три слоя.

Как правильно приготовить бетонный раствор с жидким стеклом

Для того чтобы приготовить такой замес, выполните следующие шаги:

  1. Возьмите ведро чистой питьевой воды (без солей и прочих примесей). Техническую воду использовать нельзя, так как включения, содержащиеся в ней, могут повлиять на реакцию.
  2. Залейте в воду стакан жидкого стекла и тщательно размешайте смесь до полного растворения силикатного клея.
  3. Перелейте полученную жидкость в корыто или таз.
  4. Помешивая жидкость, добавьте в нее бетон и песок в нужной пропорции.
  5. Взбейте бетонный раствор при помощи строительного миксера или дрели с насадкой, до получения однородной массы.
  6. Залейте бетон в опалубку.

В процессе приготовления раствора важно учитывать следующие рекомендации:

  • Растворимое стекло, ни при каких обстоятельствах, нельзя добавлять в цементно-песчаную смесь, без предварительного растворения добавки в воде. Тоже самое касается и воды – ее можно добавлять в смесь, только после ее смешивания с клеем.
  • На большинстве упаковок с жидким стеклом есть инструкция, если вы добавляете присадку для фундамента (как описывалось выше) то нужно использовать не более 3% силикатного клея, во всех остальных случаях руководствуйтесь информацией от производителя.
  • Так как добавка значительно сокращает время застывания бетона, лучше готовить раствор малыми порциями. Если вы используете для этого бетономешалку, то смесь схватиться еще до окончания смешивания. Также учитывайте, что работать придется очень быстро.
  • После добавления силикатного клея необходимо тщательно промыть все инструменты и руки.
  • Хоть жидкое стекло и не токсично, не стоит допускать попадания брызг силикатного клея на открытые участки кожи или в глаза. Работать нужно в хорошо проветриваемом помещении, вдали от источников, которые могут образовать искру.

Пропорции компонентов при использовании жидкого стекла

Силикатный раствор, который продается в магазинах, имеет малое количество воды, что делает его излишне густым. Многие строители силикатный раствор приготавливают своими руками в домашних условиях. Приготовляя подобный раствор, строители смешивали обычные компоненты и купленные.

В процессе смешивания строители регулируют дозу добавляемой воды. Для каждого вида работы готовится раствор с определенными дозами продуктов. Например для приготовления раствора, который будет применен, в строительных работах должен содержать цемент, песок, и другие составы.

Главное для каждого вида работы правильно выбирать количество воды, ведь бывают случаи, когда нужен густой раствор. Но также бывают случаи, в которых он должен быть жидким, все зависит от вида работы.

Жидкое стекло и цемент. Пропорции

Для того чтобы произвести смешивания необходимо знать точные пропорции материала. Для приготовления раствора для поверхности из грунта необходимо использовать цемент и жидкое стекло. Для этого требуется вода и цемент их необходимо мешать и регулярно добавлять жидкое стекло.

Для приготовления раствора, который будет применяться как для наружных работ или защиты от огня применяют 4 части песка. Требуется, чтобы жидкое стекло занимало 1,5 часть. Цемент также должен занимать 1,5 части. Воду добавлять такого же количества, как и для приготовления раствора для грунтовой поверхности.

Также чтобы приготовить раствор для осуществления гидроизоляции необходимо иметь жидкое стекло количеством 1 литр, и раствор из цемента 8 литров. Для того чтобы сделать гидроизоляцию в подвале или колодце, то требуется такое же количество, но только нужно использовать еще и песок. Эксперты советуют перед нанесением раствора на поверхность намазать на нее жидкое стекло.

Для того чтобы приготовить раствор для наполнения трещин необходимо взять 3 доли песка, и по 1 доле цемента и песка. Все это требуется смешать с водой в количестве 25 % от веса силиката натрия. Затем в смесь требуется вливать жидкое стекло равномерно помешивая.

Пропорции. Цемент — песок — жидкое стекло

В применении песка для добавления в жидкое стекло необходимо знать нужные пропорции. Для каждого вида работы существуют определенные пропорции. Например, для приготовления смесь, которая будет использоваться, в целях защиты от огня требуется песок количеством в 1 кг.

Если раствор нужен для работы, которая заключается гидроизоляции колодца, то необходимо использовать жидкое стекло и песок равным количеством. После того как раствор был приготовлен его необходимо нанести на стены колодца.

Для приготовления раствора, который будет применяться для обмазки снаружи, и служить защитой от огня потребуется песок. Количество песка должен занимать 1 часть от всего раствора.

Свойства, достоинства и недостатки

Жидкое натриевое стекло относится к монощелочным продуктам, внешне оно чем-то напоминает резиновую тягучую массу. Такой материал характеризуется водоотталкивающими свойствами: он не пропускает воду. Это хороший антисептик, поскольку он обеспечивает защиту оснований от появления и распространения грибка. Кроме того, материалу свойственна антистатичность: он повышает инертность оснований к электростатическим разрядам.

За счет отвердевающих качеств жидкое стекло повышает прочность и износоустойчивость обработанных поверхностей. Это огнеупорный материал, применение которого повышает пожаростойкость основания и его защиту от кислотосодержащих компонентов. Масса быстро заполняет мелкие щели и даже поры, она защищает основания из бетона и дерева. При этом отличается экономичностью расхода.

Применение жидкого натриевого стекла позволяет получить тонкую пленку с большим сроком службы. Использовать его можно в помещениях разного типа, в том числе с высокой степенью влажности. Однако есть у данного материала и недостатки. К примеру, его нельзя использовать в качестве гидроизоляции кирпичных оснований.

Далеко не всегда образуемая стеклянная пленка имеет нужную прочность. Поэтому приходится применять дополнительные методы гидроизоляции. Мастеру работать с жидким натриевым стеклом несложно, однако новичку стоит учесть тот факт, что в работе нежелательно медлить. Кроме того, нужно иметь в виду, что состав неспособен гидроизолировать основание, если предварительно не подготовить его к этому.

Придется не только очистить поверхность от пыли и мусора, но также укрепить его посредством грунтовки глубокого проникновения. Это дополнительные траты, но без раствора грунта не получится нужного укрепления и высокой адгезии пленки и основания.

Правила применения

Кроме соблюдения пропорций при замесе, требуется знать необходимые требования применения и изучение инструкции по применению жидкого стекла. Правила такие:

  1. Недопустимо дополнение силикатом натрия готового замеса. Для начала приготавливается сухая смесь цемента с песком, затем она разводится постепенным прибавлением раствора воды с силикатом. Соблюдается постоянное размешивание.
  2. Регулярно выполнять руководство, придерживаться пропорций элементов. Например, для фундамента достаточно 3% содержания клеящего состава, при иных применениях процент повышается до 10.
  3. При быстром застывании раствора в емкости, допускается добавление малого количества чистой воды. Если не хватает времени на использование готовой смеси, то следует прибегнуть к замесу малого количества пропорций. Поэтому при применении ЖС, не следует использовать бетономешалку, так как по ней смесь растечется и быстро застынет.

Рекомендуем посмотреть видео-инструкцию:

Изменение свойств цементных растворов и бетона при добавлении жидкого стекла

Цементные растворы получают, смешивая песок с цементом и водой в отношениях, которые могут меняться в зависимости от назначения. Если к полученной смеси добавить щебень, получается бетон. Чтобы изменить свойства этих смесей, в раствор вносят добавки. Одна из таких добавок – жидкое стекло – существенно влияет на свойства цементных растворов и бетона.

Если в раствор добавлено жидкое стекло, время схватывания сокращается пропорционально количеству этой модифицирующей добавки. Так, при содержании силиката натрия 2% бетон начинает схватываться примерно через час, а если жидкого стекла 5% – через 38 минут. Эта добавка влияет не только на скорость схватывания, но и на процесс затвердевания. Если содержание силиката натрия в смеси 4 и более процентов, то прочность бетона с добавкой после полного затвердевания (28 дней) оказывается примерно на 25% ниже, чем бетона без добавки. Однако при содержании силиката не более 3% прочность монолита возрастает.

Влияние добавки растворимого стекла на сроки схватывания цемента

Влияет добавление растворимого стекла и на поглощение воды бетоном. Бетон без добавки имеет мелкие поры, поэтому при контакте с влажным грунтом отсыревает, постепенно теряет прочность и разрушается. Это разрушение может быть ускорено ростом грибка и наличием кислот в воде. Если в смесь был добавлен силикат натрия, пористость и водопроницаемость готового бетона резко снижается, устойчивость к разрушению кислотами возрастает, а развитие грибка исключается.

Однако не надо думать, что жидкое стекло – идеальная гидроизоляционная добавка для бетона. Силикат натрия – водорастворимое вещество, поэтому при большом количестве воды он вымывается из монолита, после чего бетон разрушается. По этой причине в бетон для фундамента нужно добавлять силикат натрия в количестве не более 3% и тщательно изолировать фундамент другими гидроизоляционными материалами.

Жидкое стекло добавляют в раствор при кладке камина или печи

Особенности применения

Как уже говорилось, цементные смеси с высоким содержанием силиката натрия быстро схватываются и после затвердевания плохо пропускают влагу, но прочность монолита значительно снижается. Такие смеси находят применение для срочного ремонта бетонных фундаментов, которые разрушаются просачивающейся водой. В этом случае цементный раствор, в который добавляют до 50% жидкого стекла, замешивают в небольшом количестве и сразу же заполняют им трещины. Смесь схватывается в течение нескольких минут и устраняет дефект на длительное время. Таким образом можно ремонтировать бетонные, асбоцементные, керамические конструкции и даже чугунные трубы. Эти же смеси применяют для улучшения гидроизоляции бетонных и кирпичных стен, перекрытий и швов между ними.

Жидкое стекло активно используется для улучшения гидроизоляции

Добавление силиката натрия в бетонный раствор имеет смысл при заливке фундамента в местности с высоким уровнем кислых грунтовых вод. Устойчивость бетона к разрушению при этом значительно возрастает. Заливать фундамент в этом случае нужно с соблюдением двух условий:

  •     содержание жидкого стекла в растворе не должно превышать 3%;
  •     фундамент тщательно изолируют другими гидроизоляционными материалами.

Технология применения

Рассчитанное количество жидкого стекла смешивают с водой, которой затем затворяют раствор. Поскольку раствор силиката имеет высокую вязкость, для быстрого перемешивания пользуются дрелью с миксерной насадкой.

Перемешивание раствора дрелью

Растворы с высоким содержанием растворимого силиката (10–50%) готовят в небольшом количестве непосредственно перед использованием. Сначала готовят сухую строительную смесь, а затем струйкой вливают раствор жидкого стекла при постоянном перемешивании. После приготовления смесь сразу используют. Готовить такие смеси в бетономешалке смысла не имеет, а при высокой концентрации силиката натрия это вообще невозможно – смесь схватится еще до окончания перемешивания.

Для чего в бетон добавляют жидкое стекло

Строительная смесь изготавливается путем перемешивания пропорций песка, щебня, цемента. Он получается прочный, но бывает так, что требуется добавление пластификаторов. Таковым выступает жидкое стекло (ЖС). На раствор оказываются следующие воздействия:

Повышается влагоустойчивость

Это важно при формировании конструкций, находящихся в постоянном контакте с водой либо во влажных помещениях.
Процесс застывания сокращается во времени, но требуется температура окружающего пространства в пределах 20 градусов.
Раствор приобретает гидроизоляционные свойства.
Приобретенная антибактериальность препятствует размножению бактерий, плесени.
Увеличивается прочность на истирание.
Смесь получается эластичной, что облегчает нанесение.
Повышается устойчивость к повышенным температурам. Раствор с ЖС способен выдержать температуру в 1400 градусов, при этом обычный состав противостоит 200 градусам

И после длительного нагрева способен разрушиться. Эти нюансы важны при кладке печей и каминов.

Применение жидкого стекла

Жидкое стекло

Основными сферами применения жидкого стекла являются:

  • Изготовление различных уникальных по характеристикам разновидностей бетона и цемента;
  • Изготовление огнезащитных покрытий;
  • Укрепление грунтов;
  • С недавнего времени – изготовление разнообразных автомобильных полиролей;
  • Гидроизоляция цементная с жидким стеклом, улучшающим эксплуатационные характеристики штукатурного и бетонного слоев.

Жидкое стекло

Использование жидкого стекла дает следующие положительные эффекты:

  • Приводит к повышению твердости материала и его устойчивости к истиранию;
  • Уменьшает впитываемость влаги;
  • Обеспечивает защиту декоративного слоя от негативных химических воздействий.

Перед использованием жидкое стекло обычно разводят водой (соотношение 1:2). Расход материала составляет в среднем 150-300 г/м2.

Пропитывание строительных конструкций жидким стеклом создает на их поверхности специальный защитный слой, восстанавливающий выветренные участки поверхности штукатурки или бетона и создающий антисептическую защиту поверхности.

Рассмотрим подробнее основные области применения жидкого стекла:

  1. При обработке жидким стеклом поверхности стен существует несколько типов его проникновения. Перед тем, как наносить жидкое стекло на стену, поверхность тщательно выравнивают и обезжиривают.  
    Для поверхностного пропитывания бетона или штукатурного слоя используют кисть или краскопульт, при этом жидкое стекло проникнет в строительный материал на глубину 1-2 мм. В случае глубокой защитной пропитки наносится несколько слоев жидкого стекла, которое при этом способно проникнуть на глубину, достигающую 20 миллиметров.
  1. Кроме того, данный материал может применяться в качестве материала для гидроизоляции подвала и других помещений (например – гидроизоляция Стеклоизол). При этом рекомендуется добавлять 1 л жидкого стекла к 10 л бетонного или цементного раствора.
    Жидкое стекло может быть использовано как при гидроизоляции стен, так и стяжек, подвалов, колодцев и прочих строительных элементов и конструкций.
    Также жидкое стекло может использоваться для антикоррозийной обработки металла.

  2. Жидкое стекло также используется при производстве огнезащитных красок, предназначенных для предотвращения возгорания различных материалов. Комплект поставки современных огнезащитных красок включает в себя два компонента, перемешиваемых между собой непосредственно перед началом работ.
    Огнезащитную краску следует наносить на поверхность на протяжении 6-12 часов с момента получения смеси.
  3. Жидкое стекло также используется для замазки стыков труб водопровода и для удаления старого лакокрасочного покрытия с какой-либо поверхности.
    Жидкое стекло также применяется для создания универсального клея, используемого при соединении различных материалов.

Композитобетон

Стеклоармированный бетон походит по своим особенностям на железобетон. Вместо металлических прутьев, армирование композитобетона происходит стекловолоконными. Главные преимущественные качества композитного армирования:

  • устойчивость к влаге на протяжении длительного времени;
  • низкий вес стекловолоконных прутьев;
  • доступная стоимость;
  • стекловолоконный материал можно свернуть бухтами длинной 300 м, это обеспечивает легкую транспортировку;
  • обеспечивает высокую теплоизоляцию.

Прочность композитного прутка в 2,5 раза больше чем стального при разрыве. Благодаря этой особенности пруток из стекловолокна нужен тоньше. Армирование бетона и создание арматурного пояса из стеклофибры происходит легче и быстрее благодаря таким ее особенностям:

  • легкий вес;
  • надежная фиксация с помощью хомутов из пластика;
  • не замерзает зимой, облегчая строительные работы при низких температурах.

Композитобетон меньше подвержен агрессивной окружающей среде. В отличии от стеклокомпозитного армирования, железобетонное, подверженное коррозии, может вызвать разрыв конструкции изнутри, полностью разрушиться.

Толщина композитобетона может быть меньше, не влияя на качественные показатели конструкции. Вес сооружения становится меньше, прочность остается на высоком уровне. Стеклобетонное армирование не требует дополнительной защиты, как обычное металлическое армирование. Фундамент также можно сделать не укрепленный, благодаря легкому армированию.

Список источников

  • zamesbetona.ru
  • dekoriko.ru
  • DomZastroika.ru
  • poznaibeton.ru
  • betonli.ru
  • pobetony.ru
  • chudoogorod.ru
  • fundamentt.com
  • VseProKley.ru
  • gidroinfo.ru
  • kladembeton.ru

Пропорции жидкого стекла в растворе — Стройка дома от и до

Часто в строительстве и при проведении ремонтных работ используется жидкое стекло. В его основе лежат калий или натрий, а также их смеси. Плюсы использования в определенных пропорциях жидкого стекла в растворе заключаются в существенном улучшении качества и продолжительности срока службы пропитанных материалов при низкой стоимости используемых смесей. Кроме того, клей добавляют в различные силикатные массы, что повышает их огнеупорные свойства.

Жидкое стекло в бетоне способствует улучшению его влагоустойчивых свойств; предотвращает рост грибковых образований, повышает его жаростойкость.

Сферы применения

Благодаря своим уникальным свойствам жидкое стекло используется в различных сферах народного хозяйства, включая текстильное и литейное производство, а также прочие виды деятельности. В строительстве добавление жидкого стекла в бетонный и цементный растворы происходит на различных участках работ.

Так, чтобы сделать грунтовку, клей смешивают с цементным раствором 50/50. Пропорции жидкого стекла в растворе бетона могут достигать 25% общей массы смеси. Например, для создания влагостойких составов процент жидкого стекла не должен превышать 5-15, а для получения огнеупорных составов – не более 15-25. Кроме того, для придания деревянным и тканевым поверхностям дополнительной огнеупорности и водоотталкивающих свойств их также пропитывают жидким стеклом.

Клей добавляют в растворы при укладке фундаментов зданий, где наблюдается высокий уровень грунтовых вод или избыточная сырость. Такие фундаменты способствуют гидроизоляции объекта и не требуют дополнительной обработки от плесени, поскольку жидкое стекло работает в качестве антисептика.

Также при строительстве гидротехнических сооружений, закладке печей или каминов добавляют жидкое стекло.

Способ приготовления

Поскольку изготовление кремнеземистых и алюмосиликатных бетонов осуществляется в промышленных условиях и в больших масштабах, то в домашних условиях составы с точной дозировкой сделать довольно сложно.

Однако, придерживаясь пропорций добавок, зная свойства ингредиентов и соблюдая технологию, можно получить смесь довольно высокого качества. Так, в один куб бетона М400 добавляется 72 л жидкого стекла, что создает максимальное напряжение раствора, но пропорция 1:10 чаще используется в частном и малом строительстве.

Поскольку густая смесь бетона и жидкого стекла довольно быстро затвердевает, то такая масса должна готовиться в небольших объемах и немедленно использоваться.

Характеристика жидкого стекла для бетона, его особенности, правила приготовление и пропорции

Более частое название жидкого стекла – силикатный клей. Он востребован, а для некоторых строительных работ просто незаменим. В составе силикаты натрия, калия. Раствор активно используется в строительстве благодаря множеству свойств. Его добавляют для гидроизоляции в бетон для укладки фундамента. Это повышает прочность стройматериалов.

Гидроизоляция бетона

Особенности применения

Смесь силикатов щелочей с водой и есть силикатный клей. Он впервые синтезирован около 2 веков назад химиком из Германии. Это полупрозрачный раствор, который формирует на основе тончайшую, но прочную пленку. Она непроницаема для воды. Но состав будет работать только тогда, когда соблюдаются все правила, как его использовать.

После высыхания заливки она не боится воды, становится эластичной, устойчива к кислотам, кроме того, безопасна в экологическом отношении. Перечисленные характеристики обуславливают широкое распространение ЖС в строительстве. Оно также хорошо подходит для гидроизоляции сооружений из бетона.

Состав при разведении с водой 1 к 10 клей становится уникальным раствором, который может проникать в поры, места недостаточной плотности цемента на глубину до 5 мм. При нанесении в 3 слоя создается почти полностью водонепроницаемая пленка. Когда соли металлов просыхают, формируется жидкокристаллическая масса. Она выравнивает все дефекты на стяжке. На пленку сверху допустимо наносить другие составы гидроизоляции – битум, мастика.

Жидкое стекло для бетона наносится для гидроизоляции швов, на стены, на стыки конструкций. Бетон с добавлением вещества применяется для формирования чаш бассейнов, фундаментов, который укладывается в местах высокой влажности, для стен в подвалах, выгребных ямах, других конструкциях, которые в будущем будут эксплуатироваться при высокой влажности.

Следует отметить, что ЖС может добавляться к составам для окрашивания и шпаклевки. Это отличный вариант для помещений с больших проходом людей.

Плюсы и минусы

Главное достоинство пропитки на основе ЖС – увеличение времени эксплуатации конструкции из бетона. Также к положительным качествам относятся:

  • увеличение устойчивости к истиранию;
  • повышение характеристик твердости;
  • устойчивость к влиянию химикатов – щелочей, солей, кислот;
  • если покрасить поверхность с добавлением ЖС, то уменьшается водопроницаемость;
  • затирание пор – подходит и для внутренней, и для наружной обработки зданий;
  • антисептическое действие;
  • небольшой расход;
  • доступная цена.
Достоинства состава

Покрытие бетонного пола жидким стеклом способно уменьшать негативные воздействия окружающей среды – удары, трение, погодные условия, пыль, перепады температуры.

К недостаткам относятся:

  • быстрое схватывание состава, поэтому время работ сильно ограничивается;
  • хрупкость слоя.

Как правильно смешать

Процесс смешивания силикатов и бетона для стяжки пола несложный. Получить правильный состав можно лишь при соблюдении особых правил:

  • снижение твердеющих характеристик смеси – растворить силикат в воде, только потом тонкой струей вводить в приготовленный раствор цемента;
  • постоянно перемешивать состав, чтобы добиться равномерного распределения клея;
  • после внесения всего объема всё еще раз тщательно перемешивается при помощи дрели, миксера;
  • из-за быстрого затвердевания не нужно делать сразу много заготовки.

Для бетонного состава следует брать только питьевую чистую воду, где отсутствуют соли, другие посторонние вещества, так как они могут значительно снизить положительные качества ЖС.

Соотношение компонентов

При смешивании требуется четко соблюдать пункты инструкции и пропорции ингредиентов. В раствор для укладки фундамента добавляется строго 3% ЖС, в остальных случаях максимум в смеси – это 25% от общего объема.

ЖК провоцирует ускорение отвердевания раствора. В связи с этим в работе помогает добавление воды, заготовка раствора небольшими порциями.

Организация приготовления состава с добавками

Прежде чем воспользоваться ЖС и заливать пол требуется ознакомиться с особенностями работы с ним. Сначала подобрать инструменты. Силикаты повысят качество гидроизоляции наливной бетонной основы, поэтому для работы потребуются:

  • емкости различного объема;
  • миксер, дрель с насадкой для перемешивания;
  • валик;
  • щетка для облегчения нанесения;
  • краскопульт – поможет равномерно распылять;
  • строительные перчатки;
  • специальная одежда.

Замес готовится в несколько этапов:

  1. Взять ведро чистой воды – без примесей. Запрещено пользоваться техническими водами.
  2. Залить туда стакан ЖС, перемешать до растворения.
  3. Смесь перелить в емкость достаточного объема.
  4. Медленно мешать жидкость, насыпать бетон с песком в необходимой пропорции.
  5. Взбить получившийся раствор миксером до однородности.
  6. Залить в опалубку.
Смешивание

Подготовительные мероприятия

Перед тем как приступать к смешиванию, нужно подготовиться:

  • Почистить поверхность, убрать выступы, обработав шлифовкой, удалить пыль.
  • Приготовить раствор для грунтовки – концентрат ЖС разводят чистой водой. Для гидроизоляции пропорции такие: на 1 л силиката 2,5 л воды.
  • Нанести получившуюся грунтовку валиком, пульверизатором.
  • Нанести грунтовочный раствор повторно спустя полчаса.

Поэтапная инструкция гидроизоляции

Вполне можно произвести гидроизоляцию своими силами, соблюдая порядок действий и рекомендации:

  1. Валиком нанести раствор цемента, обязательно тонким слоем. Не нужно сразу делать его слишком толстым – это ухудшит характеристики клея в будущем.
  2. Если требуется толстый слой, то его наносят в несколько этапов с перерывами в полчаса.
  3. Для ровности поверхности обязательно понадобится уровень.
Процесс нанесения

Меры безопасности

При приготовлении раствора для напольной отделки нужно соблюдать такие рекомендации профессионалов:

  • ЖС никогда не добавляют без предварительного разведения в воде. Тоже самое относится и к воде – ее допустимо добавлять в состав после соединения с ЖС.
  • На большинстве пачек с клеем располагается инструкция, в каких пропорциях соединить ЖС для разных целей. Лучше внимательно ознакомиться с руководством и следовать указаниям производителя.
  • Из-за того, что ЖС значительно уменьшает время застывания раствора, готовить его нужно небольшими порциями. Использовать бетономешалку при этом нецелесообразно, потому что раствор начнет схватываться до того, как перемешивание в устройстве завершится.
  • Обрабатывать раствором бетон требуется крайне быстро.
  • После использования ЖС следует тщательно очистить и помыть всю посуду, работать только в защитных перчатках.
  • Несмотря на отсутствие токсичности, рекомендуется не допускать разбрызгивания раствора на открытые участки тела, следить, чтобы он не попадал в глаза.
  • Работы проводятся в проветриваемом помещении, на допустимом расстоянии от источников, которые увеличивают вероятность возгорания.
Рекомендации для эффективного использования

Заключение

Растворимое стекло является лучшим заменителем специальных добавок, а также таких ингредиентов раствора цемента, как известь. В процессе замешивания состава в домашних условиях нужно четко соблюдать инструкцию от производителя, учитывать все рекомендации на пачке с силикатным клеем. Несоблюдение важных правил и установок способствует появлению трещин и в худшем случае обрушению всей конструкции.

Средняя оценка оценок более 0 Поделиться ссылкой

Жидкое стекло для фундамента


Гидроизоляция фундамента жидким стеклом

Один из недорогих и несложных способов защиты фундамента от намокания – гидроизоляция жидким стеклом. Жидкое стекло получают так: водный солевой раствор смешивают с кварцевым песком  и содой, обжигают и получают водорастворимые кристаллы силиката натрия или кальция, которые растворяют в воде до необходимой густоты.

Гидроизоляция фундамента жидким стеклом

Свойство силиката натрия улучшать схватываемость бетона и заполнять поры нерастворимыми кристаллами лежит в основе современных смесей для проникающей гидроизоляции. Также возможно использование для этих целей обычного жидкого стекла.

Виды гидроизоляции жидким стеклом

Существует несколько способов выполнения гидроизоляции с применением жидкого стекла, и для каждого используется отдельная технология.

  • Обмазочная гидроизоляция под рулонные и оклеечные гидроизоляционные материалы;
  • Проникающая гидроизоляция на цементной основе;
  • Монолитный бетонный фундамент с добавлением жидкого стекла.

При использовании жидкого стекла в качестве гидроизоляционного материала следует помнить об особенностях силиката натрия:

  • Жидкое стекло растворяется в воде, поэтому обмазочная гидроизоляция фундамента и напорной гидростатической нагрузкой не является надежной, и обработанный жидким стеклом бетон необходимо дополнительно защищать рулонными материалами;
  • При добавлении силиката натрия в цементные растворы и бетоны их прочность уменьшается, поэтому количество жидкого стекла в растворе должно быть не более 3%;
  • Время схватывания раствора или бетона с жидким стеклом очень невелико, а перемешивание раствора с начинающимся процессом схватывания запрещено, так как процесс при этом прекращается. Поэтому необходимо готовить то количество раствора, которое можно быстро использовать.

Технология обмазочной гидроизоляции жидким стеклом

Обмазочная гидроизоляция фундамента жидким стеклом применяется тогда, когда применение растворов на основе битума нежелательно, например, при использовании полимерных рулонных материалов, контакт которых с нефтепродуктами или растворителями запрещен. Сам по себе нанесенный слой силиката натрия не является защитным, но в процессе взаимодействия жидкого стекла с бетоном его поры заполняются кристаллическими водонерастворимыми соединениями. Толщина защитного слоя при этом не превышает нескольких миллиметров. Если этого достаточно для хорошей гидрозащиты, то способ обмазочной гидроизоляции с помощью жидкого стекла является весьма удобным и дешевым.

Технология гидроизоляции жидким стеклом
  1. Готовят поверхность под гидроизоляцию: зачищают от грязи, пыли, жировых пятен. Гладкий бетон слегка зачищают щеткой, чтобы открыть его поры и увеличить глубину проникновения жидкого стекла.
  2. Наносят жидкое стекло с помощью широкой кисти, по мере высыхания первого слоя можно наносить второй.
  3. Высушивают поверхность, после чего приступают к оклеечной или рулонной гидроизоляции.

Технология цементно-силикатной проникающей изоляции

Применяется для быстрой гидроизоляции течей, стыков и швов блочного фундамента. Раствор готовят на основе цемента, разводя его водой с добавленным в нее жидким стеклом, процентное содержание силиката натрия – до 5% от общего объема. Раствор быстро затвердевает, поэтому готовят его небольшими порциями.

  1. Швы, стыки, трещины или другие повреждения фундамента необходимо подготовить к нанесению гидроизоляционного раствора. Для этого их расшивают до твердого бетона, удаляют из них грязь. Для удобства трещины можно проштробить так, чтобы они приобрели П-образную форму.
  2. Раствор для проникающей изоляции готовят так: смешивают жидкое стекло с водой в пропорции примерно 1:10 – 1:15, после чего полученный раствор заливают постепенно в сухой цемент или смесь на основе цемента и однократно перемешивают. Раствор должен быть густым и пластичным. Перемешивать смесь несколько раз нельзя, так как при этом разрываются связи начавшегося кристаллообразования, и раствор теряет свои свойства.

Наносят раствор в швы или трещины с помощью шпателя. Для лучшей адгезии поверхность можно слегка намочить. Выравнивают смесь по поверхности и ждут полного высыхания.

Процесс нанесения раствора на швы фундамента с помощью шпателя

Использование жидкого стекла при заливке монолитного фундамента

Добавление силиката натрия или силиката кальция в бетонные смеси, применяемые для заливки монолитных фундаментов, улучшает его гидроизоляционные свойства, причем водоупорность бетона распространяется на всю толщину фундамента. При этом несколько увеличивается его хрупкость и уменьшается прочность на разрыв, поэтому при использовании бетона с жидким стеклом необходимо усиливать арматуру и увеличивать  толщину песчаной подсыпки, особенно на пучинистых грунтах.

