ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 897 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0. 116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0.05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Воздух сухой при 20°С | 1.205 | 0.0259 | 1005 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо — и пенобетон, газо- и пеносиликат | 280…1000 | 0.07…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
2500 | 1.7 | 840 | |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ | 810…840 | 0.14…0.185 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0.29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.2 | 1150 |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0.7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.038 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0.15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Парафин | 870…920 | 0.27 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пемза | 400…700 | 0.11…0.16 | — |
Пемзобетон | 800…1600 | 0.19…0.52 | 840 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пеногипс | 300…600 | 0.1…0.15 | — |
Пенозолобетон | 800…1200 | 0.17…0.29 | — |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол Пеноплэкс | 22…47 | 0.03…0.036 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0.041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеносиликальцит | 400…1200 | 0.122…0.32 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плита огнеупорная теплоизоляционная Avantex марки Board | 200…500 | 0.04 | — |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0.082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) | 200 | 0.064 | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) | 50…350 | 0.048…0.091 | 840 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996– 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 150…600 | 0.052…0.145 | 1060 |
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе | 200…500 | 0.057…0.113 | 1060 |
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах | 200…500 | 0.052…0.105 | 1060 |
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах | 200…500 | 0.062…0.121 | 1060 |
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная техническая | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.073…0.096 | — |
Пробковое покрытие для полов | 540 | 0.078 | — |
Ракушечник | 1000…1800 | 0.27…0.63 | 835 |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Шевелин | 140…190 | 0.056…0.07 | — |
Шелк | 100 | 0.038…0.05 | — |
Шлак гранулированный | 500 | 0.15 | 750 |
Шлак доменный гранулированный | 600…800 | 0.13…0.17 | — |
Шлак котельный | 1000 | 0.29 | 700…750 |
Шлакобетон | 1120…1500 | 0.6…0.7 | 800 |
Шлакопемзобетон (термозитобетон) | 1000…1800 | 0.23…0.52 | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 800…1600 | 0.17…0.47 | 840 |
Штукатурка гипсовая | 800 | 0.3 | 840 |
Штукатурка известковая | 1600 | 0.7 | 950 |
Штукатурка из синтетической смолы | 1100 | 0.7 | — |
Штукатурка известковая с каменной пылью | 1700 | 0.87 | 920 |
Штукатурка из полистирольного раствора | 300 | 0.1 | 1200 |
Штукатурка перлитовая | 350…800 | 0.13…0.9 | 1130 |
Штукатурка сухая | — | 0.21 | — |
Штукатурка утепляющая | 500 | 0.2 | — |
Штукатурка фасадная с полимерными добавками | 1800 | 1 | 880 |
Штукатурка цементная | — | 0.9 | — |
Штукатурка цементно-песчаная | 1800 | 1.2 | — |
Шунгизитобетон | 1000…1400 | 0.27…0.49 | 840 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка | 200…600 | 0.064…0.11 | 840 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка | 400…800 | 0.12…0.18 | 840 |
Эбонит | 1200 | 0.16…0.17 | 1430 |
Эбонит вспученный | 640 | 0.032 | — |
Эковата | 35…60 | 0.032…0.041 | 2300 |
Энсонит (прессованный картон) | 400…500 | 0.1…0.11 | — |
Эмаль (кремнийорганическая) | — | 0.16…0.27 | — |
Коэффициент теплопроводности материалов таблица, формулы
Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого. Эквивалентная теплопроводимость строительных материалов и утеплителей
Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).
Как рассчитать теплопроводность по закону Фурье
В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:
q → = − ϰ х grad х (T), где:
- q → – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
- ϰ – удельный коэффициент теплопроводности материала;
- T – температура материала.
Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:
- P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
- P – общая мощность потерь теплоотдачи;
- S – сечение предмета;
- ΔT – разница температуры по стыкам сторон предмета;
- l – расстояние между стыками сторон предмета – длина фигуры.