  1. Из-за быстрого схватывания модифицированного бетона необходимо заранее подготовить все необходимое: выполнить разметку, подготовку опалубки, армирование.
  2. Для приготовления используют воду с растворенным в ней жидким стеклом. Чтобы соблюсти баланс между прочностью и гидроупорностью, необходимо рассчитать количество жидкого стекла так, чтобы доля его в общем объеме не превышала 5%.
  3. Смешивают цемент и песок, постепенно вливают раствор жидкого стекла, быстро перемешивают и добавляют наполнитель – керамзит, гравий. Можно также добавить фиброволокно.

    Процесс смешивания раствора в бетономешаке

  4. Раствор бетона быстро выливают в опалубку, выравнивают по горизонтали и ждут его высыхания. В отличие от обычного бетона перемешивать такой раствор  с помощью глубинного вибратора не рекомендуется, так как при этом нарушается процесс кристаллообразования и схватывания бетона.

    Процесс заливки бетона в фундамент

  5. После полного созревания бетона его утепляют плитами полистирола. Функция утеплителя для такого фундамента не ограничивается теплоизоляцией – утеплитель также распределяет нагрузку грунта равномерно по поверхности стен фундамента и предохраняет его от механических повреждений и растрескивания.

Гидроизоляция фундамента жидким стеклом – сравнительно дешевый способ, имеющий побочные дефекты. Если по условиям эксплуатации здания не допускается ухудшение прочности бетона, вместо жидкого стекла можно использовать современные растворы для проникающей гидроизоляции фундамента.

Применение жидкого стекла для гидроизоляции — Фундамент своими руками

Словосочетание «жидкое стекло» у многих вызывает недоумение. Но ничего странного в этом нет, просто этот жидкий материал после застывания образует покрытие, схожее по свойствам со стеклом. То есть, оно будет прозрачным, не пропускает воду, достаточно прочное, но одновременно и хрупкое.

Самое интересное, что этот строительный материал известен достаточно давно, но популярность приобрел, когда начало широко использоваться такое мероприятие как гидроизоляция фундамента жидким стеклом. Использование оно находит также для защиты стен колодца, пола и стенок бассейна, бетона на полу в подвалах, на складах, промышленных предприятиях.

Состав жидкого стекла и продажа

С химической точки зрения жидкое стекло – это просто раствор силиката натрия и силиката калия с добавлением пластификаторов и модификаторов, которые придают составу нужные эксплуатационные свойства. А по основным компонентам – это обычный силикатный клей, кто еще помнит, что это такое. Такой клей также после высыхания становится полупрозрачным и хрупким. Но добавление модификаторов придает составу особые качества, в частности, повышенную прочность, способность проникать в толщу обрабатываемого бетона, делая его водонепроницаемым и устойчивым к разрушениям. А так как стоимость жидкого стекла существенно ниже, чем другим материалов для гидроизоляции, поэтому его выгоднее использовать для защиты пола, дна и стенок бассейна, колодца, фундамента. Технология нанесения настолько проста, что легко сделать эти работы можно и своими руками.

По виду жидкое стекло представляет собой белую, серую или желтоватую вязкую жидкость, в продаже его предлагают в полиэтиленовой таре разного объема – от 0,5 до 10 литров (15 кг), или в бочках от 20 до 200 литров. На таре всегда написано «Жидкое стекло» и указан производитель. Изготовление, транспортировка и хранение производятся по ГОСТ 13078-81.

Существует также жидкое стекло в порошке и гранулах. Этот материал называется Монасил, выпускается в мешках по 12 кг. До нужной кондиции его доводят добавлением воды в указанной на упаковке пропорции.

Сферы применения

Применение жидкого стекла идет по трем направлениям:

  1. 1. Гидроизоляция пола и стенок подземных сооружений: колодца, бассейна, подвала и т.п.
  2. 2. В качестве добавки при приготовлении штукатурки для фасадов и помещений с повышенной влажностью, например, бассейна или колодца. Но следует иметь в виду, что такой раствор очень быстро застывает и его надо вырабатывать немедленно. Зато таким стенам не требуется дополнительная гидроизоляция.
  3. 3. Жидкое стекло также можно использовать как добавку-модификатор для бетона, после чего он становить сверхпрочным монолитом, обладающим водоотталкивающими характеристиками. В этом случае надо точно придерживаться пропорций (в зависимости от марки цемента), иначе можно настолько сильно изменить качества бетона, что он сам станет хрупким как стекло.
Использование с бетоном

Сколько жидкого стекла можно добавлять в бетон и как это правильно делать?

Состав из бетона и жидкого стекла можно применять не только для строительства колодца или бассейна, но и при кладке камина, печи, устройства стяжки под теплый пол. Дело в том, что добавление жидкого стекла поднимает жаропрочность бетона до 900-1000 градусов против 200 – у обычного состава. Правильно замешанный раствор обладает не только водоотталкивающими свойствами, но и служит отличным теплоизолятором. Применяет жидкое стекло как добавка только для бетона М300 и М400.

Пропорция количества силикатного жидкого стекла в растворе не должна превышать 10% – это максимально допустимое значение. Оптимальный вариант – 7%, что составляет 70-72 литра жидкого стекла на 1 метр кубический готового бетона. При этом надо запомнить такие значения схватывания состава (при температуре 16-20 градусов):

  • 1. При 2% количестве стекла, начальное схватывание состоится в течение 40-45 минут, на окончательное надо 22-24 часа.
  • 2. При 5% показатели будут такие: 25-30 минут и 12-14 часов.
  • 3. При 7-8% раствор схватится за 10 минут и окончательно застынет за 8 часов.

Окончательное достижение зрелости такого бетона происходит в течение 28 дней.

При строительстве топок и пола печей процентное содержание жидкого стекла можно увеличить до 25-35%, но застывает такой раствор за 1-3 минуты. Зато его жаростойкость будет достигать 1400 градусов по Цельсию.

Не менее важно, чтобы правильно было выполнена технология приготовления такого бетона. Категорически нельзя добавлять жидкое стекло в готовый раствор!

А правильно сделать это надо так: сначала жидкое стекло надо развести водой минимум в два раза, а потом в эту жидкость надо подмешивать сухой цемент. Полужидкую смесь можно уже заливать в бетономешалку. Но выработать своими руками весь раствор надо очень быстро – в течение 10-12 минут, иначе он будет не годен. И бетономешалку надо мыть сразу же.

Читайте также:  Чем гидроизолировать фундамент
Достоинства жидкого стекла

Почему же этот материал, даже при таких проблемных качествах в плане работы и хрупкости покрытия, находит такое широкое применение в строительных работах? А дело в том, что оно обладает многие очень нужными качествами, которые не могут дать другие материалы, причем намного дороже по цене.

  • 1. Великолепные адгезионные свойства. Материал отлично проникает вглубь бетона, древесины, камня и обеспечивает высокий уровень сцепления гидроизоляционного покрытия со стенками бассейна, колодца или фундамента.
  • 2. Независимо от способа нанесения, вследствие текучести и одновременно вязкости материала, он образует цельное ровное покрытие. Желательно, чтобы вся работа была выполнена за один раз, без временных разрывов.
  • 3. Невысокий расход жидкого стекла – для покрытия поверхности одной площади его нужно в два раза меньше, чем, например, жидкой резины.
  • 4. Низкая цена. Жидкое стекло – самый дешевый гидроизоляционный материал из всех существующих.
Минусы жидкого стекла

Во-первых, покрытия из жидкого стекла в чистом виде – очень хрупкие и даже незначительный удар или деформация, например, стенок бассейна или колодца, разрушает его. Поэтому материал чаще всего находит применение как добавка в бетон.

Во-вторых, жидкое стекло совместимо только с бетонами, штукатуркой и деревом. Им нельзя покрывать кирпич, так как он быстро разрушится.

В-третьих, это достаточно непростой в работе материал – своими руками надо работать в ускоренном темпе и аккуратно, так как схватывание происходит быстро.

Четвертый недостаток – на покрытие из чистого жидкого стекла, а также, на бетон и штукатурку с его включением, невозможно качественно нанести финишное покрытие, то есть, покрасить или залакировать.

Нанесение жидкого стекла – как делать

Технология схожа с нанесением других материалов. Но особенное значение надо уделить подготовке поверхности – удалить грязь, пыль, жирные и масляные пятна. Например, гидроизоляция стенок и пола бассейна выполняется так:

  • 1. Для работы можно использовать валик или щетку-макловицу. Быстро наносится первый слой – равномерно и без пропусков.
  • 2. Дать пленке схватиться – 30 минут и потом также нанести второй слой.
  • 3. Следующий этап – нанесение защитного слоя. Надо сделать стандартный штукатурный раствор, смешать его с жидким стеклом в пропорции один к одному и быстро покрыть шпателем всю поверхность слоем около 1 см.
  • 4. Далее надо выждать несколько дней до застывания штукатурки.
  • 5. После можно продолжать отделочные работы.
Заключение

Как материал для гидроизоляционных работ жидкое стекло вполне приемлемый вариант, особенно в свете его доступной стоимости. Такой недостаток, как быстрое схватывание, можно нивелировать с помощью поэтапности работ. Зато с помощью такого покрытия можно своими руками сделать качественную гидроизоляцию пола, фундамента, колодца, бассейна, террасы, подвала и других строений.

Жидкое стекло и сферы его применения Гидроизоляция жидкое стекло – это современный изоляционный материал, который позволит значительно продлить срок эксплуатации строительных конструкций.

Источник: izolexpert.ru

Жидкое стекло, известное широкому потребителю как канцелярский (силикатный) клей, является одним из самых эффективных и относительно недорогих материалов, способных обеспечить бетонным конструкциям нулевую водопроницаемость и нулевое водопоглощение. Так как же можно использовать жидкое стекло для гидроизоляции бетона?

Варианты использования жидкого стекла для гидроизоляции бетона

Смесь силикатных солей щелочных металлов калия и натрия с водой – силикатный клей был синтезирован почти 200 лет тому назад (в 1818году) немецким химиком Яном Непомук фон Фуксом.

Эти полупрозрачные растворы обладают уникальным свойством образовывать на поверхности основы тонкую и очень прочную пленку непроницаемую для молекул воды и влаги.

При этом высохшая пленка не боится открытой воды, эластична, инертна к кислотам и экологически безопасна для окружающих. Эти уникальные свойства обусловили широкое применение жидкого стекла, в том числе для эффективной гидроизоляции бетонных сооружений разного назначения.

Жидкое стекло для гидроизоляции бетона – варианты технологий использования:

  • В виде проникающей гидроизоляции в «чистом виде». Жидкое стекло, разведенное водой в пропорции 1:10, способно проникать в поры и неплотности поверхности бетона на глубину 2-5 миллиметра. Причем три слоя материала создают практически непроницаемую для воды пленку. После высыхания соли калия или натрия входящие в основу жидкого стекла образуют монокристаллическую массу и надежно закупоривают поверхностные дефекты бетона. При этом водонепроницаемая пленка допускает нанесение других гидроизолирующих составов: битумов и мастик;
  • Добавление раствора жидкого стекла в замешиваемый раствор. Технология приготовления такого раствора следующая. В требуемой пропорции смешивается цемент и наполнитель. Далее в него добавляется раствор жидкого стекла с водой (1:10) и перемешивается. Полученный материал обладает очень быстрой схватываемостью, поэтому требует оперативного использования при гидроизоляции швов, поверхности бетонных стен, стыков конструкций, в том числе с помощью специального «растворного» пульверизатора. Кроме того, бетоны, приготовленные на основе жидкого стекла используются для возведения чаш бассейнов, фундаментов работающих в условиях повышенной влажности, стенок подвалов и выгребных ям, других водонепроницаемых бетонных конструкций.
Преимущества использования жидкого стекла для гидроизоляции бетона
  • Высокая адгезионная способность. Силикаты, входящие в состав жидкого стекла имеют способность «приклеиваться» даже к зеркальным поверхностям;
  • Образует непроницаемые для влаги и воздуха молекулярные структуры;
  • Стопроцентная экологичность и безопасность для людей и животных. Исключение – следует избегать попадания в глаза и на слизистые оболочки. Устраняется быстрым промыванием проточной водой;
  • Простота использования;
  • Небольшая себестоимость и небольшой расход, делают жидкое стекло самым экономичным гидроизоляционным материалом при всех прочих равных условиях.
Недостатки жидкого стекла
  • Допускается обработка доступных человеку поверхностей;
  • Гидроизолирующая пленка разрушается механическими воздействиями – требует дополнительной защиты рулонной изоляцией, битумом, мастикой и т.п.
Читайте также:  Полиэтиленовая пленка для гидроизоляции
Особенности технология использования

Для защиты от разрушающего воздействия воды и влаги разработано большое количество гидроизоляционных материалов. Среди них не на последнем месте находится жидкое стекло. Не так давно появившееся средство вовсю используется во многих отраслях. Благодаря своим уникальным свойствам жидкое стекло хорошо подходит для гидроизоляции стен, полов, перекрытий подвальных и чердачных помещений. Его используют для обустройства бассейнов, защиты фундамента от грунтовых вод. Им покрывают деревянные полы, стены и потолки. Важно, что жидкое стекло обладает хорошими антисептическими свойствами, защищая поверхность от грибка и плесени.

Подготовительные работы

Конечно, перед выполнением работ нужно подготовить поверхность: очистить от загрязнений и тщательно убрать остатки старого покрытия. Поверхность должна быть максимально ровной, без трещин, сколов и других дефектов.

Требования к гидроизоляции

Изоляция должна обеспечивать надежную защиту от воды, выдерживать большие динамические и гидростатические нагрузки. Важно, чтобы гидроизоляционный слой был эластичными и тонким. Покрытие должно заполнять поры и трещины. Гидроизоляционный материал должен обладать антисептическими свойствами и иметь высокую степень адгезии.

Гидроизоляция жидким стеклом подвальных и чердачных помещений

Работа по покрытию жидким стеклом подвальных и чердачных помещений похожа на силикатизацию бетонных конструкций. Она имеет высокую степень защиты бетонных конструкций от разрушительного воздействия воды и может применяться как снаружи здания, так и внутри.

Работы по гидроизоляции проводятся достаточно быстро. Срок действия защитных свойств жидкого стекла настолько большой, что его можно сопоставить со сроком эксплуатации самого сооружения.

Химический состав жидкого стекла позволяет проникать даже в самые мелкие поры и трещины материала, надежно защищая его от воздействия влаги. Хотя обработанный жидким стеклом материал приобретает водоотталкивающие свойства, благодаря кристаллической структуре он остается паропроницаемым. При выполнении внутренних работ жидкое стекло для гидроизоляции добавляется в цементный раствор. Для его приготовления на 8-10 литров цементного раствора достаточно 1 л жидкого стекла.

Чтобы выполнить гидроизоляцию снаружи смесь разводят в другой пропорции. Для приготовления раствора нужно взять цемент, песок и жидкое стекло в соотношении 1,5:1,5:4. Воды понадобится не более ¼ массы раствора. При правильном выполнении работ получится крепкая изоляция, защищающая не только от воды, но еще и от пожара.

Гидроизоляция колодцев

Работы по гидроизоляции колодцев проводятся в два этапа. Сначала жидкое стекло наносят на стены колодца, затем вторым слоем наносят цементный раствор, состоящий из цемента, песка и жидкого стекла в равных частях.

Гидроизоляция бассейнов

Без преувеличения бассейны – это объекты повышенной сложности. Они должны выдерживать большие нагрузки от воздействия воды. Вода быстро разрушает строительные материалы и, в итоге, саму конструкцию бассейна. Именно поэтому правильно выполненная гидроизоляция так важна при постройке и эксплуатации бассейна.

Работы по гидроизоляции бассейнов выполняют как внутри так и снаружи. Гидроизоляция внутри чаши защищает ее от разрушения и протечек , внешняя – оберегает от разрушительного воздействия грунтовых вод . Срок эксплуатации бассейна во многом зависит от правильно выбранного гидроизоляционного материала для устройства чаши бассейна. Для гидроизоляции наряду с цементно-полимерными составами часто используют эластичные материалы, в том числе жидкое стекло, которое образует пленку, отталкивающую воду и предотвращающую появление трещин в стенках бассейна.

Жидкое стекло для гидроизоляции применяется как в чистом виде, так и в виде пропиток и добавок. Оно заполняет все поры и трещины в кирпиче и бетоне, служит надежной защитой от разрушения и коррозии.

Правила приготовления растворов

Сначала смешивают сухие компоненты и перемешивают в течение нескольких минут, затем добавляют жидкое стекло или его смесь и снова перемешивают 3-5 минут. Готовая смесь должна быть однородной и подвижной. Разбавлять готовую смесь жидким стеклом, водой или наполнителем не разрешается.

Пропорции универсального раствора для гидроизоляции: на 10 л цементного раствора 1 л жидкого стекла.

Жидкое стекло – универсальное средство. Его успешно применяют во многих сферах деятельности человека. Строительство – не исключение. Гидроизоляция, защита от повреждений и грибков, улучшение качества бетонов, красок, шпаклевок и штукатурок – вот далеко не полный перечень «заслуг» жидкого стекла.

Подходит ли жидкое стекло для гидроизоляции? Подходит ли жидкое стекло для гидроизоляции? Применение жидкого стекла Для защиты от разрушающего воздействия воды и влаги разработано большое количество гидроизоляционных материалов. Среди

Источник: semidelov.ru

Влага негативно влияет на многие материалы, приводя к их разрушению или потери привлекательного внешнего вида. Поэтому используются специальные материалы, которые будут блокировать воздействие жидкой среды на чувствительные к ней элементы. Жидкое стекло для гидроизоляции является довольно распространенным материалом, так как он обладает хорошими свойствами и недорого обходится по цене. Работать с данным типом изоляции может даже новичок, потому что суть процесса проста и понятна для всех.

Особенности гидроизоляции

У людей часто возникает вопрос, как сделать гидроизоляцию жидким стеклом? Практически все знаю, что это за материал, каков его химический состав и как с ним нужно обращаться при хранении. Но вот непосредственные работы могут вызывать затруднения. При отсутствии четких знаний лучше не стараться импровизировать и думать, что получится разобраться на ходу.

Нужно обязательно спросить совета у профессионалов или хотя бы почитать тематический форум, чтобы понять приблизительные действия и их последовательность. Если процедура будет проведена неправильно, то она может только навредить, а не принести какой-либо пользы, так что знания необходимы.

Любой мастер скажет, что на вопрос, как использовать жидкое стекло для гидроизоляции, существует два ответа: в чистом виде или же просто добавить его в раствор. Хороши оба метода, так что здесь каждый решает, как ему будет удобнее. В первом случае нужно будет дождаться окончания всех работ и полного высыхания стяжки и штукатурки. Только после этого можно приступать к изоляции.

Если же из раствора не успеет испариться вся вода, то возникнет ситуация, когда она окажется заперта под изолирующим слоем и будет нести свое разрушающее воздействие изнутри. Такого нельзя допустить, потому что исправить оплошность будет уже невозможно. Лучше подождать пару лишних дней, чем поспешить и в итоге получить совершенно противоположный от задуманного результат.

Технология выполнения работ

Основная технология гидроизоляции жидким стеклом подразумевает проведение определенной последовательности действий, каждое из которых играет важную роль:

  • • Обрабатываемая поверхность должна быть очищена от любого мусора и пыли. Желательно сразу же сделать ее идеально ровной, так как потом добиться этого будет крайне сложно. Мелкие трещинки допускаются, а вот большие щели нужно заделывать, потому что на их заполнение потребуется слишком много материала.
  • • Далее подготовленную поверхность просто равномерно обрабатывают материалом, стараясь везде делать одинаковый слой. Сохнет он довольно быстро, но лучше подождать хотя бы сутки, чтобы все точно застыло и закрепилось на месте.

Иногда на практике применяется цементная гидроизоляция. Эта операция подразумевает, что материал будет добавлен непосредственно в раствор, и изоляция будет происходить уже сразу изнутри. Чтобы добиться максимальной эффективности от данного метода, нужно тщательно перемешивать раствор, чтобы все компоненты присутствовали в каждой его порции в равных долях.

Область применения жидкого стекла

Применение материала для гидроизоляции охватывает практически все технологические потребности, которые могут возникнуть во время строительства:

  • • Гидроизоляция бетона жидким стеклом применяется во внутренних и наружных работах. После обработки материал станет полностью нечувствителен к воздействию влаги и сможет без проблем эксплуатироваться даже под водой.
  • • Жидкое стекло для гидроизоляции бассейна является очень хорошим решением, потому что с его помощью можно добиться отличного результата при небольших издержках. Работать со специальной пленкой будет гораздо сложнее, да и со стыками придется изрядно повозиться. Стекло же не имеет указанных недостатков.
  • • Гидроизоляция подвала жидким стеклом изнутри позволяет уберечься от такого неприятного события, как появление воды среди своих запасов на зиму. Весной уровень подземных вод резко повышается, а если рядом находится река, то она будет широко разливаться, порой приближаясь вплотную к домам. Так что защитный слой позволит сдержать жидкость в ее природных границах.
  • • Гидроизоляция фундамента жидким стеклом тоже идеально подходит для решения задачи по обеспечению дома максимально комфортными условиями. После обработки основа здания не будет пропускать внутрь жидкость и влагу.
  • • Гидроизоляция стен жидким стеклом применяется довольно редко, так как через боковые проходы влага просачивается редко. Но при необходимости возможна и эта процедура, нужно будет лишь закупить достаточное количество материала.
  • • Жидкое стекло для гидроизоляции колодца накладывается в два слоя. Первый будет просто нанесен на стены в чистом виде, а второй ляжет сверху него в составе цементного раствора. Так получится добиться максимального эффекта.
  • • Жидкое стекло для гидроизоляции пола хорошо подходит потому, что благодаря химическому строению позволяет заполнять даже самые мелкие трещинки.

Как видно из списка, материал действительно является универсальным

Во сколько обойдется обработка дома жидким стеклом?

Если проводится гидроизоляция жидким стеклом своими руками, то сильно переплачивать не придется. Для операции не понадобятся сложные инструменты или профессиональное оборудование. И по времени она не продлится слишком долго.

Цена жидкого стекла для проведения работ по гидроизоляции будет зависеть от выбранного производителя.

Технология гидроизоляции жидким стеклом Обладающее уникальными свойствами, жидкое стекло является довольно распространенным материалом, использующимся для гидроизоляции. Узнайте больше о технологии выполнения работ здесь!

Источник: promplace.ru

Поделитесь статьей в соц. сетях:

Жидкое стекло для гидроизоляции: надежная защита от влаги

Перечень современных материалов, создающих водоотталкивающий слой, очень широк. Среди них почетное место по праву занимает жидкое стекло. Для гидроизоляции его применяют на разных объектах. Уникальные свойства средства создают защиту от влаги не только на полу, фундаменте, но и на автомобильных фарах, а также в сооружениях, у которых присутствует непосредственный контакт с водой, в частности в бассейнах или колодцах. Об этом расскажет данная статья.

Одним из лучших средств для гидроизоляции по праву считается жидкое стекло

Особенности, характеристики и состав жидкого стекла

Популярное в строительстве, быту и творчестве средство, именуемое жидким стеклом, представляет собой вязкое однородное вещество. В соответствии с химической формулой это водный раствор силиката натрия или силиката калия. В состав средства входят микрокристаллы, которые после нанесения отлично впитываются, проникают в середину пористого материала, где увеличиваются в размерах. Затвердевая, они создают отличную гидрозащиту и делают поверхность воздухонепроницаемой.

Жидким стеклом является водный раствор силиката калия или натрия

Из-за высокой проникающей способности материал еще называют растворимым стеклом. В его состав входят расплавленный кварцевый песок или сода, калиевый или натриевый силикат. Технологический процесс создания средства предполагает обжигание, дробление и тщательное перемешивание его составляющих. Универсальность жидкого стекла обусловлена его характеристиками, среди которых:

  • гидрофобизаторные свойства, то есть водоотталкивающая способность;
  • антисептическое воздействие, препятствующее образованию бактерий, грибков и плесени;
  • антистатичность – после покрытия средством поверхности не электризуются и меньше покрываются пылью;
  • высокая степень отвердевания, что способствует созданию дополнительной прочности материала;
  • защита от воздействия щелочей и кислот;
  • огнеупорность.
Достоинства и недостатки, сферы применения, особенности обработки жидким стеклом

Универсальность средства предполагает его широкое использование в разных областях производства. Наиболее часто применяется в строительстве. Обработка жидким стеклом выполняется в тех случаях, когда необходимо осуществить следующие виды работ:

Жидкое стекло отлично подходит для гидроизоляции древесины
  • гидроизоляцию фундамента;
  • создание водонепроницаемого слоя на стенах, потолках и полах в подземных помещениях;
  • гидроизоляцию бассейнов и колодцев;
  • добавление в бетон для усиления водоотталкивающих качеств и прочностных характеристик;
  • обеспыливание половых бетонных поверхностей;
  • гидроизоляцию древесины;
  • создание бактерицидной затирки;
  • быстрое приклеивание разных материалов;
  • использование в качестве быстросохнущего вещества;
  • создание противопожарного покрытия;
  • защиту стволов деревьев после спиливания;
  • применение в качестве герметика в сантехнических работах;
  • чистку поверхностей и посуды;
  • декорирование стен и создание наливных полов.

Полезный совет! Широкий перечень положительных качеств, а также экологичность и безвредность жидкого стекла предполагают его использование не только в строительстве, но и в быту.

Одним из способов защиты основания дома от влаги является гидроизоляция жидким стеклом – отзывы как опытных мастеров, так и начинающих строителей свидетельствуют о высокой степени водонепроницаемости пленки, которой покрывают поверхность. Дополнительные преимущества дают и другие достоинства материала:

Растворимое стекло создает водонепроницаемый слой на обработанной поверхности
  • высокая степень адгезии;
  • небольшой расход средства;
  • доступная цена в сравнении с другими герметиками;
  • как минимум пятилетний срок эксплуатации гидроизоляционного слоя;
  • возможность использования в условиях повышенной влажности.
Основные недостатки гидроизоляции жидким стеклом

Перечисляя преимущества средства, необходимо упомянуть и о недостатках, которые имеет это универсальное средство:

  1. Ограниченность в сочетании с другими материалами, так как данный состав можно наносить только на бетонные поверхности и изделия из древесины. Использовать на кирпичных поверхностях жидкое стекло нельзя, поскольку оно будет способствовать его разрушению.
  2. Невозможность применения в чистом виде. Гидроизоляцию производят с добавлением других материалов, отсутствие которых повлечет за собой разрушение защитного слоя.
  3. Обязательное соблюдение пропорций жидкого стекла в сочетании с другими компонентами раствора. В ином случае будут утрачены гидроизоляционные свойства и прочностные характеристики смеси.
Силикатный раствор необходимо наносить очень быстро, чтобы он не успел засохнуть

Помимо этого, данный состав характеризуется сложностью технологии нанесения. Для проведения гидроизоляции необходимы определенные навыки. Работа не терпит медлительности, так как смесь очень быстро высыхает. По этой же причине лучше замешивать раствор в небольшом количестве.

Таким образом, сам материал действительно является универсальным средством, используемым для придания разным поверхностям водоотталкивающих свойств. Успех его применения зависит от строгого соблюдения правил выполнения работ и пропорций жидкого стекла для гидроизоляции.

Как пользоваться жидким стеклом для гидроизоляции: способы применения

Существуют разные способы применения силикатного раствора для придания объектам водоотталкивающих свойств. С ними необходимо ознакомиться до того, как использовать жидкое стекло для гидроизоляции, чтобы выбрать наиболее эффективную и подходящую технологию в конкретно взятом случае. Основные методы применения средства:

  • способ обмазывания;
  • методика проникновения;
  • добавление материала в бетон.
Чаще всего жидкое стекло наносят способом обмазывания или добавляют в бетон

Метод обмазывания помогает создать наиболее эффективную защиту поверхности, в частности, его применяют при гидроизоляции фундамента в качестве предварительного слоя, который наносят под рулонную изоляцию. С этой целью данным средством (в чистом виде) покрывают в два слоя бетонную поверхность. После полного высыхания жидкого стекла производят основной этап изоляционных работ.

Полезный совет! Нанесение обмазывающего слоя на бетонную поверхность не только обеспечивает дополнительную гидроизоляцию, но и защищает ее от появления и развития вредоносных организмов, грибков и плесени.

Проникающая методика незаменима тогда, когда до поверхности, подлежащей обработке, тяжело добраться. В таком случае не применяют чистое жидкое стекло, а смешивают его с водой в пропорции 1:1 и добавляют еще одну часть сухой строительной смеси. Раствор тщательно перемешивают и незамедлительно наносят, так как он очень быстро сохнет. Рекомендуется приготавливать небольшое количество смеси.

Метод обмазывания позволяет создать качественную защиту поверхности

Важно тщательно очистить обрабатываемую поверхность перед нанесением раствора. В таком случае сцепление материалов произойдет быстрее и будет более надежным. Смесь наносят с помощью шпателя и накрывают поверхность мокрой тканью, что предотвращает растрескивание покрытия.

Применение жидкого стекла для гидроизоляции бетона

Добавление силикатных растворов в бетон с целью повышения его водоотталкивающих свойств – наиболее популярный способ применения жидкого стекла в строительстве. Такой метод позволяет создать монолитный фундамент и обеспечить надежную гидроизоляцию. Эти два фактора как нельзя лучше объясняют, зачем добавляют жидкое стекло в бетон. Сама процедура приготовления смеси несложная. Это можно сделать самостоятельно.

Главное в этом процессе – последовательность в добавлении компонентов и соблюдение пропорций жидкого стекла и цемента для гидроизоляции. Чтобы предотвратить растрескивание и разрушение бетона, важно учитывать условия, в которых будет использоваться готовый раствор. Для этого необходимо соблюдать такие правила:

Во время применения жидкого стекла с бетоном необходимо четко придерживаться инструкции
  1. Растворимое стекло не добавляют в готовый цементный раствор. Сначала подготавливают сухую смесь, потом ее постепенно разводят струйкой жидкого стекла, смешанного с водой, тщательно перемешивая при этом раствор.
  2. При добавлении силикатного раствора в цемент важно четко следовать инструкции, рекомендующей строгое соблюдение пропорций жидкого стекла в бетоне. Для гидроизоляции этот показатель составляет всего 3%, хотя в иных случаях может достигать отметки 25% (от общей массы).
  3. При добавлении силикатно-натриевой смеси бетонный раствор быстро затвердевает. Работу упрощает доливание воды или изготовление минимальных порций.
  4. Не рекомендуется готовить раствор в бетономешалке, так как он начнет затвердевать еще в процессе перемешивания.
Жидкое стекло для гидроизоляции бетона: соотношение материалов

Существует ряд тонкостей в замешивании цементно-песчаного раствора с жидким стеклом для гидроизоляции. Пропорции бетона и силикатного средства в основном составляют 10:1. В редких случаях может использоваться другое соотношение материалов.

Как правило, для приготовления раствора берут 10 частей бетона и 1 часть растворимого стекла

Внимание! В готовую смесь бетона и жидкого стекла ни в коем случае нельзя добавлять воду после того, как раствор замесили.

От того, сколько клея внесено в состав, зависят процесс и продолжительность его застывания:

  • если в растворе 2% жидкого стекла, то процесс схватывания начнется приблизительно через 45 минут, а полное затвердевание произойдет через сутки;
  • добавление 5% средства в цементно-песчаную смесь повлечет за собой ускоренный процесс застывания, который начнется через полчаса, а окончательный результат будет заметен через 16 часов;
  • 8% растворимого стекла в растворе приведет к схватыванию через четверть часа, а полностью засохнет бетон через 7 часов;
  • процесс схватывания при пропорции в 10% произойдет уже через 5 минут, а полное затвердевание – всего лишь через 4 часа.

Решая вопрос, можно ли добавлять жидкое стекло в бетон, немаловажно учитывать сорт цемента. В данном случае применимы марки М300 и М400. Для достижения водостойкого эффекта количество клея увеличивают, но при этом его максимальный показатель не должен превышать 25%. Для приготовления раствора лучше всего использовать строительный миксер, придерживаясь таких принципов:

Раствор необходимо тщательно перемешать, для этого лучше воспользоваться строительным миксером
  • использовать нужно чистую питьевую воду, без примесей и солей, максимальное ее количество на один замес – 10 л;
  • в воду добавляют жидкое стекло и перемешивают;
  • жидкость переливают в более объемную посуду;
  • постепенно в водно-силикатный раствор добавляют песчано-цементную сухую смесь;
  • раствор перемешивают до получения однородной массы.

Целесообразность проведения гидроизоляции жидким стеклом на разных объектах

Использование жидкого стекла с цементом для гидроизоляции популярно в разных случаях, что обусловлено в первую очередь надежностью водонепроницаемой защиты, доступной ценой материалов и рядом других факторов, позволяющих применять средство в различных сферах:

Статья по теме:

Жидкое стекло для бетона: универсальность силикатной смеси

Состав раствора, сфера применения, правила использования. Составление пропорций. Стоимость смеси и отзывы покупателей.

  • покрытие бетона жидким стеклом на улице и в середине помещения делает его практически неуязвимым к воздействию влаги и предполагает его использование под водой;
  • гидроизоляция бассейна жидким стеклом – процесс менее хлопотный в сравнении с применением для этой цели других материалов, позволяющий получить отличный результат при небольших затратах;
  • гидроизоляция подвала с использованием силиката натрия защитит подземное помещение от проникновения грунтовых и талых вод, а также спасет его от образования плесени и грибков;
  • гидроизоляция фундамента жидким стеклом защитит всю постройку от попадания влаги в середину помещения, что особенно актуально в местах, где грунтовые воды располагаются близко к поверхности земли;
Силикатный раствор идеально подходит для гидроизоляции горизонтальных поверхностей
  • нанесение водоотталкивающего слоя из жидкого стекла на стены помещений – менее популярный способ гидрозащиты, актуальный в основном для подземных помещений;
  • жидкое стекло, используемое для гидроизоляции колодца, помогает создать надежную защиту, предохраняющую от потерь воды из резервуара, причем эффективность увеличивается при условии нанесения двойного слоя;
  • гидроизоляция пола жидким стеклом максимально эффективна, так как предусматривает проникновение в самые мелкие поры и трещины любой поверхности, что обусловлено химическими особенностями материала.

Полезный совет! Кроме обеспечения надежной гидроизоляции пола, жидкое стекло действует как антисептическое средство и может быть использовано в качестве клея для монтажа любого рулонного или блочного полового покрытия.

Гидроизоляция жидким стеклом своими руками: общие рекомендации

Любая поверхность (или объект) перед нанесением силикатно-натриевого раствора или проведением цементной гидроизоляции с жидким стеклом тщательно очищается от пыли и грязи, далее следует стандартный набор действий:

Растворимое стекло можно наносить кисточками, валиками или шпателем
  1. Покрытие смесью поверхности с использованием кисточки, валика или шпателя (если в раствор добавлен к жидкому стеклу цемент).
  2. Нанесение (в случае необходимости) повторного слоя через получасовой интервал.
  3. Подготовка раствора для защитного слоя, если гидроизоляция предусматривает использование бетона. Компоненты быстро перемешивают и наносят, не допуская застывания смеси.
  4. Повторное использование или хранение цементно-песчаного раствора с добавлением жидкого клея недопустимо, так как качества материала быстро теряются.

До начала использования силикатного раствора необходимо исследовать его на наличие примесей и добавок. Состав должен быть однородным, без посторонних включений или комков. Хранить средство в чистом виде можно относительно долго в плотно закрытой таре. Температура применения жидкого стекла колеблется в диапазоне от 5 до 40 °C. Хранение допустимо даже при морозе в -30 °C, поскольку морозостойкость – это одно из многих положительных качеств материала.

Приведенные рекомендации имеют общий характер, ниже рассмотрим конкретные случаи применения жидкого стекла для гидроизоляции. Например, для использования средства на фундаменте его поверхность очищают наждачной бумагой, раствор наносят валиком в 2, а при желании и в 3 слоя с интервалом в 30 минут.

Применение жидкого стекла для гидроизоляции бассейнов

Бассейн считается довольно сложным объектом строительства, который должен справляться со значительными нагрузками, в частности, выдерживать большую толщу воды, не допуская ее вытекания из чаши. Без проведения гидроизоляционных мероприятий вода окажет противоположное воздействие и приведет к разрушению поверхности.

Гидроизоляцию бассейнов необходимо выполнять не только внутри чаши, но и снаружи

Гидроизоляцию бассейна жидким стеклом осуществляют как внутри чаши, так и снаружи нее. Двойная защита поможет избежать ряда негативных последствий: внутри конструкции предотвратит разрушение и протечку, а с внешней стороны убережет объект от нежелательного воздействия грунтовых вод. Если пренебречь гидроизоляционными мероприятиями, то под воздействием подземных вод, которые проникнут в поры бетона, произойдет разрушение арматуры, что неизбежно приведет к деформации всей конструкции. Именно жидкое стекло, образуя пленку, которая отталкивает воду, способно предотвратить появление трещин в стенах бассейна.

Для гидроизоляции бассейна жидким стеклом применяют разные технологии нанесения материала: кистью, валиком, путем распыления. Снаружи желательно покрыть поверхность в 3-4 слоя. Внутри достаточно двухслойного нанесения средства. В этом виде работ важно придерживаться таких правил:

  1. Очистить поверхность от любого мусора.
  2. Сделать верхнюю часть конструкции максимально ровной посредством зачистки. Если понадобится – провести повторную штукатурку и затирку.
  3. Обезжирить поверхность.
  4. Допустимо наличие бугорков не выше 1 мм.

Полезный совет! В местах с повышенной влажностью, таких как бассейн или подвал, смесь берут в пропорции жидкого стекла с бетоном 1:10.

Гидроизоляцию бассейна жидким стеклом удобно выполнять методом распыления

Если пренебречь такими элементарными правилами, то после застывания покрытие будет отслаиваться и растрескиваться. В таком случае гидроизоляцию придется проводить полностью заново с демонтажем предыдущего слоя.

Гидроизоляция подвала жидким стеклом своими руками: этапы работы

Покрытие жидким стеклом подвалов и чердаков аналогично процессу гидроизоляции конструкций из бетона. Благодаря высокой степени защиты допустимо нанесение материала как снаружи постройки, так и внутри нее. Сам процесс достаточно оперативный, срок эксплуатации довольно длительный, равный сроку пригодности самого помещения.

Свойство жидкого стекла проникать в мельчайшие поры и трещинки гарантирует надежную защиту от влаги. Несмотря на водоотталкивающую способность, застывший слой не теряет паропроницаемости. Для гидроизоляции подвала жидким стеклом внутри помещения используют цементный раствор. Для приготовления 10 л смеси достаточно взять 1 л силикатного состава.

Для гидроизоляции подвала изнутри жидким стеклом смесь готовят по иному рецепту. Для этого берут цемент, песок и растворимое стекло в соотношении 1,5:1,5:4. При этом количество воды не должно превышать 25% от общего веса раствора. Работы по гидроизоляции погреба жидким стеклом проводят в такой последовательности:

Для гидроизоляции подвала необходимо смешать жидкое стекло, песок и цемент в соотношение 4:1,5:1,5
  1. Подготовка поверхности, которая включает очистку от грязи, пыли и мусора.
  2. Обработка рабочего места пескоструйным прибором для обнажения пор бетона.
  3. Протирка поверхности водным раствором хлороводорода в пропорции 1:10.
  4. Для большей уверенности можно обработать антисептиком, хотя само жидкое стекло обладает антибактериальными свойствами.
  5. Проштробовка ямок, трещин и стыков на 25 мм в глубину и на 20 мм в ширину.
  6. Создание герметичного слоя на инженерных коммуникациях.
  7. Смачивание бетонной поверхности путем орошения.
  8. Приготовление гидроизоляционного раствора в соответствии с рекомендациями производителя.
  9. Оперативное нанесение смеси шпателем или кистью.

Гидроизоляция жидким стеклом цоколя и фундамента: обмазочная и проникающая технологии

Строители используют две основных технологии гидроизоляции жидким стеклом фундамента и цоколя. Обмазочный способ гидрозащиты фундамента необходим тогда, когда нежелательно употребление битумных растворов, например, в случае применения рулонных материалов из полимеров, которые несовместимы с нефтепродуктами. Водозащитная функция силиката натрия проявляется в его проникновении в поры материала. При этом сам защитный слой составляет всего несколько миллиметров в толщину.

Полезный совет! При поэтапном выполнении работ можно получить надежную изоляцию, которая защитит конструкцию не только от влаги, но и от огня.

Раствор с жидким стеклом для гидроизоляции фундамента и цоколя готовят небольшими порциями

Сам процесс включает такие этапы:

  • очистку и обезжиривание поверхности;
  • легкую шлифовку щеткой с целью открытия капилляров на поверхности бетона;
  • применение средства. Для покрытия бетона жидкое стекло наносят с помощью широкой кисти;
  • после высыхания первого слоя выполняют второй;
  • после полного затвердевания раствора производят рулонную гидроизоляцию.

Проникающая технология применяется в основном для гидроизоляции стыков и швов в цоколе блочного типа. Раствор представляет собой смесь цемента, разведенного водой с добавлением жидкого стекла, которого должно быть не более 5% от общего объема. Смесь готовят небольшими порциями, перед этим проводят подготовительные работы, включающие расшивку швов, стыков и других повреждений, а также их очистку. Трещины штробируют, придавая им П-образную форму.

Растворимое стекло с бетоном отлично подходит для гидроизоляции стыков и швов

Раствор готовят таким образом: разводят жидкое стекло с водой в соотношении 1:10 или 1:15. Полученную смесь заливают в сухой цемент для получения густой и пластичной массы. Повторное перемешивание раствора недопустимо, так как будет нарушен процесс кристаллообразования, что приведет к потере адгезивных свойств.

Применение жидкого стекла для гидроизоляции колодцев

С целью удержания воды в колодце обеспечивают его гидроизоляцию. В ином случае содержимое просто будет просачиваться через стенки в почву, вследствие чего резервуар утратит свое предназначение. Главное – обеспечить надежную изоляцию между кольцами колодца и пропитать сами бетонные стенки.

До начала работ необходимо убедиться в надежной фиксации колодца, иначе гидроизоляция не спасет от просачивания. Во избежание таких нежелательных последствий осуществляют дополнительное крепление с использованием прочных металлических скоб. После проведения работ по укреплению делают обтяжку швов между кольцами. Для этого используют веревку изо льна, джута или пеньки, обмазывают ее жидким стеклом и обтягивают межкольцевые швы.

Сначала колодец покрывают чистым жидкий стеклом, а после высыхания наносят бетонный раствор

После этого производят общую гидроизоляцию колодцев жидким стеклом в два этапа. Первый предполагает покрытие стенок чистым средством, второй – нанесение бетонного раствора, состоящего из цементно-песчаной смеси и силиката натрия в равных частях. Желательно работы по созданию изоляционного слоя проводить еще на этапах строительства, нанося средство на сухую поверхность, пока резервуар не заполнен водой. Если частичное наполнение все же произошло, то рекомендуется максимально покрыть стенки, не охваченные водой.

Особенности гидроизоляции жидким стеклом помещений с повышенной влажностью

Методику нанесения влагозащитного слоя с использованием силиката натрия как одного из самых бюджетных вариантов широко применяют в разных помещениях с повышенной влажностью. Такой способ довольно часто употребляется для грунтовки внутренних бассейнов, саун, душевых и ванных комнат.

Полезный совет! Максимальное содержание жидкого стекла в цементном растворе должно составлять 25%, превышение данного показателя приведет к быстрому разрушению бетона.

Технология гидроизоляции наружных бассейнов не характеризуется отличительными свойствами. Главной особенностью является использование специальных растворов, изготовленных для проведения внутренних работ. Например, грунтовой раствор для бассейнов имеет особую формулу, нанесение его более толстым слоем обеспечивает долгий срок службы резервуара с водой.

Объекты подверженные высокой влажности лучше обрабатывать в два этапа

Для гидроизоляции полов, поддонов и других поверхностей в комнатах с повышенной влажностью жидкое стекло используют в чистом виде или в качестве пропиток и добавок. Благодаря хорошему проникновению в поры бетона и дерева материал обеспечивает надежную защиту от разрушения и коррозии.

Жидкое стекло для гидроизоляции ванной комнаты раньше использовалось довольно широко, что обусловлено дешевизной материала и простотой нанесения. Главным недостатком является его слабая износостойкость вследствие постоянного воздействия влаги. В настоящее время производители придумали множество альтернатив классическому материалу. В то же время именно силикат натрия является незаменимым средством для гидроизоляции канализационных труб, заливки стыков в бетонных полах ванных комнат и самодельных поддонов в душевых.

Стоимость жидкого стекла для гидроизоляции: рекомендации по покупке материала

Доступная цена жидкого стекла для гидроизоляции – это главное преимущество универсального средства. Другие синтетические пропитки и изоляторы, в том числе и новейшего поколения, стоят в несколько раз дороже. Цена материала зависит от таких компонентов, как плотность, показатель модуля и объем приобретенного товара. Рекомендуется покупать раствор в специальных емкостях, а не на развес. Плотно закрывающаяся производственная тара не допускает преждевременного высыхания средства. Приобрести раствор можно в любом строительном супермаркете или в магазине хозтоваров.

Средняя стоимость растворимого стекла составляет 2 $ за 10 литров

Стоимость гидроизоляционного материала определенным образом зависит от выбора производителя. Ассортимент довольно широк, но разницы в составе средства практически не существует, так как изготавливают его в соответствии с ГОСТ 13078-81. Поэтому выбор марки – за покупателем. Средняя цена жидкого стекла для гидроизоляции бетона за 10 л составляет около 2 $. Таким образом, многофункциональный материал отличается невысокой стоимостью.

Цена покупки также зависит от приобретаемых объемов средства. Как и в случае с большинством строительных материалов, оптовая покупка обойдется гораздо дешевле. Более значительную стоимость имеет специальное жидкое стекло с высокой плотностью, которое используют для гидроизоляции бассейнов.

Полезный совет! Сэкономить на гидроизоляции поможет самостоятельное проведение работ, но для этого понадобится некоторая сноровка в нанесении раствора, который очень быстро схватывается.

Как работать с жидким стеклом для гидроизоляции: общие рекомендации по нанесению

В разных видах проведения гидроизоляционных работ одним из важных условий является подготовка поверхности. Надежность покрытия зависит от тщательной очистки рабочего места от грязи, пыли и жира. В противном случае будут снижены адгезивные свойства жидкого стекла и впитывающая способность основы.

Наносить смесь с жидким стеклом необходимо на чистую подготовленную поверхность

Несмотря на быстроту затвердевания смеси, рекомендуется отводить приблизительно 24 часа на полное высыхание раствора. При слоевом покрытии обязательно нужно давать время на схватывание при нанесении каждого из слоев. Средство в чистом виде или в сочетании с водой наносят как краску, используя при этом широкую кисточку или валик. При работе с цементным раствором применяют штукатурный шпатель.

Выбор между типом жидкого стекла, которое может быть натриевым или калиевым, зависит от спектра предполагаемых работ. Силикат калия используется для создания и заливки фундамента, поскольку он имеет более вязкую структуру материала. В гидроизоляционных работах более приемлем натриевый вариант.

Жидкое стекло на основе натрия стоит дешевле, но силикат калия обладает более высокими гидроизоляционными характеристиками и может служить самостоятельным покрытием. Поверх натриевого раствора потребуется нанесение еще одного слоя гидрозащиты. Это, как правило, традиционная отделка бассейна полипропиленом, мозаикой, покрытием ПВХ или керамической плиткой.

Жидкое стекло для гидроизоляции: полезные советы и правила безопасности

Для более эффективного использования жидкого стекла опытные строители разработали целый ряд полезных советов, которыми не стоит пренебрегать:

Наносить жидкое стекло необходимо в перчатках и закрытой одежде, чтобы вещество не попало на кожу
  • жидкое стекло нельзя использовать для гидроизоляции кирпичных поверхностей, так как быстро затвердевающая смесь может привести к разрушению кирпичной основы;
  • готовить и наносить состав необходимо небольшими порциями, поскольку жидкое стекло очень быстро схватывается;
  • в приготовлении раствора важными условиями являются соблюдение пропорций и последовательность в смешивании компонентов, иначе данное средство просто потеряет все свои свойства;
  • жидкое стекло на основе натрия обладает более высокой адгезией и отлично соединяется с минеральными материалами, а калиевое жидкое стекло можно применять в среде с повышенной кислотностью.

Таким образом, жидкое стекло является фактически незаменимым и поистине универсальным средством для гидроизоляции. Употребляя его в правильных пропорциях с другими материалами и применяя минимальную дозировку, можно получить высококачественную и долговечную гидрозащиту. Раствор можно использовать на разных поверхностях и объектах. Простота и легкость в применении делают возможным проведение работ своими руками.

Жидкое стекло для гидроизоляции: 11 советов по выбору и применению

Natalia | 16.10.2018 | Строительные материалы | |

Вода камень точит. В справедливости этой мудрости строители убеждаются каждый рабочий день. Влага способна разрушить даже самый прочный железобетон. Чтобы защитить конструкции и продлить их срок службы, человечество придумало гениальное изобретение – гидроизоляционные материалы. Они все создают защитную пленку на поверхности, которая предотвращает воздействие воды. Ассортимент подобных составов приличный, а одним из самых популярных считается жидкое стекло. Оно универсальное, недорогое и простое в применении. Разбираемся, как использовать жидкое стекло для гидроизоляции бетона, фундамента, бассейнов, как его наносить и почему же оно считается таким универсальным.

№1. Что такое жидкое стекло?

Жидкое стекло – это тот же силикатный клей. Его основа – водный щелочной раствор натрий или калий силиката. Намного реже используется силикат лития – такой материал используется в электродном покрытии. В России часто жидким стеклом называют полироли и защитные составы для автомобилей, что не совсем верно. У них совершенно другой состав, а путаница вызвана тем, что автомобильные средства в азиатских странах называют «glass coat», дословно – «стеклянное покрытие», но никак не жидкое стекло.

Получают жидкое стекло путем обжига кварцевого песка или соды. Также используется метод обработки диоксида кремния щелочью. Вязкое однородное вещество при застывании становится твердым и не пропускает ни воздух, ни воду. Пока же состав не высох, он легко проникает в поры основания, на чем и построено его защитное действие. Жидкое стекло отлично защищает от влаги, играет роль антисептика, отвердителя, кислотозащитителя и повышает устойчивость к огню.

№2. Основные плюсы и минусы жидкого стекла

Жидкое стекло очень часто используется для проведения работ по гидроизоляции. Это связано с целым рядом его преимуществ:

  • отличные водоотталкивающие свойства, пленка получается цельной, так что у влаги не остается подходов к материалу;
  • жидкое стекло отлично просачивается в поры и трещинки, отличается высоким сцеплением с основанием;
  • небольшой расход, в особенности при добавлении вещества в цементный раствор;
  • невысокая цена по сравнению с другими гидроизоляционными материалами;
  • вещество может использоваться при повышенной влажности;
  • относительно высокая долговечность. Жидкое стекло прослужит не менее 5 лет, а если его покрыть краской, то намного дольше. Без дополнительной защиты оно способно постепенно саморазрушаться;
  • жидкое стекло придает материалу устойчивости к огню, кислотам, щелочам, плесени, повышает прочность основания.

Тем не менее, и у этого материала есть свои минусы:

  • ограниченность сферы применения. Материал сочетается только с бетоном и деревом. На кирпич такую гидроизоляцию не нанесешь – она разрушит материал. Когда говорят об универсальности жидкого стекла, имеют в виду, что составом можно пользоваться для создания обмазочной гидроизоляции и для добавления в бетон, причем разная концентрация его в растворе позволяет получать разные свойства;
  • жидкое стекло, как и обычное, немного хрупкое и становится таковым, когда застывает. Чтобы слой не повреждался, его сверху дополнительно защищают иным материалом;
  • поверх жидкого стекла финишную отделку нанести практически невозможно – краски и лаки на нем вообще не держатся;
  • очень важно соблюдать правильные пропорции при добавлении жидкого стекла в цементный раствор, иначе он может застыть слишком быстро;
  • хоть процесс монтажа нельзя назвать специфическим, да и особенные инструменты не потребуются, все равно определенные навыки понадобятся. Выполнять все работы своими руками можно лишь тогда, когда у вас есть опыт в гидроизоляции. Действовать придется очень быстро, так как жидкое стекло схватывается практически моментально.

В том или ином виде жидкое стекло используют строительстве уже более 200 лет. За это время человечество успело придумать и другие гидроизоляционные материалы, но жидкое стекло до сих пор выдерживает конкуренцию.

Как самостоятельный гидроизоляционный материал жидкое стекло практически не используют – только в связке с другими материалами, но только благодаря ему получается добиться превосходных результатов и полностью защитить бетон и дерево от влаги.

№3. Сферы применения жидкого стекла

По сути, жидкое стекло может применяться тремя основными способами:

  • состав наносится на бетонную поверхность, высыхает и формирует влагостойкую пленку, закупоривая все поры. Часто защиту наносят в несколько слоев;
  • состав добавляется в бетонный раствор. Бетонная конструкция, созданная подобным образом, получает улучшенные гидроизоляционные свойства, но при этом намного быстрее застывает;
  • в качестве добавки для изготовления разных марок бетона.

Чтобы убедить вас в универсальности и практичности данного гидроизоляционного материала, приведем лишь самые распространенные сферы, где используется жидкое стекло:

  • покрытие фундамента, стен, потолков и полов в подвальных помещениях;
  • гидроизоляция бассейнов и колодцев;
  • гидроизоляция древесины;
  • добавление в бетон для улучшения водоотталкивающих свойств;
  • защита стволов деревьев после спиливания;
  • приклеивание разных материалов;
  • для борьбы с плесенью;
  • для защиты от коррозии;
  • для защиты швов между строительными материалами;
  • гораздо реже состав используется для обеспыливания бетона, а также как быстросохнущее вещество. Также нечасто его применяют для создания бактерицидных затирок и в качестве герметика.

№4. Виды жидкого стекла

Основой жидкого стекла, как уже было сказано ранее, может быть силикат калия или натрия. В принципе, оба состава очень похожи, но все же некоторые отличия присутствуют:

  • калий силикат отличается устойчивостью к кислотам, отличными клеящими свойствами и отсутствием характерного стеклянного блеска;
  • натрий силикат отличается такими же высокими эксплуатационными качествами, но при этом у него отсутствует характерный блеск.

Жидкое стекло продает в емкостях от 500 мл до 10 л. Обязательно ищите информацию о составе и производителе. Также на упаковке должны быть сведения, что материал произведен в соответствии с ГОСТом 13078-81.

Реже, но встречается гранулированное стекло, которое перед использованием согласно инструкции необходимо развести определенным количеством воды.

№5. Способы применения жидкого стекла

Понятно, что жидкое стекло используется для гидроизоляции, но наносить его можно по-разному – все зависит от поставленных целей:

  • обмазочный способ предполагает нанесение чистого жидкого стекла на поверхность. Обычно используют силикат натрия. Способ подходит для покрытия оснований, которые пылят, отличаются пористостью и рыхлостью. Слой изоляции высыхает в течение 30-60 минут, после чего можно наносить еще один слой. Поверх жидкого стекла можно использовать еще один гидроизоляционный материал, например, рубероид;
  • проникающая методика имеет много общего с обмазочной, но при этом жидкое стекло смешивают с водой, а иногда – с сухой строительной смесью. Полученным составом обрабатывают труднодоступные поверхности, только работать придется очень быстро;
  • путем добавления жидкого стекла в бетон получают более прочный и стойкий к влаге материал, но этой методике стоит выделить отдельный раздел.

№6. Жидкое стекло для гидроизоляции бетона

Популярность жидкого стекла связана как раз-таки с добавлением его в бетонный раствор. Суть метода, казалось бы, ясна, но чтобы получить действительно качественный результат, надо знать несколько нюансов:

  • жидкое стекло нельзя добавлять в готовый жидкий раствор. Сначала готовят сухую смесь, а затем разводят его водой, в которую добавляют определенную часть жидкого стекла;
  • количество жидкого стекла может колебаться в значительных пределах – все зависит от ваших целей. Выбрав определенный рецепт, очень важно следовать указанным пропорциям. Минимальное содержание жидкого стекла в бетоне – 2% (такой состав используется при гидроизоляции фундамента), максимальный – 25%;
  • жидкое стекло улучшает качества раствора, но сильно влияет на скорость его затвердевания. Рекомендуют готовить раствор небольшими порциями, чтобы он не застыл еще в емкости. По этой же причине многие не рекомендуют использовать бетономешалку.

Если в раствор добавить всего 2-3% жидкого стекла, то схватываться бетон начнет уже через 45 минут, а полностью застынет спустя сутки. Это достаточно популярная пропорция. При добавлении 5% жидкого стекла скорость схватывания сократится до 30 минут, а полное затвердевание произойдет через 16 часов. Для 8% эти показатели составят 15 минут и 7 часов, а для 10% — 5 минут и 4 часа соответственно. Для замешивания используют чистую холодную воду и цемент марок М300 и М400.

Принцип смешивания таков:

  • берут емкость с чистой водой, добавляют туда жидкое стекло, перемешивают;
  • раствор переливают в более объемную емкость и постепенно вводят сухую цементно-песчаную смесь;
  • быстро, но тщательно перемешивают смесь до однородного состояния и приступают к работе.

Все работы проводят в специальной одежде и перчатках.

№7. Нанесение жидкого стекла обмазочным способом

Проще наносить жидкое стекло обмазочным способом, для этого используют кисточки и валики, а иногда пульверизатор. Порядок работ следующий:

  • убедитесь, что жидкое стекло однородно на вид, не имеет примесей и комочков. К условиям хранения особых требований не выдвигают – материалу ничего не будет, даже если он лежал в гараже при резко отрицательных температурах. Морозостойкость – одна из сильных сторон этого состава;
  • поверхность, которую необходимо покрыть, тщательно очищают от пыли, жировых пятен и грязи, бетон зачищают щеткой, чтобы открылись поры материала. Желательно, чтобы поверхность была максимально приближена к идеально ровной;
  • некоторые советуют предварительно разбавлять материал водой в соотношении 1:2. Это делается для экономии жидкого стекла;
  • для пропитки бетона на небольшую глубину используют один слой изоляции жидкого стекла, наносят его кисточкой или краскопультом. Если надо более глубокий слой пропитки, то лучше нанести два-три слоя, каждый последующий наносят спустя 30-40 минут после предыдущего.

Все это общие рекомендации, но в каждом конкретном случае может понадобиться индивидуальный подход.

№8. Гидроизоляция фундамента жидким стеклом

Для гидроизоляции фундамента и цоколя обычно используют обмазочную технологию. Жидкое стекло отлично сочетается с рулонными гидроизоляционными материалами. С битумной гидроизоляцией силикаты несовместимы.

Чтобы надежно защитить фундамент от влаги, сначала поверхность необходимо очистить и обезжирить, потом выполнить шлифовку, а затем широкой кистью нанести само жидкое стекло. Когда первый слой подсохнет, наносят второй, а после окончательного застывания можно приступать к рулонной гидроизоляции.

Для защиты стыков и швов на фундаменте можно использовать проникающую технологию:

  • швы и стыки расшивают, на местах трещин делают штробы П-образной формы, потом все выемки очищают от пыли;
  • смесь готовят небольшими порциями;
  • из воды и жидкого стекла готовят раствор с концентрацией около 5%, потом его добавляют в цемент. В итоге должна получиться густая пластичная масса. Перемешать лучше один раз, при повторном перемешивании может начаться кристаллизация, что негативно скажется на адгезионных свойствах;
  • приготовленный раствор шпателем наносят на расшитые стыки и швы. Подсыхает он очень быстро.