Электропроводность и коэффициент теплопередачи
Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:
Κ / σ = π2 / 3 х (К / e)2 х T, где:
- К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
- e – заряд электрона;
- T – термодинамическая температура предмета.
Коэффициент теплопроводности газовой среды
В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:
ϰ ~ 1/3 х p х cv х Λλ х v–, где:
- pv – плотность газовой среды;
- cv – удельная емкость тепловой энергии при одном и том же объеме тела;
- Λλ – расстояние свободного перемещения молекул в газовой среде;
- v– – скорость передачи тепла.
Или:
ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:
- i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
- К – коэффициент Больцмана;
- μ – отношение массы газа к количеству молей газа;
- T – термодинамическая температура;
- d – ⌀ молекул газа;
- R – универсальный коэффициент для газовой среды.
Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.
Теплопроводимость в газовой разреженной среде
Газовая среда и теплопроводность
Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:
ϰ ~ 1/3 х p х cv х l х v–, где:
i – объем резервуара;
Р – уровень давления в резервуаре.
Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними. Что такое тепловое излучение
При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:
τ х ∂q / ∂t = − (q + ϰ х ∇T) .
Если релаксация τ мгновенная, то формула превращается в закон Фурье.
Ориентировочная таблица теплопроводности материалов:
Основа | Значение теплопроводности, Вт/(м•К) |
Жесткий графен | 4840 +/– 440 – 5300 +/– 480 |
Алмаз | 1001-2600 |
Графит | 278,4-2435 |
Бора арсенид | 200-2000 |
SiC | 490 |
Ag | 430 |
Cu | 401 |
BeO | 370 |
Au | 320 |
Al | 202-236 |
AlN | 200 |
BN | 180 |
Si | 150 |
Cu3Zn2 | 97-111 |
Cr | 107 |
Fe | 92 |
Pt | 70 |
Sn | 67 |
ZnO | 54 |
Черная сталь | 47-58 |
Pb | 35,3 |
Нержавейка | Теплопроводность стали – 15 |
SiO2 | 8 |
Высококачественные термостойкие пасты | 5-12 |
Гранит (состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %) | 2,4 |
Бетонный раствор без заполнителей | 1,75 |
Бетонный раствор со щебнем или с гравием | 1,51 |
Базальт (состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %) | 1,3 |
Стекло (состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т.д.) | 1-1,15 |
Термостойкая паста КПТ-8 | 0,7 |
Бетонный раствор с наполнителем из песка, без щебня или гравия | 0,7 |
Вода чистая | 0,6 |
Силикатный или красный кирпич | 0,2-0,7 |
Масла на основе силикона | 0,16 |
Пенобетон | 0,05-0,3 |
Газобетон | 0,1-0,3 |
Дерево | Теплопроводность дерева – 0,15 |
Масла на основе нефти | 0,125 |
Снег | 0,10-0,15 |
ПП с группой горючести Г1 | 0,039-0,051 |
ЭППУ с группой горючести Г3, Г4 | 0,03-0,033 |
Стеклянная вата | 0,032-0,041 |
Вата каменная | 0,035-0,04 |
Воздушная атмосфера (300 К, 100 кПа) | 0,022 |
Гель на основе воздуха | 0,017 |
Аргон (Ar) | 0,017 |
Вакуумная среда | 0 |
Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла. В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.
Таблица теплопроводимости стройматериалов
Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.
Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.
- При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
- Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.
Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры). Ориентировочные показатели коэффициентов теплопроводимости
В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.
Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:
Стройматериалы | Коэффициент теплопроводимости, Вт/(м2•К) |
Плиты из алебастра | 0,47 |
Al | 230 |
Шифер асбоцементный | 0,35 |
Асбест (волокно, ткань) | 0,15 |
Асбоцемент | 1,76 |
Асбоцементные изделия | 0,35 |
Асфальт | 0,73 |
Асфальт для напольного покрытия | 0,84 |
Бакелит | 0,24 |
Бетон с заполнителем щебнем | 1,3 |
Бетон с заполнителем песком | 0,7 |
Пористый бетон – пено- и газобетон | 1,4 |
Сплошной бетон | 1,75 |
Термоизоляционный бетон | 0,18 |
Битумная масса | 0,47 |
Бумажные материалы | 0,14 |
Рыхлая минвата | 0,046 |
Тяжелая минвата | 0,05 |
Вата – теплоизолятор на основе хлопка | 0,05 |
Вермикулит в плитах или листах | 0,1 |
Войлок | 0,046 |
Гипс | 0,35 |
Глиноземы | 2,33 |
Гравийный заполнитель | 0,93 |
Гранитный или базальтовый заполнитель | 3,5 |
Влажный грунт, 10% | 1,75 |
Влажный грунт, 20% | 2,1 |
Песчаники | 1,16 |
Сухая почва | 0,4 |
Уплотненный грунт | 1,05 |
Гудроновая масса | 0,3 |
Доска строительная | 0,15 |
Фанерные листы | 0,15 |
Твердые породы дерева | 0,2 |
ДСП | 0,2 |
Дюралюминиевые изделия | 160 |
Железобетонные изделия | 1,72 |
Зола | 0,15 |
Известняковые блоки | 1,71 |
Раствор на песке и извести | 0,87 |
Смола вспененная | 0,037 |
Природный камень | 1,4 |
Картонные листы из нескольких слоев | 0,14 |
Каучук пористый | 0,035 |
Каучук | 0,042 |
Каучук с фтором | 0,053 |
Керамзитобетонные блоки | 0,22 |
Красный кирпич | 0,13 |
Пустотелый кирпич | 0,44 |
Полнотелый кирпич | 0,81 |
Сплошной кирпич | 0,67 |
Шлакокирпич | 0,58 |
Плиты на основе кремнезема | 0,07 |
Латунные изделия | 110 |
Лед при температуре 00С | 2,21 |
Лед при температуре -200С | 2,44 |
Лиственное дерево при влажности 15% | 0,15 |
Медные изделия | 380 |
Мипора | 0,086 |
Опилки для засыпки | 0,096 |
Сухие опилки | 0,064 |
ПВХ | 0,19 |
Пенобетон | 0,3 |
Пенопласт марки ПС-1 | 0,036 |
Пенопласт марки ПС-4 | 0,04 |
Пенопласт марки ПХВ-1 | 0,05 |
Пенопласт марки ФРП | 0,044 |
ППУ марки ПС-Б | 0,04 |
ППУ марки ПС-БС | 0,04 |
Лист из пенополиуретана | 0,034 |
Панель из пенополиуретана | 0,024 |
Облегченное пеностекло | 0,06 |
Тяжелое вспененное стекло | 0,08 |
Пергаминовые изделия | 0,16 |
Перлитовые изделия | 0,051 |
Плиты на цементе и перлите | 0,085 |
Влажный песок 0% | 0,33 |
Влажный песок 0% | 0,97 |
Влажный песок 20% | 1,33 |
Обожженный камень | 1,52 |
Керамическая плитка | 1,03 |
Плитка марки ПМТБ-2 | 0,035 |
Полистирол | 0,081 |
Поролон | 0,04 |
Раствор на основе цемента без песка | 0,47 |
Плита из натуральной пробки | 0,042 |
Легкие листы из натуральной пробки | 0,034 |
Тяжелые листы из натуральной пробки | 0,05 |
Резиновые изделия | 0,15 |
Рубероид | 0,17 |
Сланец | 2,100 |
Снег | 1,5 |
Хвойная древесина влажностью 15% | 0,15 |
Хвойная смолистая древесина влажностью 15% | 0,23 |
Стальные изделия | 52 |
Стеклянные изделия | 1,15 |
Утеплитель стекловата | 0,05 |
Стекловолоконные утеплители | 0,034 |
Стеклотекстолитовые изделия | 0,31 |
Стружка | 0,13 |
Тефлоновое покрытие | 0,26 |
Толь | 0,24 |
Плита на основе цементного раствора | 1,93 |
Цементно-песчаный раствор | 1,24 |
Чугунные изделия | 57 |
Шлак в гранулах | 0,14 |
Шлак зольный | 0,3 |
Шлакобетонные блоки | 0,65 |
Сухие штукатурные смеси | 0,22 |
Штукатурный раствор на основе цемента | 0,95 |
Эбонитовые изделия | 0,15 |
Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах будет абсолютный вакуум.