№9. Гидроизоляция бассейнов жидким стеклом

Чаша бассейна берет на себя значительную нагрузку. Это и тонны воды, которые наливаются внутрь чаши, и воздействие грунтовых вод снаружи. Следовательно, проводить гидроизоляцию надо с двух сторон. Внешние стенки обрабатывают по обмазочной технологии, наносят не менее трех слоев материала. Внутренние стенки можно покрыть двумя слоями жидкого стекла. Помните, что данный вид гидроизоляции, особенно в случае с бассейном, не может быть самостоятельным.

Обработку внутренних и внешних стенок проводят по общему принципу. Сначала готовят поверхность (наличие бугорков допускается, но не более 1 мм), потом обезжиривают ее и наносят жидкое стекло.

№10. Гидроизоляция колодца жидким стеклом

Гидроизоляционные работы в данном случае направлены на то, чтобы защитить стенки колодца от влаги, а также обработать швы. Очень важно, чтобы бетонные кольца были очень хорошо зафиксированы, иначе никакая гидроизоляция не спасет конструкцию от разрушения. Дополнительную фиксацию можно выполнить при помощи скоб.

Когда кольца смонтированы, а их закрепление произошло, лучше для гарантии произвести обтяжку швов при помощи льняной или джутовой веревки, предварительно обработанной при помощи жидкого стекла.

После этого можно приступать к обработке стенок колодца. Сначала наносят чистое жидкое стекло, а после его высыхания – раствор, приготовленный на основе жидкого стекла и цементно-песчаной смеси.

№11. Гидроизоляция подвала жидким стеклом

Обработка внутренних стен подвалов не сильно отличается от гидроизоляции фундамента, но некоторые специалисты рекомендуют готовить раствор по другому принципу, смешивая цемент, песок и жидкое стекло в соотношении 1,5:1,5:4. Массовая часть воды не должна превышать 25%.

Поверхность, как и в предыдущих способах, сначала очищают, можно обработать ее антисептиком для пущей важности. Затем полученная смесь наносится на основание. Трещинки и места стыков лучше предварительно расшить.

В завершение

Рынок жидкого стекла достаточно насыщенный. Из производителей можно порекомендовать Willson, АМК-Групп, Bitumast, Aqua Well, «Профилюкс», «Брозегс» и «Оптимст». Если после проведения всех работ по гидроизоляции жидкое стекло остается, не выбрасывайте. Его можно будет использовать для обработки древесины. Также сгодится оно для добавки в затирку, чтобы она не плесневела (часть жидкого стекла должна составлять до ¼). При помощи силикатного клея можно приготовить быстросохнущий клей, если его добавить в цемент вместо воды. Более того, народные умельцы используют его при укладке рулонной напольной отделки и даже для обработки срезов деревьев. Нередко средство используют в качестве санитарного герметика.



Гидроизоляция жидким стеклом своими руками

Словосочетание «жидкое стекло» у многих вызывает недоумение. Но ничего странного в этом нет, просто этот жидкий материал после застывания образует покрытие, схожее по свойствам со стеклом. То есть, оно будет прозрачным, не пропускает воду, достаточно прочное, но одновременно и хрупкое.

Самое интересное, что этот строительный материал известен достаточно давно, но популярность приобрел, когда начала широко применяться гидроизоляция жидким стеклом фундамента, защита бетона на полу в подвалах, на складах и промышленных предприятиях, стен колодца, пола и стенок бассейна.

Состав жидкого стекла

С химической точки зрения жидкое стекло – это просто раствор силиката натрия и силиката калия с добавлением пластификаторов и модификаторов, которые придают составу нужные эксплуатационные свойства. По основным компонентам – это обычный силикатный клей, кто еще помнит, что это такое. Такой клей после высыхания становится полупрозрачным и хрупким. Но добавление модификаторов придает составу особые качества, в частности, повышенную прочность, способность проникать в толщу обрабатываемого бетона, делая его водонепроницаемым и устойчивым к разрушениям.

Так как стоимость жидкого стекла существенно ниже, чем другим материалов для гидроизоляции, поэтому его выгоднее использовать для защиты пола, дна и стенок бассейна, колодца, фундамента. Технология нанесения довольно проста, поэтому эти работы можно сделать своими руками.

Характеристики жидкого стекла

По виду жидкое стекло представляет собой белую, серую или желтоватую вязкую жидкость, в продаже его предлагают в полиэтиленовой таре разного объема – от 0,5 до 10 литров (15 кг), или в бочках от 20 до 200 литров. На таре всегда написано «Жидкое стекло» и указан производитель. Изготовление, транспортировка и хранение производятся по ГОСТ 13078-81.

Также существует жидкое стекло в порошке и гранулах. Этот материал называется Монасил, выпускается в мешках по 12 кг. До нужной кондиции его доводят добавлением воды в указанной на упаковке пропорции.

Жидкое стекло для гидроизоляции

Сферы применения

Применение жидкого стекла идет по трем направлениям:

  1. Гидроизоляция пола и стенок подземных сооружений: колодца, бассейна, подвала и т.п.
  2. В качестве добавки при приготовлении штукатурки для фасадов и помещений с повышенной влажностью, например, бассейна или колодца. Но следует иметь в виду, что такой раствор очень быстро застывает и его надо вырабатывать немедленно. Зато таким стенам не требуется дополнительная гидроизоляция.
  3. Жидкое стекло также можно использовать как добавку-модификатор для бетона, после чего он становить сверхпрочным монолитом, обладающим водоотталкивающими характеристиками. В этом случае надо точно придерживаться пропорций (в зависимости от марки цемента), иначе можно настолько сильно изменить качества бетона, что он сам станет хрупким как стекло.

Жидкое стекло в бетон – пропорции

Сколько жидкого стекла можно добавлять в бетон и как это правильно делать?

Состав из бетона и жидкого стекла можно применять не только для строительства колодца или бассейна, но и при кладке камина, печи, устройства стяжки под теплый пол. Дело в том, что добавление жидкого стекла поднимает жаропрочность бетона до 900-1000 градусов против 200 у обычного состава. Правильно замешанный раствор обладает не только водоотталкивающими свойствами, но и служит отличным теплоизолятором. Жидкое стекло применяется как добавка только для бетона М300 и М400.

Гидроизоляция бетона жидким стеклом

Пропорция количества силикатного жидкого стекла в растворе не должна превышать 10% – это максимально допустимое значение. Оптимальный вариант – 7%, что составляет 70-72 литра жидкого стекла на 1 метр кубический готового бетона. При этом надо запомнить следующие значения схватывания состава (при температуре 16-20 градусов):

  • При 2% количестве стекла начальное схватывание состоится в течение 40-45 минут, на окончательное надо 22-24 часа.
  • При 5% показатели будут такие: 25-30 минут и 12-14 часов.
  • При 7-8% раствор схватится за 10 минут и окончательно застынет за 8 часов.

Окончательное достижение зрелости такого бетона происходит в течение 28 дней.

При строительстве топок и пола печей процентное содержание жидкого стекла можно увеличить до 25-35%, но застывает такой раствор за 1-3 минуты. Зато его жаростойкость будет достигать 1400 градусов по Цельсию.

Не менее важно, чтобы правильно было выполнена технология приготовления бетона. Категорически нельзя добавлять жидкое стекло в готовый раствор!

А правильно сделать это надо так: сначала жидкое стекло надо развести водой минимум в два раза, а потом в эту жидкость надо подмешивать сухой цемент. Полужидкую смесь можно уже заливать в бетономешалку. Но выработать своими руками весь раствор надо очень быстро – в течение 10-12 минут, иначе он будет не годен. И бетономешалку надо мыть сразу же.

Жидкое стекло

Плюсы жидкого стекла

Почему же этот материал даже при таких проблемных качествах в плане работы и хрупкости покрытия, находит широкое применение в строительных работах? Дело в том, что оно обладает многие очень нужными качествами, которые не могут дать другие материалы, причем намного дороже по цене.

  1. Великолепные адгезионные свойства. Материал отлично проникает вглубь бетона, древесины, камня и обеспечивает высокий уровень сцепления гидроизоляционного покрытия со стенками бассейна, колодца или фундамента.
  2. Независимо от способа нанесения, вследствие текучести и одновременно вязкости материала, он образует цельное ровное покрытие. Желательно, чтобы вся работа была выполнена за один раз, без временных разрывов.
  3. Невысокий расход жидкого стекла – для покрытия поверхности одной площади его нужно в два раза меньше, чем, например, жидкой резины.
  4. Низкая цена. Жидкое стекло – самый дешевый гидроизоляционный материал из всех существующих.

Минусы

Во-первых, покрытия из жидкого стекла в чистом виде очень хрупкие и даже незначительный удар или деформация, например, стенок бассейна или колодца, разрушает его. Поэтому материал чаще всего находит применение как добавка в бетон.

Во-вторых, жидкое стекло совместимо только с бетонами, штукатуркой и деревом. Им нельзя покрывать кирпич, так как он быстро разрушится.

В-третьих, это достаточно непростой в работе материал – надо работать в ускоренном темпе и аккуратно, так как схватывание происходит быстро.

Четвертый недостаток – на покрытие из чистого жидкого стекла, а также на бетон и штукатурку с его включением невозможно качественно нанести финишное покрытие, покрасить или залакировать.

Гидроизоляция стяжки пола жидким стеклом

Технология гидроизоляции жидким стеклом

Технология схожа с нанесением других материалов. Особенное значение надо уделить подготовке поверхности – удалить грязь, пыль, жирные и масляные пятна. Например, гидроизоляция стенок и пола бассейна выполняется так:

  1. Для работы можно использовать валик или щетку-макловицу. Быстро наносится первый слой – равномерно и без пропусков.
  2. Дать пленке схватиться – 30 минут, потом нанести второй слой.
  3. Следующий этап – нанесение защитного слоя. Надо сделать стандартный штукатурный раствор, смешать его с жидким стеклом в пропорции один к одному и быстро покрыть шпателем всю поверхность слоем около 1 см.
  4. Далее надо выждать несколько дней до застывания штукатурки.
  5. После можно продолжать отделочные работы.

Заключение

Как материал для гидроизоляционных работ жидкое стекло вполне приемлемый вариант, особенно в свете его доступной стоимости. Такой недостаток, как быстрое схватывание, можно нивелировать с помощью поэтапности работ. Зато с помощью такого покрытия можно своими руками сделать качественную гидроизоляцию пола, фундамента, колодца, бассейна, террасы, подвала и других строений.

Что такое жидкое стекло? — Узнайте больше о технологии жидкого стекла

Вопрос. Так вредно ли это химическое вещество для нас?

Профессор. Нет, как я уже упоминал, жидкое стекло происходит из натуральных источников, оно на 100% органическое и экологически чистое.

Вопрос. Но вы упомянули, что он употребляет алкоголь. Это не опасно?

Профессор. Верно. Жидкое стекло необходимо переносить (или, если хотите, хранить) либо в спирте, либо в воде, а наш спирт является органическим.После нанесения носитель испаряется, оставляя чистый нанослой стекла. В Crystalusion Limited мы верим в использование только экологически чистых и органических технологий в наших продуктах.

Вопрос. Итак, где можно использовать жидкое стекло?

Профессор. Самым удивительным в этой технологии является то, что я не встречал ни одной поверхности, на которую нельзя было бы нанести покрытие Liquid Glass. Вы можете покрывать мобильные телефоны с помощью Crystalusion — Liquid Glass Protection, ваши автомобили / автомобили с помощью InteriorShield и ExteriorShield.Мы производим различные покрытия Liquid Glass для различных поверхностей. У нас есть покрытия для стеклянных поверхностей, текстиля, деревянных поверхностей, металлических поверхностей, камня, мрамора, пластика и многого другого. Мы упростили все это и объяснили преимущества для каждой отрасли в разделе «Коммерческие решения».

Вопрос. Зачем вам нужно покрывать стекло жидким стеклом?

Профессор. Одной из основных характеристик жидкого стекла является то, что оно создает легкую очищаемую поверхность, помогая нам сократить время и деньги, потраченные на чистящие средства, и дольше сохраняет ваши любимые вещи новыми.

Вопрос. Каковы основные характеристики жидкого стекла?

Профессор. Вы можете прочитать все о характеристиках жидкого стекла в разделе нашей компании, однако, резюмируя нашу технологию, я могу сказать вам, что это так; 100% невидимый, противоизносный, антибактериальный и суперфобный.

Химическая головоломка — Scientific American

Реклама

Следующий эксперимент легко выполнить даже тем, кто мало или совсем не обучался химии.Это дает представление о бесконечном разнообразии химических и физических изменений, которые один и тот же реагент может вызывать в других веществах. Четырнадцать стаканов, расставленных по семи парам, предстают перед зрителями, которым предлагается изучить их и их содержимое. Затем экспериментатор наливает одну и ту же жидкость в четырнадцать стаканов. Сразу становятся очевидными следующие противоречивые результаты: вещество, содержащееся в стакане А, становится настолько горячим, что стакан нельзя держать в руке. Вещество, содержащееся в стекле Ar, становится настолько холодным, что за пределами стекла быстро собирается иней.Жидкость, содержащаяся в стакане B, была синей; он становится бесцветным. Жидкость, содержащаяся в стакане B ‘, была бесцветной; он становится синим. Стекло G содержало прозрачную жидкость, которая становилась мутной. Стекло С «содержало мутную жидкость, которая становилась прозрачной. Если зажженную спичку поместить в стекло D, находящееся на несколько дюймов выше уровня жидкости, будет видно, как во всех направлениях вспыхивает шумное пламя. Если тот же эксперимент проделать таким же образом со стеклом D », спичка тихо, но сразу же погаснет. Жидкость в стакане Е имела жгучий удушливый запах; он становится без запаха.Жидкость в стакане Е ‘не имела запаха; он приобретает такой неприятный запах, что его приходится выносить на улицу. Жидкость в стакане F была красной; он становится синим. Жидкость в стакане F ‘была синей; он становится красным. Стекло G содержало твердое вещество, которое переходит в жидкое состояние. Стекло G ‘содержало прозрачную жидкость, которая мгновенно становилась твердой. Каждое преобразование является результатом действия обычной соляной кислоты над каким-либо химическим веществом. Вот их природа и пропорции; вместимость стаканов должна быть около одной пинты.Стакан А содержит 50 граммов гидрата натрия, растворенного в 100 кубических сантиметрах воды. Этот раствор заполняет примерно половину стакана. Во время эксперимента другая половина должна быть полностью заполнена соляной кислотой. Его следует наливать медленно, взбивая жидкость стеклянной или деревянной палочкой. Последние добавления кислоты вызывают закипание жидкости. Тогда будет обнаружено, что стекло содержит обычную поваренную соль, смешанную с избытком кислоты или гидрата натрия. Стакан A ‘наполнен мелкими кристаллами сульфата натрия, которые продаются фармацевтами для приема внутрь.Необходимо залить достаточным количеством соляной кислоты, чтобы она покрыла соль. Температура сразу идет намного ниже 32 град. F. Холод становится еще более интенсивным, если смесь взбалтывать. Три четверти стакана В заполнены водой; затем в нем растворяется один дециграмм медного купороса. Аммиак добавляется небольшими порциями до появления интенсивного синего цвета. Добавление соляной кислоты приведет к его исчезновению. Раствор двух сантиметров феррицианида калия в 100 кубических сантиметрах воды готовят в стакане B ‘, и в него наливают еще один раствор из 3 сантиметров сульфата железа в 100 кубических сантиметрах воды.Затем добавляют немного нашатырного спирта, пока красивый синий цвет не исчезнет. Соляная кислота заставит его немедленно появиться. Glass G содержит обычный раствор ацетата свинца, продаваемый фармацевтами для местного или наружного применения. Соляная кислота образует в нем плотный осадок хлорида свинца. Три четверти стакана С «заполнены водой, в которую добавлено около четверти чайной ложки гашеной извести, свободной от крупных частиц. Хлорид кальция, образующийся в результате действия соляной кислоты на известь, чрезвычайно растворим в воде.Несколько кусочков цинка осаждаются в стекле D. Пузырьки водорода с шумом воспламеняются, когда в стекло помещается спичка. Эксперимент свободен от опасности до тех пор, пока не будет предпринята попытка закрыть стакан. Одна треть стакана D ‘заполнена древесной золой с достаточным количеством воды, чтобы образовалась жидкая паста. Углекислый газ — это газ, который быстро гасит спичку. Сто кубических сантиметров воды, пятьдесят кубических сантиметров нашатырного спирта и достаточно лакмусового раствора, чтобы придают жидкости голубоватый оттенок, наливают в стакан Е.Во время эксперимента соляная кислота постепенно усиливается, пока голубоватый цвет внезапно не станет красноватым. Тогда обнаружится, что запах исчез. Одна треть стакана E ‘заполнена водой, и в него бросают 8 граммов порошкообразного сульфида железа. Соляная кислота образует в стекле сероводород. Этот газ является активным веществом, содержащимся в некоторых минеральных водах, которым он придает характерный запах гнилых яиц. Это ядовито, но количество, выделившееся во время эксперимента, невелико, а запах настолько силен, что делает воздух непригодным для дыхания задолго до того, как возникнет какая-либо опасность.Однако не следует нюхать его прямо над стеклом, а также нельзя, чтобы стекло оставалось в комнате дольше, чем это необходимо для обнаружения запаха. Стекло F содержит ту же жидкость, что и стекло B, с добавлением одного сантиграмма алого анилина. Стакан F ‘содержит обыкновенный раствор голубой лакмуса. Кальцинированная магнезия — это твердое вещество, которое заполняет около одной трети стекла G, а обычное сиропообразное растворимое стекло или раствор силиката натрия, продаваемый аптекарями, представляет собой жидкое вещество, которое мгновенно становится твердым в стекле G ‘, если его смешать с примерно одним раствором. треть его объема соляной кислоты.

Эта статья была первоначально опубликована под названием «Химическая головоломка» в журнале Scientific American 97, 26, 472 (декабрь 1907 г.)

doi: 10.1038 / Scientificamerican12281907-472a

ОБ АВТОРЕ (S)

Государственный колледж Коста-Рики

Читать This Next

В магазине

Scientific American

Информационный бюллетень

Станьте умнее. Подпишитесь на нашу новостную е-мэйл рассылку.

Поддержите научную журналистику

Откройте для себя науку, меняющую мир.Изучите наш цифровой архив 1845 года, в который входят статьи более 150 лауреатов Нобелевской премии.

Подпишитесь сейчас!

11.3 Растворимость — химия

Цели обучения

К концу этого модуля вы сможете:

  • Опишите влияние температуры и давления на растворимость
  • Изложите закон Генри и используйте его в расчетах, касающихся растворимости газа в жидкости.
  • Объясните возможные степени растворимости жидко-жидких растворов

Представьте, что вы добавляете небольшое количество соли в стакан воды, перемешиваете, пока вся соль не растворится, а затем добавляете еще немного.Вы можете повторять этот процесс до тех пор, пока концентрация соли в растворе не достигнет своего естественного предела, предела, определяемого в первую очередь относительной силой сил притяжения растворенное вещество-растворенное вещество, растворенное вещество-растворитель и растворитель-растворитель, которые обсуждались в предыдущих двух модулях этой главы. . Вы можете быть уверены, что достигли этого предела, потому что независимо от того, как долго вы перемешиваете раствор, остается нерастворенная соль. Концентрация соли в растворе на этом этапе называется его растворимостью.

Растворимость растворенного вещества в конкретном растворителе — это максимальная концентрация, которая может быть достигнута в данных условиях, когда процесс растворения составляет при равновесии .{-} (водн.) [/ латекс]

Когда концентрация растворенного вещества равна его растворимости, говорят, что раствор на насыщен этим растворенным веществом. Если концентрация растворенного вещества меньше его растворимости, раствор считается ненасыщенным . Раствор с относительно низкой концентрацией растворенного вещества называется разбавленным, а раствор с относительно высокой концентрацией — концентрированным.

Если мы добавим еще соли в насыщенный раствор соли, мы увидим, что она падает на дно и больше не растворяется.Фактически, добавленная соль растворяется, что выражается прямым направлением уравнения растворения. Сопровождая этот процесс, растворенная соль будет выпадать в осадок, как показано обратным направлением уравнения. Говорят, что система находится в равновесии, когда эти два взаимных процесса происходят с равными скоростями, и поэтому количество нерастворенной и растворенной соли остается постоянным. Подтверждение одновременного протекания процессов растворения и осаждения обеспечивается тем, что количество и размеры нерастворенных кристаллов соли будут меняться со временем, хотя их общая масса останется прежней.


Используйте это интерактивное моделирование для приготовления различных насыщенных растворов.

Могут быть приготовлены растворы, в которых концентрация растворенного вещества превышает его растворимость. Такие решения называются пересыщенными , и они являются интересными примерами неравновесных состояний . Например, газированный напиток в открытом контейнере, который еще не «разложился», перенасыщен газообразным диоксидом углерода; со временем концентрация CO 2 будет уменьшаться, пока не достигнет своего равновесного значения.


Посмотрите это впечатляющее видео, демонстрирующее осаждение ацетата натрия из перенасыщенного раствора.

В предыдущем модуле этой главы обсуждалось влияние сил межмолекулярного притяжения на образование раствора. Химические структуры растворенного вещества и растворителя определяют типы возможных сил и, следовательно, являются важными факторами при определении растворимости. Например, в аналогичных условиях растворимость кислорода в воде примерно в три раза больше, чем у гелия, но в 100 раз меньше растворимости хлорметана, CHCl 3 .Принимая во внимание роль химической структуры растворителя, обратите внимание, что растворимость кислорода в жидком углеводородном гексане, C 6 H 14 , примерно в 20 раз больше, чем в воде.

Другие факторы также влияют на растворимость данного вещества в данном растворителе. Одним из таких факторов является температура, растворимость газа обычно снижается с повышением температуры (рис. 1). Это одно из основных последствий теплового загрязнения природных водоемов.

Рис. 1. Растворимость этих газов в воде уменьшается с повышением температуры. Все растворимости измеряли при постоянном давлении газа 101,3 кПа (1 атм) над растворами.

Когда температура реки, озера или ручья повышается до аномально высокой, обычно из-за сброса горячей воды в результате какого-либо промышленного процесса, растворимость кислорода в воде снижается. Снижение уровней растворенного кислорода может иметь серьезные последствия для здоровья водных экосистем и, в тяжелых случаях, может привести к крупномасштабной гибели рыбы (рис. 2).

Рис. 2. (a) Маленькие пузырьки воздуха в этом стакане с охлажденной водой образовались, когда вода нагрелась до комнатной температуры и растворимость растворенного в ней воздуха снизилась. (b) Пониженная растворимость кислорода в природных водах, подверженных тепловому загрязнению, может привести к крупномасштабной гибели рыбы. (кредит А: модификация работы Лиз Уэст; кредит б: модификация работы Службы рыбной ловли и дикой природы США)

На растворимость газообразного растворенного вещества также влияет парциальное давление растворенного вещества в газе, которому подвергается раствор.Растворимость газа увеличивается с увеличением давления газа. Газированные напитки — прекрасная иллюстрация этой взаимосвязи. Процесс газирования включает в себя воздействие на напиток относительно высокого давления газообразного диоксида углерода и затем герметизацию контейнера с напитком, тем самым насыщая напиток CO 2 при этом давлении. Когда контейнер с напитком открывается, слышится знакомое шипение, когда давление углекислого газа сбрасывается, и обычно видно, что часть растворенного углекислого газа выходит из раствора в виде маленьких пузырьков (рис. 3).На данный момент напиток на перенасыщен диоксидом углерода на , и со временем концентрация растворенного диоксида углерода снизится до своего равновесного значения, и напиток станет «плоским».

Рисунок 3. Открытие бутылки с газированным напитком снижает давление газообразного диоксида углерода над напитком. Растворимость CO 2 , таким образом, снижается, и можно увидеть, что около растворенных диоксида углерода покидают раствор в виде небольших пузырьков газа.(кредит: модификация работы Деррика Кутзи)

Для многих газообразных растворенных веществ соотношение между растворимостью C г и парциальным давлением P г является пропорциональным:

[латекс] C _ {\ text {g}} = kP _ {\ text {g}} [/ latex]

, где k — константа пропорциональности, которая зависит от идентичности газообразного растворенного вещества и растворителя, а также от температуры раствора. Это математическое утверждение закона Генри : Количество идеального газа, растворяющегося в определенном объеме жидкости, прямо пропорционально давлению газа.

Пример 1

Применение закона Генри
При 20 ° C концентрация растворенного кислорода в воде, подверженной воздействию газообразного кислорода при парциальном давлении 101,3 кПа (760 торр), составляет 1,38 × 10 −3 моль л −1 . Используйте закон Генри, чтобы определить растворимость кислорода, когда его парциальное давление составляет 20,7 кПа (155 торр), приблизительное давление кислорода в атмосфере Земли.

Раствор
Согласно закону Генри для идеального раствора растворимость, C г , газа (1.38 × 10 −3 моль л ( −1 , в данном случае) прямо пропорционально давлению, P г , нерастворенного газа над раствором (101,3 кПа, или 760 торр, в данном случае ). Поскольку нам известны как C g , так и P g , мы можем изменить это выражение, чтобы найти k .

[латекс] \ begin {array} {r @ {{} = {}} l} C _ {\ text {g}} & kP _ {\ text {g}} \\ [0.5em] k & \ frac {C_ {\ text {g}}} {P _ {\ text {g}}} \\ [0.{-1} [/ латекс]

Обратите внимание, что для выражения величин, участвующих в такого рода вычислениях, могут использоваться различные единицы. Допускается любая комбинация единиц, которая подчиняется ограничениям размерного анализа.

Проверьте свои знания
Воздействие на образец воды объемом 100,0 мл при 0 ° C в атмосфере, содержащей газообразное растворенное вещество при давлении 20,26 кПа (152 торр), привело к растворению 1,45 × 10 -3 г растворенного вещества. Используйте закон Генри, чтобы определить растворимость этого газообразного растворенного вещества, когда его давление равно 101.3 кПа (760 торр).

Ответ:

7,25 × 10 −3 в 100,0 мл или 0,0725 г / л

Декомпрессионная болезнь или «изгибы»

Декомпрессионная болезнь (ДКБ) или «изгибы» — это эффект повышенного давления воздуха, вдыхаемого аквалангистами при плавании под водой на значительной глубине. В дополнение к давлению, оказываемому атмосферой, водолазы подвергаются дополнительному давлению из-за воды над ними, испытывая увеличение примерно на 1 атм на каждые 10 м глубины.Следовательно, воздух, вдыхаемый водолазом во время погружения, содержит газы при соответствующем более высоком давлении окружающей среды, и концентрация газов, растворенных в крови водолаза, пропорционально выше в соответствии с законом Генри.

По мере того, как ныряльщик поднимается на поверхность воды, давление окружающей среды уменьшается, и растворенные газы становятся менее растворимыми. Если всплытие слишком быстрое, газы, выходящие из крови дайвера, могут образовывать пузырьки, которые могут вызывать различные симптомы, от сыпи и боли в суставах до паралича и смерти.Чтобы избежать DCS, дайверы должны подниматься с глубины на относительно медленных скоростях (10 или 20 м / мин) или иным образом делать несколько декомпрессионных остановок, делая паузу на несколько минут на заданной глубине во время всплытия. Когда эти превентивные меры оказываются безуспешными, дайверам с ДКБ часто проводят гипербарическую кислородную терапию в сосудах под давлением, называемых декомпрессионными (или рекомпрессионными) камерами (рис. 4).

Рис. 4. (a) Водолазы ВМС США проходят обучение в рекомпрессионной камере. (б) Дайверы получают гипербарическую кислородную терапию.

Отклонения от закона Генри наблюдаются, когда происходит химическая реакция между газообразным растворенным веществом и растворителем. Таким образом, например, растворимость аммиака в воде не увеличивается так быстро с увеличением давления, как предсказывается законом, потому что аммиак, являясь основанием, в некоторой степени реагирует с водой с образованием ионов аммония и гидроксид-ионов.

Газы могут образовывать перенасыщенные растворы. Если раствор газа в жидкости готовится либо при низкой температуре, либо под давлением (или в обоих случаях), то по мере того, как раствор нагревается или когда давление газа снижается, раствор может стать перенасыщенным.В 1986 году более 1700 человек в Камеруне погибли, когда облако газа, почти наверняка углекислого газа, вырвалось из озера Ньос (рис. 5), глубокого озера в вулканическом кратере. Вода на дне озера Ниос насыщена углекислым газом из-за вулканической активности под озером. Считается, что озеро претерпело оборот из-за постепенного нагрева из-под озера, и более теплая, менее плотная вода, насыщенная углекислым газом, достигла поверхности. В результате было выпущено огромное количество растворенного CO 2 , и бесцветный газ, который плотнее воздуха, потек по долине под озером и задушил людей и животных, живущих в долине.

Рис. 5. (a) Считается, что катастрофа 1986 года, унесшая жизни более 1700 человек возле озера Ниос в Камеруне, возникла в результате выброса из озера большого количества углекислого газа. (b) С тех пор было установлено вентиляционное отверстие CO 2 для медленной и контролируемой дегазации озера и предотвращения аналогичной катастрофы в будущем. (кредит а: модификация работы Джека Локвуда; кредит б: модификация работы Билла Эванса)

Мы знаем, что некоторые жидкости смешиваются друг с другом во всех пропорциях; другими словами, они обладают бесконечной взаимной растворимостью и считаются смешиваемыми .Этанол, серная кислота и этиленгликоль (популярные для использования в качестве антифриза, изображены на рисунке 6) являются примерами жидкостей, которые полностью смешиваются с водой. Моторное масло для двухтактных двигателей смешивается с бензином.

Рисунок 6. Вода и антифриз смешиваются; смеси этих двух веществ однородны во всех пропорциях. (кредит: «dno1967» / Wikimedia commons)

Жидкости, которые смешиваются с водой во всех пропорциях, обычно являются полярными веществами или веществами, образующими водородные связи. Для таких жидкостей диполь-дипольные притяжения (или водородные связи) молекул растворенного вещества с молекулами растворителя по крайней мере такие же сильные, как между молекулами в чистом растворенном веществе или в чистом растворителе.Следовательно, два типа молекул легко смешиваются. Точно так же неполярные жидкости смешиваются друг с другом, потому что нет заметной разницы в силе межмолекулярного притяжения растворенное вещество-растворенное вещество, растворитель-растворитель и растворенное вещество-растворитель. Растворимость полярных молекул в полярных растворителях и неполярных молекул в неполярных растворителях снова является иллюстрацией химической аксиомы «подобное растворяется в подобном».

Две жидкости, которые не смешиваются в значительной степени, называются несмешивающимися .Слои образуются, когда мы наливаем в одну емкость несмешивающиеся жидкости. Бензин, масло (рис. 7), бензол, четыреххлористый углерод, некоторые краски и многие другие неполярные жидкости не смешиваются с водой. Притяжение между молекулами таких неполярных жидкостей и полярными молекулами воды малоэффективно. Единственное сильное притяжение в такой смеси происходит между молекулами воды, поэтому они эффективно вытесняют молекулы неполярной жидкости. Различие между несмешиваемостью и смешиваемостью на самом деле является одним из степеней, так что смешивающиеся жидкости имеют бесконечную взаимную растворимость, в то время как жидкости, которые считаются несмешиваемыми, имеют очень низкую (хотя и не нулевую) взаимную растворимость.

Рис. 7. Вода и масло не смешиваются. Смеси этих двух веществ образуют два отдельных слоя с менее плотным маслом, плавающим над водой. (кредит: «Yortw» / Flickr)

Две жидкости, такие как бром и вода, которые имеют умеренную взаимную растворимость , считаются частично смешиваемыми . Две частично смешивающиеся жидкости при смешивании обычно образуют два слоя. В случае смеси брома и воды верхний слой — это вода, насыщенная бромом, а нижний слой — бром, насыщенный водой.Поскольку бром неполярен и, следовательно, не очень хорошо растворяется в воде, водный слой лишь слегка обесцвечивается из-за растворенного в нем ярко-оранжевого брома. Поскольку растворимость воды в броме очень низкая, нет заметного влияния на темный цвет слоя брома (рис. 8).

Рис. 8. Бром (темно-оранжевая жидкость слева) и вода (прозрачная жидкость в центре) частично смешиваются. Верхний слой смеси справа — это насыщенный раствор брома в воде; нижний слой — насыщенный раствор воды в броме.(Источник: Пол Флауэрс)

Зависимость растворимости от температуры для ряда неорганических твердых веществ в воде показана кривыми растворимости на рисунке 9. Анализ этих данных указывает на общую тенденцию увеличения растворимости с температурой, хотя есть исключения, как показано на примере ионного соединения церия. сульфат.

Рис. 9. На этом графике показано, как растворимость некоторых твердых веществ изменяется с температурой.

Температурную зависимость растворимости можно использовать для приготовления перенасыщенных растворов определенных соединений.Раствор может быть насыщен соединением при повышенной температуре (где растворенное вещество более растворимо), а затем охлажден до более низкой температуры без осаждения растворенного вещества. Полученный раствор содержит растворенное вещество в концентрации, превышающей его равновесную растворимость при более низкой температуре (т.е. он перенасыщен), и является относительно стабильным. Осаждение избытка растворенного вещества может быть инициировано добавлением затравочного кристалла (см. Видео в разделе «Ссылка на обучение» ранее в этом модуле) или путем механического перемешивания раствора.Некоторые грелки для рук, такие как изображенный на рисунке 10, используют это поведение.

Рисунок 10. Этот грелка для рук выделяет тепло, когда ацетат натрия в перенасыщенном растворе выпадает в осадок. Осаждение растворенного вещества инициируется механической ударной волной, генерируемой, когда гибкий металлический диск в растворе «щелкает». (кредит: модификация работы «Велела» / Wikimedia Commons)

На этом видео показан процесс кристаллизации в грелке для рук.

Степень растворения одного вещества в другом определяется несколькими факторами, включая типы и относительные силы сил межмолекулярного притяжения, которые могут существовать между атомами, ионами или молекулами веществ. Эта склонность к растворению количественно определяется растворимостью вещества, его максимальной концентрацией в растворе, находящемся в равновесии при определенных условиях. Насыщенный раствор содержит растворенное вещество в концентрации, равной его растворимости. Перенасыщенный раствор — это раствор, в котором концентрация растворенного вещества превышает его растворимость — неравновесное (нестабильное) состояние, которое приведет к осаждению растворенного вещества, когда раствор соответствующим образом нарушен.Смешивающиеся жидкости растворимы во всех пропорциях, а несмешивающиеся жидкости обладают очень низкой взаимной растворимостью. Растворимость газообразных растворенных веществ уменьшается с повышением температуры, в то время как растворимость большинства, но не всех твердых растворенных веществ увеличивается с температурой. Концентрация газообразного растворенного вещества в растворе пропорциональна парциальному давлению газа, воздействию которого раствор подвергается, соотношение, известное как закон Генри.

  • [латекс] C _ {\ text {g}} = kP _ {\ text {g}} [/ latex]

Химия: упражнения в конце главы

  1. Предположим, вам представлен прозрачный раствор тиосульфата натрия, Na 2 S 2 O 3 .Как определить, является ли раствор ненасыщенным, насыщенным или перенасыщенным?
  2. Перенасыщенные растворы большинства твердых веществ в воде получают путем охлаждения насыщенных растворов. Перенасыщенные растворы большинства газов в воде получают нагреванием насыщенных растворов. Объясните причины разницы в двух процедурах.
  3. Предложите объяснение наблюдений, что этанол, C 2 H 5 OH, полностью смешивается с водой и что этантиол, C 2 H 5 SH, растворим только до степени 1.5 г на 100 мл воды.
  4. Рассчитайте массовый процент KBr в насыщенном растворе KBr в воде при 10 ° C. См. Полезные данные на Рисунке 9 и сообщайте вычисленный процент с точностью до одной значащей цифры.
  5. Какой из следующих газов наиболее растворим в воде? Объясните свои рассуждения.

    (а) CH 4

    (б) CCl 4

    (в) CHCl 3

  6. При 0 ° C и 1,00 атм. В 1 л воды может раствориться до 0,70 г O 2 .Сколько граммов O 2 растворяется в 1 л воды при 0 ° C и 4,00 атм?
  7. См. Рисунок 3.

    (a) Как изменилась концентрация растворенного CO 2 в напитке при открытии бутылки?

    (б) Что вызвало это изменение?

    (c) Является ли напиток ненасыщенным, насыщенным или перенасыщенным CO 2 ?

  8. Константа закона Генри для CO 2 составляет 3,4 × 10 −2 M / атм при 25 ° C.Какое давление углекислого газа необходимо для поддержания концентрации CO 2 0,10 M в банке лимонно-лаймовой соды?
  9. Константа закона Генри для O 2 составляет 1,3 × 10 −3 M / атм при 25 ° C. Какая масса кислорода растворилась бы в 40-литровом аквариуме при 25 ° C, если принять атмосферное давление 1,00 атм и что парциальное давление O 2 равно 0,21 атм?
  10. Сколько литров газообразного HCl, измеренного при 30,0 ° C и 745 торр, необходимо для приготовления 1.25 л раствора соляной кислоты 3.20- M ?

Глоссарий

Закон Генри
закон, устанавливающий пропорциональную зависимость между концентрацией растворенного газа в растворе и парциальным давлением газа, контактирующего с раствором
несмешиваемый
с незначительной взаимной растворимостью; обычно относится к жидким веществам
смешиваемый
взаимно растворим во всех пропорциях; обычно относится к жидким веществам
частично смешивается
умеренной взаимной растворимости; обычно относится к жидким веществам
насыщенный
с концентрацией, равной растворимости; содержащая максимально возможную концентрацию растворенного вещества для данной температуры и давления
растворимость
степень, до которой растворенное вещество может быть растворено в воде или любом растворителе
пересыщенный
концентраций, превышающих растворимость; неравновесное состояние
ненасыщенные
с концентрацией меньше растворимости

Решения

Ответы на упражнения по химии в конце главы

2.Растворимость твердых веществ обычно уменьшается при охлаждении раствора, в то время как растворимость газов обычно уменьшается при нагревании.

4. 40%

6. 2,80 г

8. 2.9 атм

10. 102 л HCl

Промышленное стекло | Британника

Полная статья

Промышленное стекло , также называемое архитектурным стеклом , твердый материал, который обычно имеет блестящий и прозрачный внешний вид и демонстрирует большую долговечность при воздействии природных элементов.Эти три свойства — блеск, прозрачность и долговечность — делают стекло предпочтительным материалом для таких предметов домашнего обихода, как оконные стекла, бутылки и лампочки. Однако ни одно из этих свойств по отдельности, ни все они вместе не являются достаточными или даже необходимыми для полного описания стекла. Согласно современным научным представлениям, стекло — это твердый материал, имеющий атомарную структуру жидкости. Сформулировано более подробно, следуя определению, данному в 1932 году физиком W.H.Захариасен, стекло представляет собой протяженную трехмерную сеть атомов, которые образуют твердое тело, в котором отсутствует периодичность (или повторяющееся, упорядоченное расположение), характерная для кристаллических материалов.

Обычно стекло образуется при охлаждении расплавленной жидкости таким образом, чтобы предотвратить упорядочение атомов в кристаллическое образование. Вместо резкого изменения структуры, которое происходит в кристаллическом материале, таком как металл, когда он охлаждается ниже точки плавления, при охлаждении стеклообразующей жидкости происходит постоянное затвердевание жидкости до тех пор, пока атомы практически не замораживаются. более или менее случайное расположение, подобное расположению, которое они имели в текучем состоянии.И наоборот, при нагревании твердого стекла происходит постепенное размягчение структуры, пока она не достигнет жидкого состояния. Это монотонно меняющееся свойство, известное как вязкость, позволяет изготавливать изделия из стекла непрерывно, при этом сырье плавится до однородной жидкости, доставляется в виде вязкой массы на формовочную машину для изготовления определенного продукта, а затем охлаждается до твердого состояния. и жесткое состояние.

В данной статье описываются состав и свойства стекла и его формирование из жидких расплавов.В нем также описываются процессы промышленного производства стекла и стеклоформования, а также рассматривается история стекловарения с древних времен. При этом в статье основное внимание уделяется составу и свойствам оксидных стекол, которые составляют основную часть товарного тоннажа стекла, а также традиционным методам термического плавления или плавления стекла. Однако внимание также уделяется другим неорганическим стеклам и менее традиционным производственным процессам.

Подробное описание физики стеклообразного состояния см. В статье «Аморфное твердое тело».Для полной обработки различных художественных применений стекла см. Витражи и изделия из него.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Стеклянные композиции и аппликации

Из различных семейств стекла, представляющих коммерческий интерес, большинство основано на кремнеземе или диоксиде кремния (SiO 2 ), минерале, который в большом количестве встречается в природе, особенно в кварце и пляжных песках. Стекло, изготовленное исключительно из кремнезема, известно как кварцевое стекло или стекловидный кремнезем.(Его также называют плавленым кварцем, если оно получено в результате плавления кристаллов кварца.) Кремнеземное стекло используется там, где требуются высокая рабочая температура, очень высокая термостойкость, высокая химическая стойкость, очень низкая электропроводность и хорошая прозрачность в ультрафиолете. Однако для большинства изделий из стекла, таких как контейнеры, окна и лампочки, основными критериями являются низкая стоимость и хорошая долговечность, а стекла, которые лучше всего соответствуют этим критериям, основаны на системе натриево-кальциево-кремнеземная. Примеры этих стекол приведены в таблице «Состав типичных оксидных стекол».

Состав типичных оксидных стекол
оксидный ингредиент (в процентах по весу)
стеклянная семья стеклянная аппликация диоксид кремния
(SiO 2 )
сода
(Na 2 O)
известь
(CaO)
оксид алюминия
(Al 2 O 3 )
магнезия
(MgO)
стекловидный кремнезем печные трубы, тигли для плавления кремния 100.0
силикат натриево-кальциевый окно 72,0 14,2 10.0 0,6 2,5
контейнер 74.0 15.3 5,4 1.0 3,7
лампочка и трубка 73,3 16.0 5.2 1.3 3.5
посуда 74.0 18.0 7,5 0,5
боросиликат натрия химическая посуда 81,0 4.5 2.0
свинцово-щелочной силикат свинцовый «кристалл» 59.0 2.0 0,4
телевизионная воронка 54,0 6.0 3.0 2.0 2.0
алюмосиликат стеклянная галогенная лампа 57.0 0,01 10.0 16.0 7.0
стеклопластик «Е» 52,9 17,4 14,5 4.4
оптический «Корона» 68.9 8,8
оксидный ингредиент (в процентах по весу)
стеклянная семья стеклянная аппликация оксид бора
(B 2 O 3 )
оксид бария
(BaO)
оксид свинца
(PbO)
оксид калия
(K 2 O)
оксид цинка
(ZnO)
стекловидный кремнезем печные трубы, тигли для плавления кремния
силикат натриево-кальциевый окно
контейнер след 0.6
лампочка и трубка 0,6
посуда
боросиликат натрия химическая посуда 12.0
свинцово-щелочной силикат свинцовый «кристалл» 25,0 12.0 1.5
телевизионная воронка 23.0 8.0
алюмосиликат стеклянная галогенная лампа 4.0 6.0 след
стеклопластик «Е» 9.2 1.0
оптический «Корона» 10.1 2,8 8,4 1.0

После кремнезема многие «натронно-известковые» стекла содержат в качестве основных компонентов соду или оксид натрия (Na 2 O; обычно получают из карбоната натрия или кальцинированной соды) и известь или оксид кальция (CaO; обычно полученный из обжаренного известняка).К этой основной формуле могут быть добавлены другие ингредиенты для получения различных свойств. Например, добавляя фторид натрия или фторид кальция, можно получить полупрозрачный, но непрозрачный продукт, известный как опаловое стекло. Другой вариант на основе диоксида кремния — боросиликатное стекло, которое используется там, где требуется высокая термостойкость и высокая химическая стойкость, например, в химической стеклянной посуде и автомобильных фарах. В прошлом «хрустальная» посуда из свинца изготавливалась из стекла, содержащего большое количество оксида свинца (PbO), что придавало продукту высокий показатель преломления (отсюда и блеск), высокий модуль упругости (отсюда звучность или «кольцо»). ”), А также большой рабочий диапазон температур.Оксид свинца также является основным компонентом припоев для стекла или герметизирующих стекол с низкими температурами обжига.

К другим стеклам на основе диоксида кремния относятся алюмосиликатные стекла, которые занимают промежуточное положение между стекловидным диоксидом кремния и более распространенными силикатно-натриевыми стеклами по термическим свойствам, а также по стоимости; стекловолокно, такое как стекло E и стекло S, используемое в пластмассах, армированных волокном, и в теплоизоляционной вате; и оптические стекла, содержащие множество дополнительных основных компонентов.

Без кремния

Оксидные стекла не на основе диоксида кремния не имеют большого коммерческого значения.Обычно это фосфаты и бораты, которые находят некоторое применение в биорезорбируемых продуктах, таких как хирургическая сетка и капсулы с замедленным высвобождением.

Стекла неоксидные

Фторидные стекла тяжелых металлов

Из неоксидных стекол фторидные стекла с тяжелыми металлами (HMFG) потенциально могут использоваться в телекоммуникационных волокнах из-за их относительно низких оптических потерь. Однако их также чрезвычайно трудно формировать и они обладают плохой химической стойкостью. Наиболее изученной группой HMFG является так называемая группа ZBLAN, содержащая фториды циркония, бария, лантана, алюминия и натрия.

Стекловидные металлы

Другая неоксидная группа — стеклообразные металлы, образующиеся при высокоскоростной закалке жидких металлов. Возможно, наиболее изученным стеклообразным металлом является соединение железа, никеля, фосфора и бора, которое коммерчески доступно под торговой маркой Metglas. Используется в гибких магнитных экранах и силовых трансформаторах.

Последним классом неоксидных некристаллических веществ являются халькогениды, которые образуются при плавлении вместе халькогенных элементов сера, селен или теллур с элементами из группы V ( e.g., мышьяк, сурьма) и IV группы ( например, германий) периодической таблицы Менделеева. Благодаря своим полупроводниковым свойствам халькогениды нашли применение в устройствах переключения порогов и памяти, а также в ксерографии. Связанный конечный член этой группы — элементарные аморфные твердые полупроводники, такие как аморфный кремний (a-Si) и аморфный германий (a-Ge). Эти материалы являются основой большинства фотоэлектрических приложений, таких как солнечные элементы в карманных калькуляторах. Аморфные твердые тела имеют жидкоподобный атомный порядок, но не считаются настоящими стеклами, потому что они не демонстрируют непрерывного перехода в жидкое состояние при нагревании.

В некоторых стеклах можно вызвать определенную степень кристаллизации в обычно неупорядоченной атомной структуре. Стекловидные материалы с такой структурой называются стеклокерамикой. Коммерчески полезная стеклокерамика — это стеклокерамика, в которой высокая плотность неориентированных кристаллов одинакового размера достигается в объеме материала, а не на поверхности или в отдельных областях. Такие продукты неизменно обладают прочностью, намного превышающей прочность исходного стекла или соответствующей керамики.Яркими примерами являются сосуды для приготовления пищи Corning Ware (торговая марка) и зубные имплантаты Dicor (торговая марка).

Помимо стеклокерамики, полезные изделия из стекла могут быть получены путем смешивания керамических, металлических и полимерных порошков. Большинство продуктов, изготовленных из таких смесей или композитов, проявляют свойства, которые являются комбинацией свойств различных ингредиентов. Хорошими примерами композитных продуктов являются пластмассы, армированные стекловолокном, для использования в качестве жестких эластичных твердых тел, а также толстопленочные проводники, резисторы и диэлектрические пасты с заданными электрическими свойствами для упаковки микросхем.

В природе встречается несколько видов неорганических стекол. К ним относятся обсидианы (вулканическое стекло), фульгариты (образованные ударами молнии), тектиты, обнаруженные на суше в Австралазии, и связанные с ними микротектиты со дна Индийского океана, молдавиты из Центральной Европы и стекло Ливийской пустыни из западного Египта. Благодаря своей чрезвычайно высокой химической стойкости под водой, микротектитовые композиции представляют значительный коммерческий интерес для иммобилизации или переработки опасных отходов.

Обзор стеклоиономерных цементов для клинической стоматологии

J Funct Biomater. 2016 сен; 7 (3): 16.

Шаранбир К. Сидху

1 Здоровье полости рта взрослых, Институт стоматологии, Лондонский университет Королевы Марии, Лондон E1 2AD, Великобритания; [email protected]

Джон В. Николсон

2 Стоматологические физические науки, Институт стоматологии, Лондонский университет Королевы Марии, Лондон E1 2AD, Великобритания

3 Центр биоматериалов Bluefield, Лондон EC1N 8JY, Великобритания

Джеймс Китхон Цой, академический редактор

1 Здоровье полости рта у взрослых, Институт стоматологии, Лондонский университет Королевы Марии, Лондон E1 2AD, Великобритания; ку[email protected]

2 Стоматологические физические науки, Институт стоматологии, Лондонский университет Королевы Марии, Лондон E1 2AD, Великобритания

3 Центр биоматериалов Bluefield, Лондон EC1N 8JY, Великобритания

Поступило в 2016 г. 3 мая; Принято 21 июня 2016 г.

Авторские права © 2016 авторов; лицензиат MDPI, Базель, Швейцария. Эта статья цитировалась в других статьях в PMC.

Abstract

Эта статья представляет собой обновленный обзор опубликованной литературы по стеклоиономерным цементам и охватывает их структуру, свойства и клиническое применение в стоматологии с акцентом на результаты последних пяти лет или около того.Показано, что стеклоиономеры затвердевают в результате кислотно-щелочной реакции в течение 2–3 минут и образуют твердые, достаточно прочные материалы с приемлемым внешним видом. Они выделяют фторид и являются биоактивными, поэтому постепенно образуют прочный и прочный межфазный ионообменный слой на границе с зубом, который отвечает за их адгезию. Также описаны модифицированные формы стеклоиономеров, а именно модифицированные смолой стеклоиономеры и стеклянный карбомер, а также их свойства и области применения. Показано, что физические свойства стеклоиономеров, модифицированных смолой, являются хорошими и сравнимы с физическими свойствами обычных стеклоиономеров, но биосовместимость несколько ухудшается из-за присутствия компонента смолы, 2-гидроксиэтилметакрилата.Свойства стеклянного карбомера, по-видимому, немного уступают свойствам лучших современных обычных стеклоиономеров, и пока нет достаточной информации, чтобы определить, как сравнивается их биоактивность, хотя они были разработаны для улучшения этой конкретной особенности.

Ключевые слова: стеклоиономерный цемент , выделение фторидов, биоактивность, клиническое применение, модифицированная смолой, стеклянный карбомер

1. Введение

Стеклоиономерные цементы относятся к классу материалов, известных как кислотно-щелочные цементы.В их основе лежит продукт реакции слабых полимерных кислот с порошковыми стеклами основного характера [1]. Отверждение происходит в концентрированных растворах в воде, и окончательная структура содержит значительное количество непрореагировавшего стекла, которое действует как наполнитель для усиления затвердевшего цемента.

Термин «стеклоиономер» применялся к ним в самой ранней публикации [2], но это не совсем правильно. Собственное название для них, согласно Международной организации по стандартизации (ISO), — «стеклополиалкеноатный цемент» [3], но термин «стеклоиономер» (включая дефис) признан приемлемым тривиальным названием [4], и широко используется в стоматологии.

2. Состав

Стеклоиономерный цемент состоит из трех основных ингредиентов: полимерной водорастворимой кислоты, основного (выщелачиваемого ионами) стекла и воды [4]. Обычно они представлены в виде водного раствора полимерной кислоты и тонкоизмельченного стеклянного порошка, которые смешиваются подходящим способом с образованием вязкой пасты, которая быстро затвердевает. Однако существуют альтернативные составы, которые варьируются от кислоты и стекла, присутствующих в порошке, и чистой воды, добавляемой для отверждения, до составов, в которых часть кислоты смешана со стеклянным порошком, а остальная часть присутствует в развести раствор в воде.Этот раствор используется в качестве жидкого компонента при формировании пасты для схватывания. Эффект от этих различий не ясен, потому что эти составы являются патентованными, поэтому точное количество каждого компонента широко не известно. Однако, по-видимому, не наблюдается очевидного влияния на конечные свойства представления этих материалов с компонентами, по-разному распределенными между порошковой и водной фазами.

Стеклоиономерные цементы можно смешивать с помощью шпателя на подушке или стеклянном блоке, так называемое ручное перемешивание.Материал также может быть представлен в специальной капсуле, разделенной мембраной. Мембрана разрушается непосредственно перед смешиванием, и капсула быстро встряхивается в специально разработанном автоматическом миксере. Это смешивает цемент, после чего свежеприготовленная паста выдавливается из капсулы и используется для внутриротового применения.

Если одна торговая марка доступна как в версии для смешивания вручную, так и в капсулированной версии, эти два типа цемента должны быть составлены по-разному. Цементная паста, которая схватывается за удовлетворительное время при ручном перемешивании, слишком быстро затвердевает при вибрационном перемешивании.В результате составы для капсулирования должны быть менее реактивными, чем составы для ручного смешивания, и они полагаются на ускоряющий эффект автоматического смешивания, чтобы обеспечить им удовлетворительное время работы и схватывания.

3. Полимерные кислоты

Полимеры, используемые в стеклоиономерных цементах, представляют собой полиалкеновые кислоты, либо гомополимер поли (акриловой кислоты), либо 2: 1 сополимер акриловой кислоты и малеиновой кислоты. Поли (винилфосфоновая кислота) изучалась как потенциальный цементообразователь [5], но ее практическое использование ограничено одной торговой маркой, где она используется в смеси с поли (акриловой кислотой) и эффективно действует как модификатор скорости схватывания. [6].

В литературе неясно, какие полимеры используются в стеклоиономерных цементах. Это связано с тем, что ранние исследования изучали ряд мономеров моно-, ди- и трикарбоновых кислот в полимерах для образования цемента, включая итаконовую и трикарбаллиловую кислоты [7]. Это заставило некоторых авторов предположить, что эти вещества должны использоваться в практических цементах. Однако это не так, и в коммерческих цементах используется либо гомополимер, либо сополимер акриловой кислоты.

Полимер влияет на свойства стеклоиономерного цемента, образованного из них.Высокая молекулярная масса увеличивает прочность затвердевшего цемента, но растворы высокомолекулярных полимеров имеют высокую вязкость, что затрудняет их смешивание. Поэтому молекулярные веса выбираются для уравновешивания этих конкурирующих эффектов. Считается, что оптимальные свойства достигаются при средней молекулярной массе 11 000 (среднечисловая) и 52 000 (среднемассовая) [8]. Эти значения дают полидисперсность 4,7 [8].

Цементы, приготовленные из гомополимеров акриловой кислоты, демонстрируют повышение прочности на сжатие в первые 4–6 недель.С другой стороны, цементы, изготовленные из сополимеров акриловой и малеиновой кислоты, демонстрируют повышение прочности на сжатие до определенного предела, но затем происходит снижение до достижения равновесного значения. Прочность на сжатие не является фундаментальным свойством материалов, поскольку сжатие вызывает сложное разрушение образца в направлениях, приблизительно перпендикулярных сжимающей силе. Однако эти изменения измеренной прочности на сжатие указывают на то, что материал продолжает претерпевать медленные изменения с течением времени.В частности, это снижение объясняется более высокой плотностью сшивки, которая развивается в сополимерных цементах по сравнению с цементами на основе гомополимера акриловой кислоты [9]. Однако при клиническом использовании это различие между гомополимерным и сополимерным цементами не кажется важным, и нет никаких доказательств того, что цементы, изготовленные из сополимера акриловой / малеиновой кислоты, менее удовлетворительны в эксплуатации.

4. Стекла

Очень важно, чтобы стекла для иономерных цементов были основными, т.е.е., способный реагировать с кислотой с образованием соли. В принципе, можно приготовить несколько различных составов стекла, которые удовлетворяют этому требованию, но на практике полностью удовлетворительными являются только алюмосиликатные стекла с добавками фторидов и фосфатов. Коммерческие стекла для стеклоиономерных цементов обычно основаны на соединениях кальция с некоторым дополнительным содержанием натрия. Есть также материалы, в которых кальций заменен стронцием.

Иономерные стекла своим основным характером обязаны тому факту, что для их приготовления используются как оксид алюминия, так и диоксид кремния.Стекла на основе одного диоксида кремния не обладают реакционной способностью, а также основностью, поскольку их структура содержит в основном тетраэдры SiO 4 , соединенные по углам с образованием цепочек, не несущих заряда. Когда добавляется оксид алюминия, алюминий вынужден принимать геометрию, аналогичную четырехгранной тетраэдрической геометрии кремния, то есть тетраэдрам AlO 4 . Поскольку алюминий несет формальный заряд 3+, он не противодействует влиянию отрицательно измененных атомов кислорода так же эффективно, как кремний с его формальным зарядом 4+. Чтобы сбалансировать это, должны присутствовать дополнительные катионы, такие как Na + и Ca 2+ (или Sr 2+ ).Они создают основной характер и делают стекло уязвимым для кислот.

Фторид также является жизненно важным компонентом стекол, используемых в стеклоиономерных цементах. Стекла, содержащие фторид, были одними из первых, о которых сообщалось, когда впервые были описаны стеклоиономеры, и представляли собой либо систему SiO 2 -Al 2 O 3 -CaF 2 , либо более сложную систему SiO 2 -Al 2 O 3 -P 2 O 5 -CaO-CaF 2 система [10].Пример состава показан на рисунке для стекла, известного как G338, которое похоже на несколько коммерческих иономерных стекол.

Таблица 1

Состав стекла G338.

Компонент % по массе
SiO 2 24,9
Al 2 O 3
CaF 2 12.8
NaAlF 6 19,2
AlPO 4 24,2

Практические иономерные стекла, в том числе G338, как известно, претерпевают, по крайней мере, частичное фазовое разделение . Это приводит к участкам различного состава и, как правило, к возникновению одной фазы, которая более восприимчива к воздействию кислоты, чем другие. В принципе, можно было бы ожидать, что это изменит оптические свойства стекла и, в свою очередь, цемента, но исследований, посвященных этому вопросу, не проводилось.

Исследования иономерных стекол были проведены с использованием MAS-ЯМР-спектроскопии, и они предоставили полезную структурную информацию об этих материалах. Было показано, что алюминий присутствует как в 4-, так и в 5-координации в различных стеклах [11,12], что подтверждает влияние кремнезема на координационное состояние алюминия [12]. В этих стеклах фтор присутствует исключительно в связанном с алюминием [13].

Замещение кальция на стронций в стеклах этого типа может быть достигнуто при использовании соединений SrO и SrF 2 вместо CaO и CaF 2 в стеклообразующей смеси [14].Стронций увеличивает рентгеноконтрастность по сравнению с кальцием в этих стеклах без какого-либо неблагоприятного воздействия на внешний вид этих цементов. Эти цементы усиливают выделение фторидов, хотя причина этого не известна.

5. Хелатирующие добавки

Несколько возможных соединений были изучены в качестве добавок, модифицирующих скорость, в количестве 5% или 10% по массе в цементах [15]. Два из них оказались весьма успешными, а именно (+) — винная кислота и лимонная кислота, и из них (+) — винная кислота оказалась более эффективной.

Причины этого не ясны. Это может иметь какое-то отношение к его способности предотвращать осаждение солей алюминия, что он делает, хелатируя ионы Al 3+ и удерживая их в растворе [16]. По этому механизму он может предотвратить преждевременное образование ионных поперечных связей с участием Al 3+ [17]. Конечно, это согласуется с тем фактом, что полосы из-за полиакрилата алюминия появляются позже, когда присутствует винная кислота, чем когда она отсутствует. Полосы, возникающие из различных возможных карбоксилатов металлов, находятся в различных областях инфракрасного спектра, как показано на.

Таблица 2

Инфракрасные полосы поглощения.

909 в стеклоиономерном цементе задерживается схватывание, поэтому цемент легче перемешивается.Затем он резко затвердевает, чтобы получить законченный, затвердевший материал, который можно завершить внутри зуба. Вследствие способности способствовать этим изменениям (+) — винная кислота является очень полезной добавкой. Однако его эффективность зависит от стакана и зависит от его состава.

6. Отверждение стеклоиономерных цементов

Стеклоиономеры затвердевают в течение 2–3 минут после смешивания путем кислотно-щелочной реакции. Первый шаг — это реакция с гидратированными протонами поликислоты на основных участках поверхности стеклянных частиц.Это приводит к перемещению ионов, таких как Na + и Ca 2+ (или Sr 2+ ) из стекла в раствор поликислот, за которым быстро следуют ионы Al 3+ . Эти ионы затем взаимодействуют с молекулами поликислоты с образованием ионных поперечных связей, и образующаяся нерастворимая полисоль становится жестким каркасом для затвердевшего цемента. Когда происходит эта реакция схватывания, вся вода включается в цемент, и разделения фаз не происходит.

Отверждение стеклоиономерных цементов было изучено различными спектроскопическими методами, включая инфракрасную, FTIR и спектроскопию ЯМР 13 C.Общая реакция, по-видимому, происходит в два этапа в процессе, контролируемом диффузией [18]. Как мы видели, первым шагом является образование ионных сшивок, и это отвечает за немедленный процесс отверждения. Впоследствии происходит процесс сшивки с участием ионов Al 3+ , который занимает около 10 минут для четкой спектроскопической идентификации [19]. Этот второй шаг медленный и продолжается примерно день [20].

После этого начального затвердевания идут дальнейшие реакции, которые протекают медленно и вместе известны как созревание.Они связаны с различными изменениями физических свойств получаемого стеклоиономерного цемента [1]. Как правило, увеличивается сила и полупрозрачность. Кроме того, в конструкции увеличивается доля плотно связанной воды. Детали этих процессов неизвестны, и исследования по этому вопросу продолжаются.

Несколько лет назад было показано, что твердые нерастворимые цементы могут быть образованы реакцией иономерных стекол с уксусной кислотой. И это несмотря на то, что соли ацетатов металлов растворимы в воде [21].Также было замечено, что эти цементы становились все более прочными при сжатии до 3 месяцев, хотя не было заметных изменений в инфракрасных спектрах цементов. Это привело к выводу, что существует неорганическая реакция схватывания, которая дополняет реакцию нейтрализации при схватывании этих цементов. Силикаты металлов были предложены в качестве веществ, ответственных за эту установку [21], но последующая работа над тем, что стало называться «псевдоцементами» (т.е. цементами, изготовленными из мономерных кислот с иономерными стеклами), показала, что нерастворимые материалы получаются только с фосфатными стеклами.Напротив, силикатные стекла, не содержащие фосфатов, не подвергаются эквивалентной реакции схватывания [22]. Это говорит о том, что предлагаемая неорганическая сетка имеет фосфатную основу.

7. Роль воды

Как уже упоминалось, вода является третьим важным компонентом стеклоиономерного цемента. Для воды было определено несколько ролей [9]. Это растворитель для полимерной кислоты, он позволяет полимеру действовать как кислота, способствуя высвобождению протонов, это среда, в которой происходит реакция схватывания, и, наконец, он является компонентом затвердевшего цемента [9].

Включение воды со стеклоиономерами связано с увеличением прозрачности стеклоиономерного цемента. Доля плотно связанной воды увеличивается со временем в течение первого месяца или около того существования цемента, и было предложено несколько возможных участков. Связывание может происходить частично за счет координации с ионами металлов и частично за счет сильной гидратации молекул полианионов [9]. Кроме того, он может реагировать с звеньями –Si – O – Si– на поверхности частиц стекла, что приводит к образованию групп –Si – OH [23].Это было подтверждено несколькими исследованиями FTIR, в которых изучалась соответствующая область спектра. Эти исследования показали наличие изменений, согласующихся с уменьшением доли групп –Si – O – Si– (на что указывает уменьшение интенсивности полосы при 1060 см –1 ) и увеличение пиков, обусловленных –Si –OH (силанол) (один при 950 см −1 [24] и один в области 3435–3445 см −1 [8]).

Несвязанная вода может улетучиваться с поверхности только что уложенного стеклоиономерного цемента.Это приводит к появлению неприглядного мелового оттенка, поскольку на высыхающей поверхности появляются микроскопические трещины. Чтобы предотвратить это, важно защитить цемент, покрыв его соответствующим лаком или вазелином [25].

Доступны два типа лака, а именно простые растворы полимера в растворителе и светоотверждаемый мономер с низкой вязкостью. Имеются данные о том, что светоотверждаемые лаки обеспечивают превосходную защиту от высыхания [25], поскольку отсутствие растворителя означает, что образованная пленка не имеет пористости, через которую может выходить вода.

8. Свойства стеклоиономеров

На физические свойства стеклоиономерных цементов влияет способ приготовления цемента, включая его соотношение порошок: жидкость, концентрацию поликислоты, размер частиц стеклянного порошка и возраст экземпляров. Поэтому необходимо соблюдать осторожность при обобщении свойств этих материалов. Существует также вероятность того, что часть успеха стеклоиономеров может быть связана с их удовлетворительными характеристиками, даже если они не были должным образом смешаны или не были допущены к созреванию в идеальных условиях.

Текущий стандарт ISO для стеклоиономеров [3] дает минимальные значения для определенных физических свойств. Эти значения, показанные в, являются наименее приемлемыми для материала, допускаемого на рынок, а не типичными для материалов, которые, как известно, обладают хорошими клиническими показателями.

Таблица 3

Требования ISO к стеклоиономерным цементам клинического качества.

Соль Асимметричное растяжение C – O (см −1 ) Симметричное растяжение C – O (см −1 )
Кальций 14109105
Алюминий полиакрилат 1559 1460
Тартрат кальция 1595 1385
Алюминий тартрат 1670 902 кислотный эффект 1670
Свойство Фиксирующий цемент Восстановительный цемент
Время схватывания / мин 2.5–8 2–6
Прочность на сжатие / МПа 70 (минимум) 100 (минимум)
Кислотная эрозия (максимальная) / мм ч -1 0,05
Непрозрачность, C 0,70 0,35–0,90
Кислоторастворимый As / мг кг −1 2 2 2 Pb / мг кг −1 100 100

Единственный тип прочности, о котором идет речь в стандарте ISO, — это прочность на сжатие, но стеклоиономеры также обладают приемлемой прочностью на изгиб [1].Их двухосный изгиб [26] и их прочность на сдвиг [27] также были определены. Как и ожидалось, для композитного материала они демонстрируют те же тенденции, что и прочность на сжатие, обычно улучшаясь при более высоких соотношениях порошок: жидкость и высокой концентрации поликислоты.

9. Выделение фторидов

Выделение фторидов считается одним из важных преимуществ стеклоиономерных цементов [1]. Он может поддерживаться в течение очень длительных периодов времени [28] и показывает образец начального быстрого высвобождения («ранний всплеск»), за которым следует устойчивое высвобождение, основанное на диффузии более низкого уровня [29].Эти процессы следуют схеме, описанной уравнением [30]:

[ F ] c = ([ F ] 1 × √ т ) / ( т + т 1/2 ) + β · √ т

(1)

В этом уравнении [ F ] c — кумулятивное высвобождение фторида за время t секунд, [ F ] 1 — общий доступный фторид, t — время и t 1/2 — это время, необходимое для того, чтобы высвобождение фторида снизилось вдвое, так называемый период полураспада процесса высвобождения.Начальный член ([ F ] 1 × √ t ) / ( t + t 1/2 ) представляет собой фазу «раннего всплеска», хотя было установлено, что она продолжается на срок до четырех недель. Второй член β · √ t в этом уравнении представляет собой долгосрочную диффузионную часть процесса выброса.

Выделение фторида из стеклоиономеров увеличивается в кислой среде [31]. Кроме того, эти цементы способны противодействовать такой кислотности, повышая pH внешней среды.Этот процесс получил название буферизации и может быть клинически полезным, поскольку может защитить зуб от дальнейшего разрушения [31].

Высвобождение фторида в кислой среде происходит при комплексообразовании. Это могут быть ионы алюминия, которые высвобождаются в больших количествах, чем в нейтральных условиях, или ионы водорода. Первые могут приводить к образованию таких частиц, как AlF4– [32], а вторые могут вызывать образование либо комплекса HF2–, либо недиссоциированного HF [33]. Ни один из этих возможных видов фторидов не дает свободных ионов фтора, поэтому они не обнаруживаются селективными электродами для фторид-иона.Следовательно, фторид необходимо разложить для образования свободных ионов F путем добавления TISAB (буфер для регулирования общей ионной растворимости). Это запатентованное решение, поставляемое различными производителями с целью разложения фторида и обеспечения того, чтобы весь фторид в пробе присутствовал в виде свободных анионов.

Было показано, что гидроксиапатит реагирует с кислотными носителями из стеклоиономерных цементов с поглощением фторида, независимо от того, образуется ли фторид с какими-либо другими химическими соединениями [34].Эти данные предполагают, что повышенное количество фторидов, выделяемых стеклоиономерами в кислотных условиях, увеличит количество фторида, доставляемого в минеральную фазу зуба [34].

Высвобождение фторида обычно считается клинически полезным. Однако убедительных доказательств этого пока нет. Известно, что постоянная подача низких уровней фторида к твердым тканям зуба полезна [35], причем концентрации на уровне миллионных долей достаточны для подавления деминерализации дентина в измеримых количествах [36].Выделение фторида может также снизить гиперчувствительность твердых тканей к холодной пище и напиткам. Такое количество фторида кажется достижимым из стеклоиономерных цементов [37], но они не были продемонстрированы в течение длительного времени в слюне. На сегодняшний день высвобождение в основном изучается в чистой воде, а при использовании искусственной слюны наблюдаются гораздо более низкие уровни выделения [38]. Из-за этого вероятное клиническое высвобождение в слюну в долгосрочной перспективе неизвестно.

Фторид также поглощается стеклоиономерными цементами, по крайней мере, на ранних стадиях существования цемента.Первоначально это было предложено Уоллсом [39], и ранние эксперименты, в которых выделение из цемента, хранящегося в воде, сравнивали с выделением из цемента, хранящегося в растворе фторида, подтвердили эту идею [40,41]. Было показано, что даже бесфторидные стеклоиономеры, подвергшиеся воздействию фторида, при такой обработке становятся высвобождающими фторид [42].

Прямое измерение подтверждает, что эти цементы поглощают фтор [43]. Однако было обнаружено, что эта способность почти полностью утрачивается при созревании, поэтому месячные экземпляры Ketac Molar Quick (3M ESPE, Сент-Пол, Миннесота, США) и Fuji IX Fast (GC, Токио, Япония) не использовали любой измеримый фторид вообще [43].Эти результаты позволяют предположить, что пополнение запасов фтора снижается по мере созревания и что это более сложно, чем предполагают многие отчеты [44]. В сообщениях, возможно, в любом случае преувеличивалась его потенциальная важность, потому что условия с высоким содержанием фтора, при которых может происходить перезарядка стеклоиономерной реставрации, также заставят соседний минерал зуба поглощать фторид. Таким образом, будет обеспечена защита от кариеса независимо от усиленного выделения фторида из цемента.

10. Адгезия

Адгезия стеклоиономеров к поверхности зуба является важным клиническим преимуществом.Стеклоиономеры получают из поли (акриловой кислоты) или родственных полимеров, и это вещество, как известно, способствует адгезии из-за адгезии поликарбоксилатного цемента цинка [9]. Преимущество, обеспечиваемое их адгезией, было использовано много лет назад, когда стеклоиономеры были предложены для восстановления эрозии шейки матки и в качестве герметиков для ямок и фиссур [45].

Прочность сцепления стеклоиономеров с необработанной эмалью и дентином при растяжении хорошая [46]. Значения на эмали варьируются от 2.От 6 до 9,6 МПа, а значения на дентине варьируются от 1,1 до 4,1 МПа. Прочность связи обычно выше с эмалью, чем с дентином, что позволяет предположить, что связь имеет место с минеральной фазой [47]. Прочность связи развивается быстро, около 80% конечной прочности связи достигается за 15 минут, после чего она увеличивается на несколько дней [47].

Адгезия проходит в несколько этапов. Во-первых, нанесение свежей цементной пасты позволяет правильно смачивать поверхность зуба.Это обусловлено гидрофильной природой как цемента, так и поверхности зуба. Затем быстро развивается адгезия из-за образования водородных связей между свободными карбоксильными группами цемента и связанной водой на поверхности зуба [48]. Эти водородные связи медленно заменяются истинными ионными связями, образованными между катионами в зубе и анионными функциональными группами в цементе. Это приводит к медленному образованию ионообменного слоя между зубом и цементом [49]. Также существует возможность прочных связей между карбоксилатными группами поли (акриловой кислоты) и поверхностью, как показывает инфракрасная спектроскопия [50].Коллаген, по-видимому, вообще не участвует в связывании [50].

В клинике поверхность зуба подготавливается к бондингу путем кондиционирования — процесса, который включает обработку поверхности свежесрезанного зуба 37% водным раствором поли (акриловой кислоты) кислоты в течение 10–20 с с последующим полосканием [47] . Эта техника удаляет смазанный слой и открывает дентинные канальцы, а также частично деминерализует поверхность зуба. Это приводит к увеличению площади поверхности и позволяет возникать микромеханическое прикрепление [51].

Таким образом, в целом адгезию стеклоиономерных цементов можно отнести к двум взаимосвязанным явлениям, а именно:

  1. Микромеханическое сцепление, вызванное самотравлением стеклоиономеров за счет поликислотного компонента.

  2. Истинная химическая связь. При этом образуются ионные связи между карбоксилатными группами на молекулах поликислот и ионами кальция на поверхности зубов [51]. Это наблюдалось экспериментально на гидроксиапатите [52], а также на эмали и дентине [53] с помощью рентгеновской фотоэлектронной спектроскопии, хотя экспериментальные условия для этих исследований включают высокий вакуум, поэтому требуется, чтобы поверхности были более сильно высушены, чем в клинических условиях. .

В долгосрочной перспективе происходит процесс диффузии, в котором ионы из цемента и ионы из зуба перемещаются в межфазную зону и создают ионообменный слой () [54]. Этот слой можно увидеть с помощью сканирующей электронной микроскопии. На изображении использовался стеклоиономерный цемент на основе стронция Fuji IX (GC, Токио, Япония), и анализ показал, что межфазная зона содержала как стронций, так и кальций, что указывает на то, что эта зона является результатом движения ионов как от цемента, так и от зуб.Полученная структура обеспечивает прочное сцепление цемента и зуба.

Межфазный ионообменный слой, образованный между поверхностью зуба (вверху) и стеклоиономерным цементом (внизу). Кружком обозначена часть ионообменного слоя.

Исследования показывают, что разрушение стеклоиономерного цемента обычно является когезионным, то есть происходит внутри цемента, а не на границе раздела. В результате значения сцепления, полученные в ходе экспериментов, на самом деле являются мерой не прочности сцепления, а прочности цемента на разрыв.Эта прочность относительно низкая в свежеприготовленных образцах, но увеличивается по мере созревания цемента. Следствием этого является то, что приведенные в литературе значения не являются истинными показателями прочности адгезионного соединения стеклоиономерных цементов.

Адгезия важна, поскольку она способствует удержанию стеклоиономерного цемента внутри зуба, а также снижает или устраняет незначительную утечку. Это означает, что вредные микроорганизмы не могут проникнуть в пространство под реставрацией и вызвать гниение.

11. Биоактивность

Стеклоиономерные цементы обладают естественной биологической активностью, отчасти потому, что они выделяют биологически активные ионы (фторид, натрий, фосфат и силикат) в окружающие водные среды на уровнях, при которых они являются биологически полезными [31]. В кислых условиях эти ионы выделяются в больших количествах, чем в нейтральных условиях. Кроме того, также выделяются кальций или стронций, ионы, которые встречаются в относительно нерастворимых соединениях в нейтральных растворах. В кислых условиях стеклоиономеры также снижают pH окружающей среды для хранения [31].

Высвободившиеся ионы выполняют различные биологические функции. Фосфат содержится в слюне и находится в равновесии с минеральной фазой зуба. Силикат может включаться в гидроксиапатит зуба, не влияя отрицательно на геометрию кристалла [55], хотя неясно, может ли он это сделать с минеральной фазой зубов в клинических условиях. Кальций — важный минеральный элемент, имеющий множество биологических применений. Во рту он является основным противоионом гидроксиапатита, и в растворе в умеренно кислых условиях способствует реминерализации зуба.

Как мы видели в связи с адгезией, способность обмениваться ионами с окружающей средой также применима к твердому зубу. Со временем образуется богатый ионами слой, очень устойчивый к воздействию кислоты. Следовательно, вторичный кариес вокруг стеклоиономерных реставраций наблюдается редко.

Стеклоиономеры также способны поглощать ионы. В естественной слюне цемент поглощает ионы кальция и фосфата и образует гораздо более твердую поверхность [56]. С этим связано наблюдение, что при использовании в качестве герметиков для фиссур стеклоиономерные цементы образуют глубоко внутри трещин вещество, которое имеет повышенное содержание кальция и фосфата и гораздо более устойчиво к резанию стоматологическим сверлом, чем исходная структура зуба. .Утверждается, что это улучшенное сопротивление высверливанию, а также изменение внешнего вида делают остаточный материал похожим на эмаль [57].

12. Клиническое применение стеклоиономерных цементов

Стеклоиономеры находят различное применение в стоматологии. Они используются в качестве полных реставрационных материалов, особенно в молочных зубах, а также в качестве подкладок и базисов, в качестве герметиков для фиссур и в качестве связующего вещества для ортодонтических скоб. В зависимости от предполагаемого клинического использования их можно разделить на три типа:

Тип I: цементы для фиксации и бондинга.

  • Для фиксации коронок, мостов, вкладок, накладок и ортодонтических аппаратов.

  • Используйте относительно низкое соотношение порошок: жидкость (от 1,5: 1 до 3,8: 1), что дает только умеренную прочность.

  • Быстро схватывается с хорошей ранней водостойкостью.

  • Рентгеноконтрастные.

Тип II: Восстановительные цементы.

Есть два подразделения цементов типа II, в зависимости от важности внешнего вида.

Для ремонта передней части, когда внешний вид имеет значение, Тип II (i):

  • Используйте высокое соотношение порошок: жидкость (от 3: 1 до 6,8: 1).

  • Хорошая цветопередача и прозрачность.

  • Требуется защита от влаги не менее 24 часов с помощью лака или вазелина.

  • Обычно рентгеноконтрастные.

Для использования там, где внешний вид не важен (реставрация или ремонт боковых зубов), тип II (ii):

Тип III: Футеровочный или основной цемент

  • Низкое соотношение порошок: жидкость для лайнеров (1.5: 1), чтобы обеспечить хорошее прилегание к стенкам полости.

  • Более высокое соотношение порошок: жидкость для основ (от 3: 1 до 6,8: 1), где основа действует как заменитель дентина в технике «открытого сэндвича» в сочетании с композитной смолой.

  • Рентгеноконтрастный.

Большая часть работ, посвященных клинической эффективности стеклоиономеров, носит анекдотический характер, и решения о клиническом применении основывались на суждениях и опыте клиницистов.Недавние попытки проанализировать все опубликованные данные подтвердили, что стеклоиономеры действительно обладают измеримым противокариесным эффектом. Однако на сегодняшний день менее ясны данные о том, полезно ли их высвобождение фторидов на практике [58].

13. Герметики для трещин

Герметики различных типов помещаются в трещины коренных или постоянных коренных зубов, чтобы предотвратить развитие кариеса, предотвращая колонизацию трещин зубным налетом и пленкой [59]. Стекло-иономер был предложен для этого еще в 1974 г. [46].

С тех пор было проведено множество исследований для сравнения эффективности стеклоиономерных цементов и композитных герметиков на основе смол. Обычно они определили относительную степень удерживания и в основном обнаружили, что стеклоиономеры уступают в этом отношении [60]. Однако, если принять во внимание скорость кариеса, стеклоиономеры оказываются столь же эффективными или превосходящими композитные смолы [61]. Это может быть связано с удерживанием цемента глубоко внутри трещины, а также с антикариесным действием фторида, выделяемого цементом [1].

Стеклоиономеры имеют определенные преимущества перед композитами в качестве герметиков для трещин, в частности, они гидрофильны и стабильны по размеру. Будучи гидрофильными, они могут впитывать любую жидкость, оставшуюся на дне трещины, и при этом прилипать к эмали. Стабильность размеров позволяет цементу сохранять свою граничную адаптацию и плотно прилегать к зубу. В результате исключается риск развития кариеса под герметизирующим материалом фиссур.

Совсем недавно в результате разработки стеклоиономеров с высокой вязкостью был получен материал, который дает гораздо лучшие показатели удерживания [61], и теперь они хорошо сравниваются с композитными герметиками.Поэтому их использование для герметизации фиссур, вероятно, будет продолжаться и в будущем.

14. Методика атравматического реставрационного лечения (ВРТ)

Стеклоиономеры — это материалы, используемые для восстановления зубов методом ВРТ [62]. Методика была разработана под эгидой Всемирной организации здравоохранения с целью оказания стоматологической помощи в странах с низким и средним уровнем доходов. В этих странах не лечат кариес должным образом, а зубную боль лечат путем удаления пораженного зуба.Кроме того, в этих странах обычно используются ненадежные или отсутствующие источники электропитания, а это означает, что электрические сверла и боры не могут использоваться в обычном порядке.

Для решения этих проблем было разработано и внедрено АРТ в различных странах по всему миру. ART использует ручные инструменты для удаления дентина и эмали, пораженных кариесом, после чего накладывается стеклоиономерный цемент высокой вязкости для восстановления зуба [63]. Стеклоиономерный цемент используется потому, что он адгезивный и может использоваться на поверхностях зубов, которые прошли минимальную подготовку.

Сообщалось, что АРТ является успешной, особенно при одноповерхностных поражениях. Например, в постоянных зубах после 2–3 лет реставрации классов I и V были успешны около 90% [64]. АРТ назначают детям, которые обычно с готовностью принимают лечение [62]. Этот метод оказался успешным при оказании стоматологической помощи людям, которым в противном случае оказывалась бы минимальная помощь или ее не было бы вообще, и которым в противном случае пришлось бы удалить несколько зубов [62].

15. Стеклоиономеры, модифицированные смолами

Эти материалы были представлены стоматологам в 1991 г. [65].Они содержат те же основные компоненты, что и обычные стеклоиономеры (основной стеклянный порошок, вода, поликислоты), но также включают мономерный компонент и связанную с ним систему инициатора. Мономером обычно является 2-гидроксиэтилметакрилат, HEMA (), а инициатором является камфорхинон [65]. Модифицированные смолой стеклоиономеры образуются двойными процессами нейтрализации (кислотно-основная реакция) и аддитивной полимеризации, и получаемый в результате материал имеет сложную структуру, основанную на комбинированных продуктах этих двух реакций [66].Более того, конкуренция между этими двумя реакциями формирования сети означает, что между ними существует чувствительный баланс [67]. Такое сочетание реакций схватывания может поставить под угрозу надежность затвердевшего материала, и, как следствие, строгое соблюдение рекомендаций производителя относительно продолжительности этапа облучения является важным для получения материала с оптимальными свойствами [67].

2-гидроксиэтилметакрилат (HEMA).

Стекла, используемые в стеклоиономерах, модифицированных смолой, такие же, как стекла, используемые в обычных стеклоиономерах.Кислый полимер тоже может быть таким же, хотя в некоторых материалах он модифицирован боковыми цепями, заканчивающимися ненасыщенными винильными группами. Они могут участвовать в реакции аддитивной полимеризации и образовывать ковалентные поперечные связи между полимерными цепями.

По физическим свойствам стеклоиономеры, модифицированные смолой, сравнимы со свойствами обычных стеклоиономеров [66]. Они также высвобождают фторид в двухступенчатом процессе, который идентичен таковому для обычных стеклоиономеров в том, что есть ранняя фаза вымывания, за которой следует длительная фаза, основанная на диффузии [29].Кинетическое уравнение, описывающее этот процесс, точно такое же, как и уравнение для обычных стеклоиономеров [29,30].

Подобно обычным стеклоиономерным цементам, модифицированные смолой стеклоиономеры выделяют небольшие количества натрия, алюминия, фосфата и силиката в нейтральных условиях [68] В кислых условиях выделяются большие количества, а также выделяется кальций (или стронций). [68]. Высвобождение ионов в кислых условиях связано с буферным эффектом, т.е. pH среды для хранения постепенно увеличивается с увеличением времени хранения [69].

Биосовместимость стеклоиономеров, модифицированных смолами, значительно снижена по сравнению с обычными стеклоиономерами. Это происходит из-за высвобождения мономера HEMA, который выщелачивается из модифицированных смолой стеклоиономеров в различных количествах, главным образом в первые 24 часа [70]. Высвобождаемое количество зависит от степени светового отверждения цемента [70]. HEMA может диффундировать через дентин человека [71] и цитотоксичен для клеток пульпы [72].

НЕМА из стеклоиономеров, модифицированных смолой, также может вызывать проблемы для стоматологического персонала, поскольку он является контактным аллергеном и летучим, поэтому его можно вдыхать [73].Для обеспечения безопасного использования этих материалов клиницистам рекомендуется использовать хорошо вентилируемое рабочее место и избегать вдыхания паров [74]. Им также рекомендуется обработать светом любые неиспользованные остатки материала перед утилизацией. Несмотря на эти опасения, похоже, что в литературе нет тематических исследований или сообщений о побочных реакциях пациентов или стоматологического персонала на модифицированные смолой стеклоиономеры, хотя есть некоторые неофициальные данные о развитии аллергии в последней группе.

Стеклоиономеры, модифицированные смолой, имеют такое же клиническое применение, как и обычные стеклоиономеры [75], хотя они не рекомендуются для метода ВРТ из-за необходимости использования полимеризационных ламп с электрическим приводом.Таким образом, они используются в реставрациях Класса I, Класса II и Класса III, все в основном в первичных зубных рядах, реставрациях Класса V, а также в качестве вкладышей и базисов [76]. Другие области применения включают в себя герметики фиссур [76] и связующие вещества для ортодонтических скоб [77].

16. Стекло Карбомер

®

Это новый коммерческий материал стеклоиономерного типа, который имеет повышенную биоактивность по сравнению с обычным стеклоиономерным цементом. Производится компанией GCP Dental в Нидерландах.Название «стеклянный карбомер» было принято в научной литературе [77,78], что прискорбно, потому что это торговая марка, а материал на самом деле является разновидностью стеклоиономера. Он устанавливается в результате кислотно-щелочной реакции между водной полимерной кислотой и выщелачиваемым ионами основным стеклом, хотя он также содержит вещества, которые обычно не входят в состав стеклоиономеров [79].

Это следующие компоненты:

  • Стеклянный порошок, промытый сильной кислотой, так что поверхностные слои частиц существенно обеднены кальцием [80].Следовательно, большая часть ионов кальция находится внутри частиц по направлению к сердцевине.

  • Силиконовое масло, содержащее полидиметилсилоксан, как правило, линейной структуры, который содержит гидроксильные группы. Это позволяет силиконовому маслу образовывать водородные связи с другими компонентами цемента, так что оно остается связанным в цементе после схватывания.

  • Биоактивный компонент, который также действует как вторичный наполнитель. Спектроскопия ЯМР твердого тела показала, что этот наполнитель на самом деле является гидроксиапатитом [78], и он включен для ускорения образования эмалеподобного материала на границе с зубом, как это наблюдалось ранее с обычными стеклоиономерными герметиками для фиссур.

Стекло, используемое в стеклянном карбомере, содержит стронций, а также большое количество кремния [78], а также небольшое количество кальция. В нем относительно много кремния по сравнению со стеклами, используемыми в известных марках стеклоиономеров Fuji IX и Ketac Molar, но они содержат сопоставимые количества алюминия, фосфора и фторида.

Из-за процесса кислотной промывки стекло практически не реагирует с поли (акриловой кислотой) или сополимером акриловой / малеиновой кислоты.Кроме того, силиконовое масло, включенное в стеклянный порошок, адсорбируется на поверхности стекла, что также препятствует реакции с поликислотой. В результате стеклянный карбомер легко смешивать при высоких соотношениях порошок: жидкость, и при смешивании этих двух компонентов происходит лишь небольшая реакция.

После смешивания материала его медленная реакция схватывания ускоряется за счет применения стоматологической лампы для отверждения в течение не менее 20 секунд [79]. Это не способствует фотополимеризации, а потому, что стоматологические лампы выделяют тепло.Это увеличивает температуру цемента, заставляя его схватываться за разумное время.

Стеклянные карбомеры содержат большое количество стекла по сравнению с обычными стеклоиономерами, а также гидроксиапатитовый наполнитель, так что застывший стеклянный карбомер будет очень хрупким. Чтобы преодолеть это, добавляют силиконовое масло. Как мы видели, он делает материал жестким и остается связанным в нем водородными связями.

Исследования реакции схватывания показывают, что схватывание стеклянного карбомера включает две параллельные реакции, одна с участием стекла и поликислоты, а другая — гидроксиапатита и поликислоты.Обе реакции являются кислотно-основными и приводят к матрице поликислот, сшитой ионным путем, содержащей внедренный наполнитель. Однако в этом случае наполнителем является не только стекло с обедненными ионами, но также частично прореагировавший гидроксиапатит. Полученная матрица аналогична той, которая встречается в обычном стеклоиономерном цементе, но отличается тем, что она также включает полидиметилсилоксановое масло [80].

На сегодняшний день имеются только предварительные отчеты об использовании стеклянного карбомера в клинических условиях, а долгосрочные исследования не опубликованы.Следовательно, долговечность материала во рту пациентов еще не известна.

17. Выводы

В этом обзоре на основе опубликованной литературы показано, что стеклоиономерные цементы являются универсальными кислотно-щелочными материалами, которые находят множество применений в современной стоматологии. При установке они проявляют определенную биологическую активность, которая заставляет их образовывать межфазный ионообменный слой с зубом, и это отвечает за высокую прочность их адгезии к поверхности зуба. Они выделяют фтор в течение значительных периодов времени, что обычно считается полезным, хотя доказательства в поддержку этого несколько сомнительны.

Доступны модифицированные формы стеклоиономеров в виде модифицированных смолами стеклоиономеров и стеклянного карбомера. Первые включают мономер и частично устанавливаются аддитивной полимеризацией, которая усиливает кислотно-основной процесс и может контролироваться с помощью световой активации. По физическим свойствам эти материалы сравнимы с обычными стеклоиономерами, но их биосовместимость хуже. Стеклянный карбомер оказывается более хрупким и менее прочным, чем лучшие современные стеклоиономеры.Он высвобождает фторид, и в литературе утверждается, что он был разработан с целью повышения его биологической активности [78,80], хотя до сих пор доказательства, подтверждающие это, отсутствуют.

Благодарности

Этот обзор был написан без внешнего финансирования, а расходы на публикацию были покрыты Bluefield Center for Biomaterials Co Ltd, Лондон, Великобритания.

Вклад авторов

Авторство ограничено теми, кто внес существенный вклад в работу статьи.Работа планировалась совместно J.W.N. взял на себя основное написание, а С.К.С. предоставил исправления и клиническое понимание.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Ссылки

1. Mount G.J. Цветовой атлас стеклоиономерного цемента. 2-е изд. Мартин Дуниц; Лондон, Великобритания: 2002. [Google Scholar] 2. Уилсон А.Д., Кент Б.Е. Стеклоиономерный цемент, новый светопрозрачный цемент для стоматологии. J. Appl. Chem. Biotechnol. 1971; 21: 313. DOI: 10.1002 / jctb.5020211101. [CrossRef] [Google Scholar] 3. ISO 9917–1: Цементы на водной основе для стоматологии. Международная Организация Стандартизации; Женева, Швейцария: 2003. [Google Scholar] 4. Маклин Дж. У., Николсон Дж., Уилсон А. Д. Гостевая редакция: Предлагаемая номенклатура стеклоиономерных стоматологических цементов и родственных материалов. Quintessence Int. 1994; 25: 587–589. [PubMed] [Google Scholar] 5. Эллис Дж., Уилсон А.Д. Полифосфонатные цементы: новый класс стоматологических материалов. J. Mater. Sci. Lett. 1990; 9: 1058–1060. DOI: 10.1007 / BF00727876. [CrossRef] [Google Scholar] 6. Николсон Дж. Стеклоиономерные цементы для клинической стоматологии. Матер. Technol. 2010; 25: 8–13. DOI: 10,1179 / 175355509X12614966220506. [CrossRef] [Google Scholar] 7. Крисп С., Кент Б.Е., Льюис Б.Г., Фернер А.Дж., Уилсон А.Д. Составы стеклоиономерного цемента. II. Синтез новых поликарбоновых кислот. J. Dent. Res. 1980; 59: 1055–1063. DOI: 10.1177 / 002203458005

801. [PubMed] [CrossRef] [Google Scholar] 8. Фарид М.А., Стамбулис А. Добавка наноглины к обычным стеклоиономерным цементам: влияние на свойства.Евро. Вмятина. J. 2014; 8: 456–463. DOI: 10.4103 / 1305-7456.143619. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 9. Николсон Дж. Химия стеклоиономерных цементов: обзор. Биоматериалы. 1998. 6: 485–494. DOI: 10.1016 / S0142-9612 (97) 00128-2. [PubMed] [CrossRef] [Google Scholar] 10. Хилл Р.Г., Уилсон А.Д. Некоторые структурные аспекты стекол, используемых в иономерных цементах. Glass Technol. 1988. 29: 150–188. [Google Scholar] 11. Стеббинс Дж. Ф., Крукер С., Ли С. К., Киченски Т. Дж. Количественное определение пяти- и шестикоординированных ионов алюминия в алюмосиликатных и фторидсодержащих стеклах с помощью высокопольного ЯМР высокого разрешения Al-27.J. Non-Cryst. Твердые тела. 2000. 275: 1–6. DOI: 10.1016 / S0022-3093 (00) 00270-2. [CrossRef] [Google Scholar] 12. Стамбулис А., Хилл Р.Г., Ло Р.В. Структурная характеристика фторсодержащих стекол методами MAS-ЯМР спектроскопии F-19, Al-27, Si-29 и P-31. J. Non-Cryst. Твердые тела. 2005; 351: 3289–3295. DOI: 10.1016 / j.jnoncrysol.2005.07.029. [CrossRef] [Google Scholar] 13. Хилл Р.Г., Стамбулис А., Ло Р.В. Определение характеристик фторсодержащих стекол методами MAS-ЯМР спектроскопии F-19, Al-27, Si-29 и P-31. Дж.Вмятина. 2006; 34: 525–534. DOI: 10.1016 / j.jdent.2005.08.005. [PubMed] [CrossRef] [Google Scholar] 14. Шахид С., Хассан У., Биллингтон Р.В., Хилл Р.Г., Андерсон П. Стеклоиономерные цементы: влияние замещения стронция на эстетику, рентгеноконтрастность и высвобождение фторидов. Вмятина. Матер. 2014; 30: 308–313. DOI: 10.1016 / j.dental.2013.12.003. [PubMed] [CrossRef] [Google Scholar] 15. Крисп С., Льюис Б.Г., Уилсон А.Д. Характеристика стеклоиономерных цементов. 5. Влияние винной кислоты на жидкий компонент. J. Dent.1979; 7: 304–305. DOI: 10.1016 / 0300-5712 (79) -X. [PubMed] [CrossRef] [Google Scholar] 16. Поттс П.Дж. Справочник по анализу силикатных пород. Блэки и сын; Глазго, Лондон, Великобритания: 1987. [Google Scholar] 17. Николсон Дж. У., Брукман П. Дж., Лейси О. М., Уилсон А. Д. Влияние (+) — винной кислоты на схватывание стеклоиономерных стоматологических цементов. J. Dent. Res. 1988. 67: 1451–1454. DOI: 10.1177 / 00220345880670120201. [PubMed] [CrossRef] [Google Scholar] 18. Крисп С., Прингер М.А., Уордлворт Д., Уилсон А.Д.Реакции в стеклоиономерных цементах. II. Инфракрасное спектроскопическое исследование. J. Dent. Res. 1974; 53: 1414–1419. DOI: 10.1177 / 00220345740530062001. [PubMed] [CrossRef] [Google Scholar] 19. Пирес Р., Нунес Т.Г., Абрахамс И., Хоукс Г.Э., Мораис К.М., Фернандес С. Исследования методом визуализации рассеянного поля и многоядерной магниторезонансной спектроскопии на установке промышленного стеклоиономерного цемента. J. Mater. Sci. Матер. Med. 2004. 15: 201–208. DOI: 10.1023 / B: JMSM.0000015479.65516.d0. [PubMed] [CrossRef] [Google Scholar] 20.Зайнуддин Н., Карпухина Н., Хилл Р.Г., Ло Р.В. Долгосрочное исследование реакции схватывания стеклоиономерных цементов методом MAS-ЯМР спектроскопии 27 Al. Вмятина. Матер. 2009. 25: 290–295. DOI: 10.1016 / j.dental.2008.07.008. [PubMed] [CrossRef] [Google Scholar] 21. Уоссон Э.А., Николсон Дж. У. Новые аспекты схватывания стеклоиономерных цементов. J. Dent. Res. 1993. 72: 481–483. DOI: 10.1177 / 00220345930720020201. [PubMed] [CrossRef] [Google Scholar] 22. Шахид С., Биллингтон Р.В., Пирсон Г.Дж. Роль состава стекла в стеклоуксусных и молочнокислых цементах.J. Mater. Sci. Матер. Med. 2008; 19: 541–545. DOI: 10.1007 / s10856-007-0160-z. [PubMed] [CrossRef] [Google Scholar] 23. Чарнецка Б., Клос Дж., Николсон Дж. В. Влияние ионных растворов на поглощение и связывание воды стеклоиономерными стоматологическими цементами. Ceram. Силик. 2015; 59: 292–297. [Google Scholar] 24. Таджиев Д., Хэнд Р.Дж. Гидратация поверхности и наноиндентирование силикатных стекол. J. Non-Cryst. Твердые тела. 2010; 356: 102–108. DOI: 10.1016 / j.jnoncrysol.2009.10.005. [CrossRef] [Google Scholar] 25.Эрл М.С.А., Маунт Дж. Дж., Хьюм В. Р. Влияние лаков и других средств обработки поверхности на движение воды по поверхности стеклоиономерного цемента. II. Aust. Вмятина. J. 1989; 34: 326–329. DOI: 10.1111 / j.1834-7819.1989.tb04641.x. [PubMed] [CrossRef] [Google Scholar] 26. Хиггс В.Дж., Лаксанасомбул П., Хиггс Р.Дж.Д., Суэйн М.В. Оценка прочности акрилового и стеклоиономерного цемента с помощью испытания на двухосный изгиб. Биоматериалы. 2001; 22: 1583–1590. DOI: 10.1016 / S0142-9612 (00) 00324-0. [PubMed] [CrossRef] [Google Scholar] 27.Маунт Дж. Дж., Макинсон О. Ф., Питерс М. К. Р. Б. Прочность автоотверждаемых и светоотверждаемых материалов. Испытание на удар сдвигом. Aust. Вмятина. J. 1996; 41: 118–123. DOI: 10.1111 / j.1834-7819.1996.tb05924.x. [PubMed] [CrossRef] [Google Scholar] 28. Форстен Л. Кратковременное и долгосрочное выделение фторида из стеклоиономеров. Сканд. J. Dent. Res. 1991; 99: 241–245. [PubMed] [Google Scholar] 29. Де Витте А.М., Де Майер Э.А., Вербек Р.М.Х., Мартенс Л.С. Профили высвобождения фторидов зрелых реставрационных стеклоиономерных цементов после нанесения фтора.Биоматериалы. 2000. 21: 475–482. DOI: 10.1016 / S0142-9612 (99) 00188-X. [PubMed] [CrossRef] [Google Scholar] 30. Де Моор Р.Г.Дж., Вербек Р.М.Х., Де Мейер Э.А.П. Профили высвобождения фторидов из реставрационных стеклоиономерных составов. Вмятина. Матер. 1996; 12: 88–95. DOI: 10.1016 / S0109-5641 (96) 80074-1. [PubMed] [CrossRef] [Google Scholar] 31. Николсон Дж. У., Чарнецка Б., Лимановска-Шоу Х. Длительное взаимодействие стоматологических цементов с растворами молочной кислоты. J. Mater. Sci. Матер. Med. 1999; 10: 449–452. DOI: 10.1023 / А: 10089909. [PubMed] [CrossRef] [Google Scholar] 32. Джексон Г. Существование AlF 4 в водном растворе и его отношение к реакции фосфорилазы. Неорг. Chem. Acta. 1988. 151: 273–276. DOI: 10.1016 / S0020-1693 (00) -0. [CrossRef] [Google Scholar] 33. Наг Г., Надь Л. Глава 6, Галогены. В: Ноллет Л.М.Л., редактор. Справочник по анализу воды. 2-е изд. CRC Press; Бак Ратон, Флорида, США: 2007. С. 157–200. [Google Scholar] 34. Льюис С.М., Коулман Н.Дж., Бут С.Э., Николсон Дж.W. Взаимодействие комплексов фторида алюминия, полученных из стеклоиономерных цементов, с гидроксиапатитом. Ceram. Силик. 2013; 57: 196–200. [Google Scholar] 35. Фезерстон Дж.Д. Профилактика и лечение кариеса зубов: роль низкоуровневого фторида. Comm. Вмятина. Oral Epidemiol. 1999; 27: 31–40. DOI: 10.1111 / j.1600-0528.1999.tb01989.x. [PubMed] [CrossRef] [Google Scholar] 36. Hicks J., Garcia-Gody F., Flaitz C. Биологические факторы кариеса зубов: роль реминерализации и фторида в динамическом процессе деминерализации и реминерализации (часть 3) Дж.Clin. Педиатр. Вмятина. 2004. 28: 203–214. DOI: 10.17796 / jcpd.28.3.w0610427l746j34n. [PubMed] [CrossRef] [Google Scholar] 37. Hsu H., Huang G., Chang H., Hang Y., Guo M. Система непрерывного потока для оценки высвобождения / поглощения фторида реставрационными материалами, содержащими фтор. Вмятина. Матер. 2004. 20: 740–749. DOI: 10.1016 / j.dental.2003.10.008. [PubMed] [CrossRef] [Google Scholar] 38. Эль Маллак Б.Ф., Саркер Н.К. Выделение фторидов из стеклоиономерных цементов в деионизированной воде и искусственной слюне. Вмятина. Матер.1990; 6: 118–122. DOI: 10.1016 / S0109-5641 (05) 80041-7. [PubMed] [CrossRef] [Google Scholar] 39. Walls A.W.G. Стеклополиалкеноатные (стеклоиономерные) цементы: обзор. J. Dent. 1986; 14: 231–246. DOI: 10.1016 / 0300-5712 (86)

-8. [PubMed] [CrossRef] [Google Scholar] 40. Creanor S.L., Carruthers L.M.C., Saunders W.P., Strang R., Foye R.H. Характеристики поглощения и высвобождения фторидов стеклоиономерными цементами. Caries Res. 1994; 28: 322–328. DOI: 10,1159 / 000261996. [PubMed] [CrossRef] [Google Scholar] 41. Гао В., Смалес Р.J. Высвобождение / поглощение фторидов из обычных и модифицированных смолами стеклоиономеров и компомеров. J. Dent. 2001; 29: 301–306. DOI: 10.1016 / S0300-5712 (00) 00053-1. [PubMed] [CrossRef] [Google Scholar] 42. Биллингтон Р.В., Хэдли П.С., Таулер М.Р., Пирсон Дж. Дж., Уильямс Дж. А. Влияние добавления ионов натрия и фторида к стеклоиономеру на его взаимодействие с раствором фторида натрия. Биоматериалы. 2000. 21: 377–383. DOI: 10.1016 / S0142-9612 (99) 00199-4. [PubMed] [CrossRef] [Google Scholar] 43. Чарнецкая Б., Николсон Дж.W. Созревание влияет на поглощение фторидов стеклоиономерными стоматологическими цементами. Вмятина. Матер. 2012; 28: e1 – e5. [PubMed] [Google Scholar] 44. Арбабзадек-Заваре Ф., Гиббс Т., Мейерс И.А., Бузари М., Мортазави С., Уолш Л.Дж. Схема перезарядки современных стеклоиономерных реставрационных материалов. Вмятина. Res. Дж. (Исфахан) 2012; 9: 139–145. DOI: 10.4103 / 1735-3327.95226. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 45. Маклин Дж. У., Уилсон А. Д. Герметизация и заполнение трещин клеевым стеклоиономерным цементом. Брит. Вмятина.J. 1974; 136: 269–276. DOI: 10.1038 / sj.bdj.4803174. [PubMed] [CrossRef] [Google Scholar] 46. Perondi P.R., Oliveira P.H.C., Cassoni A., Reis A.F., Rodrigues J.A. Предел прочности и микротвердости стеклоиономерных материалов. Braz. Вмятина. Sci. 2014; 17: 16–22. DOI: 10.14295 / bds.2014.v17i1.949. [CrossRef] [Google Scholar] 47. Powis D.R., Folleras T., Merson S.A., Wilson A.D. Улучшенная адгезия стеклоиономерного цемента к дентину и эмали. J. Dent. Res. 1982; 61: 1416–1422. DOI: 10.1177 / 00220345820610120801.[PubMed] [CrossRef] [Google Scholar] 48. Wilson A.D. Алюмо-силикатный цемент на основе полиакриловой кислоты. Брит. Polym. J. 1974; 6: 165–179. DOI: 10.1002 / pi.4980060303. [CrossRef] [Google Scholar] 49. Hien-Chi N., Mount G., McIntyre J., Tuisuva J., Von Doussa R.J. Химический обмен между стеклоиономерными реставрациями и остаточным кариозным дентином в постоянных молярах: исследование in vivo. J. Dent. 2006. 34: 608–613. [PubMed] [Google Scholar] 50. Бук Д. Улучшение адгезии полиакрилатных цементов к человеческому дентину.Брит. Вмятина. J. 1973; 135: 442–445. DOI: 10.1038 / sj.bdj.4803103. [PubMed] [CrossRef] [Google Scholar] 51. Ван Мирбек Б., Йошида Ю., Иноуэ С., Де Мунк Дж., Ван Ландуйт К., Ламбрехтс П. Адгезия стекло-иономера: механизмы на границе раздела. J. Dent. 2006; 34: 615–617. [Google Scholar] 52. Фукада Р., Йошида Ю., Накаяма Ю., Окадзаки М., Иноуэ С., Сано Х., Шинтани Х., Снауверт Дж., Ван Мербик Б. Эффективность связывания полиакеновых кислот с гидроксиапатитом, эмалью и дентином. Биоматериалы. 2003; 24: 1861–1867.DOI: 10.1016 / S0142-9612 (02) 00575-6. [PubMed] [CrossRef] [Google Scholar] 53. Йошида Ю., Ван Мирбек Б., Накаяма Ю., Снауварт Дж., Хеллманс Л., Ламбрехтс П., Ванхерле Г., Вакаса К. Доказательства химической связи на границах раздела биоматериал-твердая ткань. J. Dent. Res. 2000. 79: 709–714. DOI: 10.1177 / 002203450007301. [PubMed] [CrossRef] [Google Scholar] 54. Нго Х. Г., Маунт Дж. Дж., Питерс М. К. Р. Б. Исследование стеклоиономерного цемента и его границы раздела с эмалью и дентином с использованием низкотемпературной сканирующей электронной микроскопии с высоким разрешением.Quintessence Int. 1997. 28: 63–69. [PubMed] [Google Scholar] 55. Цю З.-Й., Но И.-С., Чжан С.-М. Силикатный гидроксиапатит и его стимулирующее действие на минерализацию костей. Передний. Матер. Sci. 2013; 7: 40–50. DOI: 10.1007 / s11706-013-0193-9. [CrossRef] [Google Scholar] 56. Окада К., Тосаки С., Хирота К., Хьюм В.Р. Изменение твердости поверхности реставрационных пломбировочных материалов, хранящихся в слюне. Вмятина. Матер. 2001; 17: 34–39. DOI: 10.1016 / S0109-5641 (00) 00053-1. [PubMed] [CrossRef] [Google Scholar] 57. Ван Дуинен Р.Н.Б., Дэвидсон К.Л., де Джи А., Фейлцер А.Дж. Превращение стеклоиономера в эмалеподобный материал in situ. Являюсь. J. Dent. 2004. 17: 223–227. [PubMed] [Google Scholar] 58. Микенауч С., Маунт Дж. Дж., Йенгопал В. Терапевтический эффект стеклоиономеров: обзор доказательств. Aust. Вмятина. J. 2011; 56: 10–15. DOI: 10.1111 / j.1834-7819.2010.01304.x. [PubMed] [CrossRef] [Google Scholar] 59. Вайнтрауб Дж. А. Эффективность герметиков для ямок и фиссур. J. Public Health Dent. 1989; 49: 317–330. DOI: 10.1111 / j.1752-7325.1989.tb02090.x. [PubMed] [CrossRef] [Google Scholar] 60. Керванто-Сеппала С., Лавониус Э., Пиетила И., Питканиеми Дж., Меуман Дж. Х., Керосуо Э. Сравнение профилактического эффекта от кариеса двух методов герметизации фиссур в здравоохранении: однократное нанесение стеклоиономера и стандартной смолы -программа герметика. Рандомизированное клиническое исследование с разделенным ртом. Int. J. Paediatr. Вмятина. 2008; 18: 56–61. [PubMed] [Google Scholar] 61. Йенгопал В., Микенауиш С., Безерра А.С., Леал С.С. Профилактика кариеса стеклоиономерных герметиков на основе смол для фиссур на постоянные зубы: метаанализ.J. Oral Sci. 2009. 51: 373–382. DOI: 10.2334 / josnusd.51.373. [PubMed] [CrossRef] [Google Scholar] 62. Frencken J.E., Leal S.C., Navarro M.F. Подход к атравматическому восстановительному лечению (АРТ) в течение двадцати пяти лет: всесторонний обзор. Clin. Орал Инвест. 2012; 16: 1337–1346. DOI: 10.1007 / s00784-012-0783-4. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 63. Frencken J.E. Подход ART с использованием стеклоиономеров в отношении глобального ухода за полостью рта. Вмятина. Матер. 2010; 26: 1–6. DOI: 10.1016 / j.dental.2009.08.013. [PubMed] [CrossRef] [Google Scholar] 64. Smales R.J., Yip H.K. Атравматическое восстановительное лечение (ВРТ) для лечения кариеса зубов. Quintessence Int. 2002. 33: 427–432. [PubMed] [Google Scholar] 65. Митра С. Адгезия к дентину и физические свойства светоотверждаемого стеклоиономерного лайнера / основы. J. Dent. Res. 1991; 70: 72–74. DOI: 10.1177 / 002203450011201. [PubMed] [CrossRef] [Google Scholar] 66. Берзиньш Д.В., Эбей С., Костач М.С., Уилки К.А., Робертс Х.В. Конкуренция реакции схватывания стеклоиономера, модифицированного смолой.J. Dent. Res. 2010; 89: 82–86. DOI: 10.1177 / 0022034509355919. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 67. Еламанчили А., Дарвелл Б.В. Сетевая конкуренция в стеклоиономерном цементе, модифицированном смолой. Вмятина. Матер. 2008. 24: 1065–1069. DOI: 10.1016 / j.dental.2007.12.005. [PubMed] [CrossRef] [Google Scholar] 68. Форсс Х. Высвобождение фторидов и других элементов из стеклоиономеров светового отверждения в нейтральных и кислых условиях. J. Dent. Res. 1993; 72: 1257–1262. DOI: 10.1177 / 00220345930720081601. [PubMed] [CrossRef] [Google Scholar] 69.Чарнецка Б., Николсон Дж. В. Высвобождение ионов модифицированными смолами стеклоиономерными цементами в воду и растворы молочной кислоты. J. Dent. 2006; 34: 539–543. DOI: 10.1016 / j.jdent.2005.08.007. [PubMed] [CrossRef] [Google Scholar] 70. Палмер Г., Анстис Х.М., Пирсон Г.Дж. Влияние режима отверждения на высвобождение гидроксэтилметацилата (ГЭМА) из модифицированных смолой стеклоиономерных цементов. J. Dent. 1999. 27: 303–311. DOI: 10.1016 / S0300-5712 (98) 00058-X. [PubMed] [CrossRef] [Google Scholar] 71. Хамид А., Хьюм В.Р. Диффузия мономеров смолы через кариозный дентин человека in vitro.Эндод. Вмятина. Traumatol. 1997; 13: 1–5. DOI: 10.1111 / j.1600-9657.1997.tb00001.x. [PubMed] [CrossRef] [Google Scholar] 72. Кан К.С., Мессер Л.Б., Мессер Х.Х. Изменчивость цитотоксичности и выделения фторидов стеклоиономерных цементов, модифицированных смолой. J. Dent. Res. 1997. 76: 1502–1507. DOI: 10.1177 / 00220345970760081301. [PubMed] [CrossRef] [Google Scholar] 73. Канерва Л., Йоланки Р., Лейно Т., Эстландер Т. Профессиональный аллергический контактный дерматит от 2-гидроксэтилметакрилата и диметакрилата этиленгликоля в модифицированном акриловом структурном адгезиве.Свяжитесь с Dermat. 1995; 33: 84–89. DOI: 10.1111 / j.1600-0536.1995.tb00506.x. [PubMed] [CrossRef] [Google Scholar] 74. Николсон Дж. В., Чарнецка Б. Биосовместимость модифицированных смолами стеклоиономерных цементов для стоматологии. Вмятина. Матер. 2008. 24: 1702–1708. DOI: 10.1016 / j.dental.2008.04.005. [PubMed] [CrossRef] [Google Scholar] 75. Сидху С.К. Клиническая оценка реставраций из стеклоиономерного полимера. Вмятина. Матер. 2010; 26: 7–12. DOI: 10.1016 / j.dental.2009.08.015. [PubMed] [CrossRef] [Google Scholar] 76.Smales R.J., Wong K.C. Двухлетние клинические испытания стеклоиономерного герметика, модифицированного смолой. Являюсь. J. Dent. 1999; 12: 62–64. [PubMed] [Google Scholar] 77. Pameijer C.H. Удержание коронки с помощью трех стеклоиономерных цементов, модифицированных смолой. Варенье. Вмятина. Доц. 2012; 143: 1218–1222. DOI: 10.14219 / jada.archive.2012.0067. [PubMed] [CrossRef] [Google Scholar] 78. Зайнуддин Н., Карпухина Н., Хилл Р.Г., Ло Р.В. Определение характеристик реминерализующего иономерного цемента Glass Carbomer ® методом MAS-ЯМР-спектроскопии.Вмятина. Матер. 2012; 28: 1051–1058. [PubMed] [Google Scholar] 79. Чехрели С.Б., Тирали Р.Э., Ялчинкава З., Чехрели З.С. Микроподтекание недавно разработанного стеклянного карбомерного цемента в молочных зубах. Евро. J. Dent. 2013; 7: 15–21. [Бесплатная статья PMC] [PubMed] [Google Scholar]

80. Van Duinen W., Van Duinen R.N. Самозатвердевающий стекломерный карбомерный состав. 20060217455 A1. Патент США. 2004

Натриево-известковое стекло — обзор

9 Common Glass Systems

Основными стеклообразователями в промышленных оксидных стеклах являются кремнезем (SiO 2 ), оксид бора (B 2 O 3 ) и фосфор пентоксид (P 2 O 5 ), все из которых легко образуют однокомпонентные стекла (Shelby and Lopes, 2005).Из них, кроме диоксида кремния, только оксид бора имеет некоторое коммерческое значение и только при смешивании с диоксидом кремния. Кремнезем является наиболее важным стеклообразователем, а силикатные стекла составляют более 95% промышленного производства стекла (Zarzycki, 1991). Стекло на основе диоксида кремния технически важно из-за его превосходной химической стойкости (за исключением HF и щелочей) и небольшого коэффициента расширения, что делает его очень хорошим кандидатом на устойчивость к тепловому удару (Zarzycki, 1991). Стекло можно разделить на разные группы в зависимости от его предполагаемого использования или химического состава.В следующих разделах описаны наиболее распространенные типы стекла в зависимости от их химического состава.

9.1 Натриево-известковое стекло или товарное стекло

Натриево-известковое стекло является наиболее распространенным товарным стеклом. Это сравнительно недорого и поддается переработке. Типичный состав этого стекла: 70–75 мас.% SiO 2 , 12–16 мас.% Na 2 O и 10–15 мас.% CaO (Bauccio, 1994; Pfaender, 1996). Небольшой процент других реагентов может быть добавлен для определенных свойств и требований применения.Основной добавкой в ​​стекло этого типа, кроме кремнезема (SiO 2 ), является оксид натрия или сода (Na 2 O). Несмотря на то, что оксид натрия содержит атомы кислорода, он удерживается вместе ионными, а не ковалентными связями. Атомы натрия в смеси отдают электроны атому кислорода, образуя смесь отрицательно заряженных ионов кислорода и положительно заряженных ионов натрия. Атом кислорода с дополнительным электроном связывается с одним атомом кремния и не образует мостик между парами атомов кремния.Поэтому температура плавления смеси значительно снижается (Bloomfield, 2001). Относительно высокое содержание щелочи в стекле также вызывает увеличение коэффициента теплового расширения примерно в 20 раз (Pfaender, 1996). Поскольку ионы натрия хорошо растворимы в водном растворе, в смесь добавляют оксид кальция (CaO), чтобы улучшить ее нерастворимость. Натриевое стекло производится в больших масштабах и используется для изготовления бутылок, стаканов и окон. Его светопропускающие свойства, а также низкая температура плавления делают его пригодным для использования в качестве оконного стекла.Его гладкая и нереактивная поверхность делает его отличным контейнером для еды и напитков. В настоящее время переработанное стекло, также известное как стеклобой, используется для производства зеленого стекла, что помогает экономить энергию и сокращать выбросы.

9.2 Свинцовое стекло

Свинцовое стекло аналогично натронно-известковому стеклу, в котором известь заменена большей частью оксида свинца (PbO). Свинцовое стекло обычно содержит 55–65 мас.% SiO 2 , 18–38 мас.% PbO и 13–15 мас.% Na 2 O или K 2 O (Bauccio, 1994; Pfaender, 1996).Свинцовое стекло обычно используют для изготовления декоративной посуды. Он также входит в состав специальных оптических очков из-за их высокого показателя преломления. Сети в свинцовом стекле более полные, чем в натриево-известковом стекле, поэтому они прочнее и имеют меньшее внутреннее трение (Bloomfield, 2001). Оксид свинца также делает стекло плотным, твердым, поглощающим рентгеновские лучи и, следовательно, подходящим для использования в защите от излучения.

9.3 Алюмосиликатное стекло

Алюмосиликатное стекло обычно получают из тройной системы с типичным составом 52–58 мас.% SiO 2 , 15–25 мас.% Al 2 O 3 и 4–18 мас. % CaO (Бауччо, 1994).Обладая низким тепловым расширением и высокой температурой размягчения, это стекло лучше переносит высокие температуры, чем натриево-известковое стекло, и используется в термометрах, трубах для сжигания, кухонной посуде, галогенных лампах, печах и изоляции из стекловолокна.

9.4 Боросиликатное стекло

Боросиликатное стекло содержит значительные количества кремнезема (SiO 2 ) и оксида бора (B 2 O 3 > 8%) в качестве стекловолоконных сеткообразователей и обычно состоит из 70–80 мас. % SiO 2 , 7–13 мас.% B 2 O 3 4–8 мас.% Na 2 O или K 2 O и 2–8 мас.% Al 2 O 3 (Bauccio, 1994; Pfaender, 1996).Стекло, содержащее 7–13 мас.% B 2 O 3 , известно как боросиликатное стекло с низким содержанием бората и в основном используется для производства химических аппаратов, ламп и колпаков для трубок. Стекла, содержащие 15–25% B 2 O 3 , известны как высокоборатные боросиликатные стекла. Высокоборатное боросиликатное стекло также известно как выщелачиваемое щелочно-боросиликатное стекло с оптимальным составом 62,7 мас.% SiO 2 , 26,9 мас.% B 2 O 3 , 6,6 мас.% Na 2 O и 3.5 мас.% Al 2 O 3 (Elmer, 1992). Это стекло может быть дополнительно обработано для производства стекла с контролируемыми порами (CPG), которое широко используется в качестве стационарной среды в хроматографии, или, альтернативно, поры могут быть закрыты, чтобы получить прозрачное непроницаемое стекло, известное как Vycor 96% -ное кварцевое стекло, обычно используемое. в посуде. Увеличение содержания B 2 O 3 в сочетании с очень мелкомасштабным разделением вторичных фаз внутри кремнеземной фазы увеличивает химическую стойкость, и в этом аспекте высокоборатное боросиликатное стекло сильно отличается от низкоборатного.

Изменение стекла в атмосферных условиях: пересечение перспектив культурного наследия, стекольной промышленности и обращения с ядерными отходами

  • 1.

    Куницки-Голдфингер, Дж. Дж. Нестабильное историческое стекло: симптомы, причины, механизмы и сохранение. Rev. Консерв. 9 , 47–60 (2008).

    CAS Google ученый

  • 2.

    Werme, L. et al. Химическая коррозия высокорадиоактивных боросиликатных ядерных отходов стекла в условиях моделирования хранилища. J. Mater. Res. 5 , 1130–1146 (1990).

    CAS Google ученый

  • 3.

    Bates, J. K. et al. Боросиликатное стекло с высокоактивными отходами: сборник коррозионных характеристик. Vol. 1. DOE-EM-0177 (1994).

  • 4.

    Орган, Р. М. Надежное хранение нестабильного стекла. Mus. J. 56 , 255–272 (1957).

    Google ученый

  • 5.

    Brill, R.H. Crizzling — проблема консервации стекла. Шпилька. Консерв. 20 , 121–134 (1975).

    Google ученый

  • 6.

    Бейтс, Дж. К., Зейтц, М. Г. и Штейндлер, М. Дж. Значение парофазного гидратационного старения для изоляции ядерных отходов. Nucl. Chem. Управление отходами 5 , 63–73 (1984).

    CAS Google ученый

  • 7.

    Годрон, Y. Bibliographie raisonnée de l’attaque, par les members atmosphériques, des verres utilisés dans le bâtiment. Verres Réfract. 30 , 495–650 (1976).

    CAS Google ученый

  • 8.

    Bates, J. K. et al. Высокоактивные отходы боросиликатного стекла: сборник коррозионных характеристик . Vol. 2. DOE-EM-0177 (1994).

  • 9.

    Frugier, P. et al. Кинетика растворения ядерного стекла SON68: текущее состояние знаний и основы новой модели GRAAL. J. Nucl. Матер. 380 , 8–21 (2008).

    CAS Google ученый

  • 10.

    Стерпенич, Дж. И Либурель, Г. Использование витражей для понимания долговечности матриц токсичных отходов. Chem. Геол. 174 , 181–193 (2001).

    CAS Google ученый

  • 11.

    Verney-Carron, A., Gin, S. & Libourel, G. Расколотый римский стеклянный блок, измененный в течение 1800 лет в морской воде: аналогия с ядерными отходами стекла в глубоком геологическом хранилище. Геохим. Космохим. Acta 72 , 5372–5385 (2008).

    CAS Google ученый

  • 12.

    Шопине, М. Х. и Лехеде, П. Les problèmes d’altération rencontrés sur des verres Industriels. Verre 16 , 20–27 (2010).

    CAS Google ученый

  • 13.

    Коллективная книга. Стеклянные атмосферные изменения — культурное наследие, промышленные и ядерные стекла .(Германн, 2019).

  • 14.

    Кобо дель Арко, Б. Обзор национальных музеев коллекции стекла Шотландии. в Сохранение стекла и керамики (изд. Теннент, Н. Х.) 229–238 (Джеймс и Джеймс, 1999).

  • 15.

    Окли, В. Ухудшение состояния стекла в сосуде в музее Виктории и Альберта: осмотр коллекции. Консерв 14 , 30–36 (1990).

    Google ученый

  • 16.

    Илифф, К. Дж. И Ньютон, Р. Г. Использование треугольных диаграмм для понимания поведения средневековых очков. Verres Refract. 30 , 30–34 (1976).

    CAS Google ученый

  • 17.

    Родригес, А., Фирн, С. и Виларигес, М. Исторические изменения поверхности силикатного стекла, богатого калием: поведение матриц с высоким содержанием кремнезема. Коррос. Sci. 145 , 249–261 (2018).

    CAS Google ученый

  • 18.

    Родригес, А., Фирн, С., Паломар, Т. и Виларигес, М. Ранние стадии изменения поверхности силикатного стекла, богатого содой, в музейной среде. Коррос. Sci. 143 , 362–375 (2018).

    CAS Google ученый

  • 19.

    Рёмих, Х., Виттштадт, К. и Маас-Дигелер, Г. Ускоренное выветривание и долгосрочные эксперименты — выводы для превентивной консервации стеклянных предметов. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Alloteau, F., Lehuédé, P., Majérus, O. & Caurant, D.) 25–35 (Hermann, 2019).

  • 20.

    Виттштадт, К., Маас-Дигелер, Г., Хиллер-Кениг, В. и Гриб, Х. Криззлинг — изучение деградации и моделирования на модельных стеклах. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Аллото, Ф., Лехеде, П., Мажерус, О. и Коран, Д.) 185–195 (Герман, 2019).

  • 21.

    Кооб С. П. Сохранение и уход за стеклянными предметами .(Публикации архетипа, 2006).

  • 22.

    Biron, I. Le matériau verre et les objets du patrimoine. Origine et manifestation des problèmes rencontrés. в Conservation, Restauration du Verre. Actualité et Problématiques Muséales — Trélon 28 сентября 2007 г. 13–23 (Écomusée de l’Avesnois, 2007).

  • 23.

    Гентаз, Л., Ломбардо, Т., Чабас, А., Луазель, К., Верни-Каррон, А. Воздействие неокристаллизации на SiO 2 –K 2 O – CaO стекло разложение из-за атмосферных сухих отложений. Атмос. Environ. 55 , 459–466 (2012).

    CAS Google ученый

  • 24.

    Verità, M. Древнее стекло и современное стекло: длительное и краткосрочное выветривание стекла. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Аллото, Ф., Лехеде, П., Мажерус, О. и Коран, Д.) 73–80 (Герман, 2019).

  • 25.

    Байи, М. Ла реставрация дю верр: Билан и др. Перспектива.в Conservation, Restauration du Verre. Actualité et Problématiques Muséales — Trélon 28 сентября 2007 г. (изд. Écomusée de l’Avesnois) 59–68 (2007).

  • 26.

    Кооб С.П. Атмосферные условия, способствующие или препятствующие повреждению стеклянных предметов. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Аллото, Ф., Лехеде, П., Мажерус, О. и Коран, Д.) 169–174 (Герман, 2019).

  • 27.

    Беллендорф, П.и другие. Археологическое стекло: поверхность и не только. Сохранение стекла и керамики 2010: Промежуточное заседание рабочей группы ICOM-CC, 3–6 октября 2010 г., Корнинг, Нью-Йорк, США 137–144 (2010).

  • 28.

    Джексон, К. М., Гринфилд, Д. и Хоуи, Л. А. Оценка изменений состава и морфологии модельных археологических стекол в кислотной матрице погребения. Археометрия 54 , 489–507 (2012).

    CAS Google ученый

  • 29.

    Барбе, Ф. и Ле Ру, Ж. Презентация и консервация коллекции химически нестабильных лиможских расписных эмалей в Лувре. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Аллото, Ф., Лехеде, П., Мажерус, О. и Коран, Д.) 111–117 (Герман, 2019).

  • 30.

    Робине, Л. Роль органических загрязнителей в изменении исторических натриево-силикатных стекол. Кандидатская диссертация (Эдинбургский университет, 2006 г.).

  • 31.

    Робине, Л., Холл, К., Еремин, К., Фирн, С., Тейт, Дж. Изменение содово-силикатных стекол органическими загрязнителями в музеях: механизмы и кинетика. J. Non Cryst. Твердые тела 355 , 1479–1488 (2009).

    CAS Google ученый

  • 32.

    Дэвисон С. и Ньютон Р. Г. Сохранение и восстановление стекла . (Elservier, 2003).

  • 33.

    Кооб, С.П. Очки Гриззлинга: проблемы и решения. Eur. J. Glas. Sci. Technol. А 53 , 225–227 (2012).

    CAS Google ученый

  • 34.

    Dal Bianco, B. et al. Исследование золь-гель кремнеземных покрытий для защиты старинного стекла: взаимодействие с поверхностью стекла и эффективность защиты. J. Non-Cryst. Твердые тела 354 , 2983–2992 (2008).

    CAS Google ученый

  • 35.

    Кармона, Н., Виллегас, М. А. и Фернандес Наварро, Дж. М. Золь – гелевые покрытия в системе ZrO 2 –SiO 2 для защиты исторических произведений из стекла. Тонкие твердые пленки 515 , 1320–1326 (2006).

    CAS Google ученый

  • 36.

    Ньютон, Р. Г. и Седдон, А. Органические покрытия для средневекового стекла. in The Conservation of Glass and Ceramics (ed. Tennent, N.H.) 66–71 (James & James, 1999).

  • 37.

    Де Ферри, Л., Лоттичи, П. П., Лоренци, А., Монтенеро, А. и Веццалини, Г. Гибридные золь – гелевые покрытия для защиты исторического оконного стекла. J. Sol. Gel Sci. Technol. 66 , 253–263 (2013).

    CAS Google ученый

  • 38.

    Рихтер Р. Оценка и переоценка концепции консервации поврежденных эмалей. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Alloteau, F., Lehuédé, P., Majérus, O. & Caurant, D.) 175–184 (Hermann, 2019).

  • 39.

    Райан, Дж. Химическая стабилизация стеклянных поверхностей, подвергшихся атмосферному воздействию. V A Консерв. J. 16 , 6–9 (1995).

    Google ученый

  • 40.

    Хиберт, М. Характеризация действия покрытий, нанесенных атомным слоем, на предотвращение переделки стекла в музейных коллекциях. (Университет Мэриленда, США, 2019).

  • 41.

    Rullier, R. Procédé de Traitement des Surfaces de Verre . Патент FR 2269500A1. (1975).

  • 42.

    Alloteau, F. et al. Изучение обработки поверхности на основе солей цинка для защиты стекол от атмосферных воздействий: механизмы и применение к старинным стеклянным предметам в музее. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Аллото, Ф., Лехеде, П., Мажерус, О. и Коран, Д.) 196–206 (Германн, 2019).

  • 43.

    Куницки-Голдфингер, Дж. И Кежек, Дж. Ультрафиолетовая синяя флуоресценция стекла Центральной Европы 18 века: индикатор для кураторов и консерваторов. Glass Technol. 43C , 111–113 (2002).

    Google ученый

  • 44.

    Куницки-Голдфингер, Дж. Дж., Тарговски, П., Гора, М., Карашкевич, П. и Дзержановски, П. Определение морфологии стеклянной поверхности с помощью оптической когерентной томографии. Шпилька. Консерв. 54 , 117–128 (2009).

    CAS Google ученый

  • 45.

    Targowski, P. et al. Оптическая когерентная томография для неинвазивного исследования E.A. структура и свойства исторического стекла. в году Искусство сотрудничества: сохранение витражей в двадцать первом веке. 127–134 (Harvey Miller Publishers, 2010).

  • 46.

    Bouquillon, A. et al. Переносимые методы неразрушающего анализа изменений состояния веры в пломбе.в Technè hors-série (изд. Центр исследований и реставрации музеев Франции) 103–113 (2008).

  • 47.

    Верхаар Г., Ван Боммель М. Р. и Теннент Н. Х. Разработка протокола ионной хроматографии для обнаружения ранних стадий разложения стекла. в Последние достижения в области сохранения стекла и керамики (ред. Рёмич, Х. и Фэйр, Л.) 123–133 (ICOM-CC, 2016).

  • 48.

    Lombardo, T., Gentaz, L. & Loisel, C. Technique de l’Ingénieur.Altération des verres — Cas des vitraux du Moyen Âge . Re242 V1 , (2015).

  • 49.

    Lombardo, T. et al. Характеристика сложных гидротермальных слоев средневековых стекол. Коррос. Sci. 72 , 10–19 (2013).

    CAS Google ученый

  • 50.

    Мельчер М. и Шрейнер М. Статистическая оценка выветривания калийно-известково-кремнеземного стекла. Анал. Биоанал. Chem. 379 , 628–639 (2004).

    CAS Google ученый

  • 51.

    Melcher, M. & Schreiner, M. Исследования выщелачивания естественно выветрившихся калийно-известково-кремнеземных стекол. J. Non-Cryst. Твердые тела 352 , 368–379 (2006).

    CAS Google ученый

  • 52.

    Мелчер М. и Шрейнер М. Процедура оценки выщелачивания естественно выветрившихся калийно-известково-кремнеземных стекол средневекового состава с помощью сканирующей электронной микроскопии. J. Non-Cryst. Твердые тела 351 , 1210–1225 (2005).

    CAS Google ученый

  • 53.

    Edaine, J., Loisel, C., Geronazzo, D. & Pallot-Froissard, I. EU-Project CONSTGLASS N ° 044339. Консервационные материалы для витражей — оценка обработок, исследования обратимости и выполнение инновационных стратегий восстановления и продуктов. Часть I IV . (2011).

  • 54.

    Loisel, C. & Pallot-Frossard, I. Витражи: как беречь хрупкое наследие? в 9-м Форуме по сохранению и технологии исторических витражей (ред. ИКОМОС) 183 (2015).

  • 55.

    Бернарди А., Бечерини Ф. и Верита М. Сохранение витражей с защитным остеклением: основные результаты европейской исследовательской программы VIDRIO. J. Cult. Наследие 14 , 527–536 (2013).

    Google ученый

  • 56.

    Chopinet, M.H. et al. Емкости из натриево-известково-кремнеземного стекла: химическая стойкость и устойчивость к атмосферным воздействиям. Adv. Матер. Res. 39–40 , 305–310 (2008).

    Google ученый

  • 57.

    Верита, М., Фальконе, Р., Соммарива, Г., Шопине, М. Х. и Лехеде, П. Выветривание внутренней поверхности контейнеров из содово-известково-кремнеземного стекла, находящихся в атмосфере. Eur. J. Glas. Sci. Technol. Часть A 50 , 65–70 (2009).

    Google ученый

  • 58.

    Ломбардо, Т., Шабас, А. и Лефевр, Р. Выветривание флоат-стекла на открытом воздухе в городской зоне. Glass Technol. 46 , 271–276 (2005).

    CAS Google ученый

  • 59.

    Раман, К. В. и Раджагопалан, В. С. Цвета многослойной среды-I — древнее разложившееся стекло. Proc. Индийский акад. Sci. — Sect.А 11 , 469–482 (1940).

    Google ученый

  • 60.

    Reiß, S., Urban, S., Jacob, K., Krischok, S. & Rädlein, E. Исследование влияния промышленного протектора для стекла на поверхности флоат-стекла с помощью рентгеновской фотоэлектронной спектроскопии. Phys. Chem. Glasss 58 , 99–108 (2017).

    Google ученый

  • 61.

    Редлейн, Э.& Брокманн, У. Долгосрочное наблюдение (8 лет) за стеклянной эмалью на открытом воздухе и 2 года при атмосферных воздействиях и очистке флоат-стекла. в Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Аллото, Ф., Лехеде, П., Мажерус, О. и Коран, Д.) 97–105 (Герман, 2019).

  • 62.

    Меллотт, Н. П., Брантли, С. Л., Гамильтон, Дж. П. и Пантано, К. Г. Оценка методов подготовки поверхности для стекла. Surf.Интерфейс Анал. 31 , 362–368 (2001).

    CAS Google ученый

  • 63.

    Такеда С. Диффузия кислорода и серебра во флоат-стекле. J. Non-Cryst. Твердые тела 352 , 3910–3913 (2006).

    CAS Google ученый

  • 64.

    Bange, K. et al. Многометодная характеристика коррозии натриево-кальциевого стекла, Часть 2. Коррозия во влажной среде. Glass Sci. Technol. 75 , 20–33 (2002).

    CAS Google ученый

  • 65.

    Stella, A. & Verità, M. Анализ EPMA поверхностей флоат-стекла. Микрохим. Acta 114–115 , 475–480 (1994).

    Google ученый

  • 66.

    Ямамото, Ю. и Ямамото, К. Точный профиль глубины XPS натриево-известково-кремнеземного флоат-стекла с использованием ионного пучка C 60. Опт. Матер. 33 , 1927–1930 (2011).

    CAS Google ученый

  • 67.

    Нуньес де Карвальо, Дж., Кливер, Дж. А. С., Киркби, Н. Ф. и Холмс, П. А. Экспериментальное исследование влияния обработки цинком на флоат-стекло. Eur. J. Glass Sci. Technol. А 55 , 14–22 (2014).

    CAS Google ученый

  • 68.

    Хан, К.Защита стеклянной посуды в процессе автоматического мытья посуды — знания и опыт производителей моющих средств. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Аллото, Ф., Лехеде, П., Мажерус, О. и Коран, Д.) 209–214 (Герман, 2019).

  • 69.

    Reiß, S., Grieseler, R., Krischok, S. & Rädlein, E. Влияние песка Sahara на деградацию поверхностей флоат-стекла. J. Non-Cryst. Твердые тела 479 , 16–28 (2018).

    Google ученый

  • 70.

    Chaou, A. A. et al. Гидратация паров смоделированных боросиликатных ядерных отходов стекла в ненасыщенных условиях при 50 ° C и 90 ° C. RSC Adv. 5 , 64538–64549 (2015).

    Google ученый

  • 71.

    Gin, S. et al. Международная инициатива по долгосрочному поведению высокоактивных ядерных отходов стекла. Mater. Сегодня 16 , 243–248 (2013).

    CAS Google ученый

  • 72.

    Бейтс, Дж. К., Эберт, У. Л. и Гердинг, Т. Дж. Гидратация паров и последующее выщелачивание трансурансодержащих стекол SRL и WV . DE90 002261 (1990).

  • 73.

    Абраджано, Т. А., Бейтс, Дж. К. и Мазер, Дж. Дж. Водная коррозия стекол природных и ядерных отходов II. Механизмы парогидратации стекол ядерных отходов. J. Non-Cryst. Solids 108 , 269–288 (1989).

    CAS Google ученый

  • 74.

    Neeway, J. J. et al. Паровая гидратация стекла SON68 от 90 ° C до 200 ° C: кинетическое исследование и исследование продуктов коррозии. J. Non-Cryst. Твердые тела 358 , 2894–2905 (2012).

    CAS Google ученый

  • 75.

    Narayanasamy, S. et al. Влияние состава стекол ядерных отходов на гидратацию паровой фазы. J. Nucl. Матер. 525 , 53–71 (2019).

    CAS Google ученый

  • 76.

    Леанг, М., Джорджиутти-Дофине, Ф., Ли, Л. Т. и Пошард, Л. Открытие трещин: от коллоидных систем к живописи. Мягкое вещество 13 , 5802–5808 (2017).

    Google ученый

  • 77.

    Лахлил, С., Сюй, Дж. И Ли, В. Влияние производственных параметров на процесс растрескивания древней китайской глазурованной керамики. J. Cult. Наследие 16 , 401–412 (2015).

    Google ученый

  • 78.

    Робине, Л., Еремин, К., Купри, К., Холл, К. и Лаком, Н. Влияние паров органических кислот на изменение натриево-силикатного стекла. J. Non Cryst. Твердые тела 353 , 1546–1559 (2007).

    CAS Google ученый

  • 79.

    Alloteau, F. et al. Новое понимание атмосферных изменений силикатных щелочно-известковых стекол. Коррос. Sci. 122 , 12–25 (2017).

    CAS Google ученый

  • 80.

    Уолтерс, Х. В. и Адамс, П. Б. Влияние влажности на выветривание стекла. J. Non-Cryst. Твердые тела 19 , 183–199 (1975).

    CAS Google ученый

  • 81.

    Фирн С., Макфейл Д. С. и Окли В. Исследование коррозии фасадного стекла XVII века с использованием передовых методов анализа поверхности.in Annales du 16e Congrès de L’association Internationale Pour l’histoire du Verre, Лондон, 7–13 сентября 2003 г. 375–379 (AIHV, 2005).

  • 82.

    Фирн С., Макфейл Д. С., Хагенхофф Б. и Талларек Э. TOF-SIMS-анализ корродирующего музейного стекла. Заявл. Серфинг. Sci. 252 , 7136–7139 (2006).

    CAS Google ученый

  • 83.

    Sessegolo, L. et al. Длительная выдержка витражей изотопами Н и О. npj Mater. Деграда. 2 , 17 (2018).

    Google ученый

  • 84.

    Bouakkaz, R., Abdelouas, A. & Grambow, B. Кинетическое исследование и структурная эволюция ядерных отходов стекла SON68, измененных от 35 до 125 ° C в ненасыщенном H 2 O и D 2 O 18 паровые условия. Коррос. Sci. 134 , 1–16 (2018).

    CAS Google ученый

  • 85.

    Асаи Д. Б. и Ким С. Х. Эволюция структуры слоя адсорбированной воды на оксиде кремния при комнатной температуре. J. Phys. Chem. B 109 , 16760–16763 (2005).

    CAS Google ученый

  • 86.

    Дормус Р. Х. Взаимодиффузия ионов водорода и щелочных металлов на поверхности стекла. J. Non Cryst. Твердые тела 19 , 137–144 (1975).

    CAS Google ученый

  • 87.

    Сметс, Б. М. Дж. И Ломмен, Т. П. А. Выщелачивание натрийсодержащих стекол: ионный обмен или диффузия молекулярной воды? J. Phys. 43 , C9-649 – C9-652 (1982).

    Google ученый

  • 88.

    Джин, С., Фругье, П., Жолливе, П., Брюгье, Ф. и Курти, Э. Новое понимание остаточной скорости боросиликатных стекол: влияние S / V и состава стекла. Внутр. J. Appl. Glass Sci. 4 , 371–382 (2013).

    CAS Google ученый

  • 89.

    Абраджано, Т. А., Бейтс, Дж. К. и Байерс, К. Д. Водная коррозия стекол природных и ядерных отходов I. Сравнительные скорости гидратации в жидкой и паровой средах при повышенных температурах. J. Non Cryst. Solids 84 , 251–257 (1986).

    CAS Google ученый

  • 90.

    Alloteau, F. et al. Температурно-зависимые механизмы атмосферного изменения смешанно-щелочного силикатного стекла. Коррос. Sci. 159 , 108129 (2019).

    Google ученый

  • 91.

    Каммингс К., Ланфорд В. А. и Фельдманн М. Выветривание стекла во влажном и загрязненном воздухе. Nucl. Instrum. Методы Phys. Res. B 136–138 , 858–862 (1998).

    Google ученый

  • 92.

    Пауль А. Химическая стойкость стекол; термодинамический подход. J. Mater. Sci. 12 , 2246–2268 (1977).

    CAS Google ученый

  • 93.

    Verità, M. Венецианский содовый стакан. in Современные методы анализа археологического и исторического стекла (изд. Janssens, K.) 515–533 (John Wiley & Sons, 2013).

  • 94.

    Бункер, Б. К., Арнольд, Г. У., Дэй, Д. Э. и Брей, П. Дж. Влияние молекулярной структуры на выщелачивание боросиликатного стекла. Дж.Non Cryst. Твердые тела 87 , 226–253 (1986).

    CAS Google ученый

  • 95.

    Ledieu, A., Devreux, F., Barboux, P., Sicard, L. & Spalla, O. Выщелачивание боросиликатных стекол. I. Эксперименты. J. Non Cryst. Твердые тела 343 , 3–12 (2004).

    CAS Google ученый

  • 96.

    Devreux, F., Ledieu, A., Barboux, P. & Minet, Y.Выщелачивание боросиликатных стекол. II. Моделирование и моделирование методом Монте-Карло. J. Non Cryst. Твердые тела 343 , 13–25 (2004).

    CAS Google ученый

  • 97.

    Сикард, Л., Спалла, О., Не, Ф., Таше, О. и Барбу, П. Растворение оксидных стекол: процесс, обусловленный образованием поверхности. J. Phys. Chem. С 112 , 1594–1603 (2008).

    CAS Google ученый

  • 98.

    Cailleteau, C. et al. Понимание механизмов коррозии силикатного стекла. Нат. Матер. 7 , 978–983 (2008).

    CAS Google ученый

  • 99.

    Mascaraque, N., Bauchy, M. & Smedskjaer, M. M. Корреляция сетевой топологии оксидных стекол с их химической стойкостью. J. Phys. Chem. B 121 , 1139–1147 (2017).

    CAS Google ученый

  • 100.

    Fournier, M., Gin, S. & Frugier, P. Возобновление процесса изменения ядерного стекла: современное состояние. J. Nucl. Матер. 448 , 348–363 (2014).

    CAS Google ученый

  • 101.

    Gin, S., Beaudoux, X., Angéli, F., Jégou, C. & Godon, N. Влияние состава на кратковременную и долгосрочную скорость растворения десяти боросиликатных стекол с возрастающей сложность от 3 до 30 оксидов. J. Non Cryst.Твердые тела 358 , 2559–2570 (2012).

    CAS Google ученый

  • 102.

    Чав, Т., Фругье, П., Айрал, А. и Гин, С. Диффузия в твердом состоянии при остаточном изменении ядерного стекла в растворе. J. Nucl. Матер. 362 , 466–473 (2007).

    CAS Google ученый

  • 103.

    Gin, S. et al. Судьба кремния при коррозии стекла в щелочных условиях: механистическое и кинетическое исследование с International Simple Glass. Геохим. Космохим. Acta 151 , 68–85 (2015).

    CAS Google ученый

  • 104.

    Рибет, С. и Гин, С. Роль неоформованных фаз в механизмах, контролирующих возобновление изменения стекла SON68 в щелочных средах. J. Nucl. Матер. 324 , 152–164 (2004).

    CAS Google ученый

  • 105.

    Чиннам, Р.К., Фоссати, П. С. М. и Ли, В. Е. Деградация частично погруженного стекла: новая перспектива. J. Nucl. Матер. 503 , 56–65 (2018).

    CAS Google ученый

  • 106.

    Шольце, Х. Химическая стойкость стекол. J. Non-Cryst. Solids 52 , 91–103 (1982).

    CAS Google ученый

  • 107.

    Мишлен, А.и другие. Изменение силикатного стекла, усиленное железом: происхождение и долгосрочные последствия. Environ. Sci. Technol. 47 , 750–756 (2013).

    CAS Google ученый

  • 108.

    Тхиен, Б. М. Дж., Годон, Н., Баллестеро, А., Джин, С. и Айрал, А. Двойное влияние магния на долгосрочную скорость изменения стекол ядерных отходов АВМ. J. Nucl. Матер. 427 , 297–310 (2012).

    CAS Google ученый

  • 109.

    Alloteau, F. et al. Механизмы изменения старинных стеклянных предметов под воздействием атмосферы. in Стеклянные атмосферные изменения — Культурное наследие, промышленные и ядерные стекла (ред. Бирон, И., Аллото, Ф., Лехеде, П., Мажерус, О. и Коран, Д.) 13–24 (Герман, 2019).

  • 110.

    Сюэ, X. и Канзаки, М. Распределение протонов и водородные связи в кристаллических и стеклообразных водных силикатах и ​​родственных неорганических материалах: выводы из твердотельной спектроскопии ядерного магнитного резонанса высокого разрешения. J. Am. Ceram. Soc. 92 , 2803–2830 (2009).

    CAS Google ученый

  • 111.

    Ле Лоск, К., Коди, Г. Д. и Мизен, Б. О. Влияние щелочи на состав воды и окружение протонов в силикатных стеклах выявлено с помощью спектроскопии ЯМР 1 H. Am. Минеральная. 100 , 466–473 (2015).

    Google ученый

  • 112.

    Анджели, Ф., Гайяр, М., Жолливе, П. и Шарпантье, Т. Влияние состава стекла и раствора для изменения на структуру выщелоченного силикатного стекла: исследование методом твердотельного ЯМР. Геохим. Космохим. Acta 70 , 2577–2590 (2006).

    CAS Google ученый

  • 113.

    Шольце, Х. Химическая стойкость стекол. J. Non Cryst. Solids 52 , 91–103 (1982).

    CAS Google ученый

  • 114.

    Collin, M. et al. Молекулярно-динамическое моделирование структуры воды и диффузии в нанопоре кремнезема диаметром 1 нм в зависимости от заряда поверхности и идентичности противоиона щелочного металла. J. Phys. Chem. C 122 , 17764–17776 (2018).

    CAS Google ученый

  • 115.

    Sheth, N. et al. Исследование водородно-связывающих взаимодействий молекул воды, адсорбированных на диоксиде кремния, силикате натрия-кальция и алюмосиликатном стекле кальция. J. Phys. Chem. C 122 , 17792–17801 (2018).

    CAS Google ученый

  • 116.