Теплопроводность бетона: таблица, коэффициент теплопередачи
Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.
Теплопроводность строительных материалов
Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.
Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.
Что такое теплопроводность, какими единицами измерения она описывается?
Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».
Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.
«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.
И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.
Коэффициент теплопроводности материала
Мнение эксперта: Афанасьев Е.В.
Главный редактор проекта Stroyday.ru.Инженер.
Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).
Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.
Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.
Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.
Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.
А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.
И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.
Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.
В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.
Это свойственно большинству материалов – при насыщении влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.
Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.
Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).
Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:
Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.
Особенности влажностного режима помещений определяются по следующей таблице:
Таблица определения влажностного режима помещений
Влажностной режим помещения | Относительная влажность внутреннего воздуха при температуре: | ||
до 12°С | от 13 до 24°С | 25°С и выше | |
Сухой | до 60% | до 50% | до 40% |
Нормальный | от 61 до 75% | от 51 до 60% | от 41 до 50% |
Влажный | 76% и более | от 61 до 75% | от 51 до 60% |
Мокрый | — | 76% и более | 61% и более |
Кстати, о влажности!..
А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности.
Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.
Таблица для выбора режима эксплуатации ограждающих конструкций
Влажностной режим помещения (по таблице) | Зоны влажности (в соотвествии с картой-схемой) | ||
3 — сухая | 2 — нормальная | 1 — влажная | |
Сухой | А | А | Б |
Нормальный | А | Б | Б |
Влажный или мокрый | Б | Б | Б |
Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.
Таблицы будут приведены ниже, под теоретической частью.
Сопротивление теплопередаче
Мнение эксперта: Афанасьев Е.В.
Главный редактор проекта Stroyday.ru.Инженер.
Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.
Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.
Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.
R = h/λ
где:
R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;
h — толщина этого слоя, выраженная в метрах;
λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).
Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.
Формула сопротивления перегородки с n-слоев будет такой:
Rsum = R₁ + R₂ + …+Rn + Rai + Rao
где:
Rsum— суммарное термическое сопротивление ограждающей конструкции;
R₁ … Rn— сопротивления слоев, от 1 до n;
Rai— сопротивление пристенного слоя воздуха внутри;
Rao— сопротивление пристенного слоя воздуха снаружи.
Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.
Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.
Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:
Таблица термических сопротивлений замкнутых воздушных прослоек
Толщина воздушной прослойки, в метрах | В и Г ▲ | Г▼ | ||
tв > 0 ℃ | tв | tв > 0 ℃ | tв | |
0.01 | 0.13 | 0.15 | 0.14 | 0.15 |
0.02 | 0.14 | 0.15 | 0.15 | 0.19 |
0.03 | 0.14 | 0.16 | 0.16 | 0.21 |
0.05 | 0.14 | 0.17 | 0.17 | 0.22 |
0.1 | 0.15 | 0.18 | 0.18 | 0.23 |
0.15 | 0.15 | 0.18 | 0.19 | 0.24 |
0,2-0,3 | 0.15 | 0.19 | 0.19 | 0.24 |
Примечания: | ||||
В и Г ▲ — воздушная прослойка вертикальная, или горизонтальная, с рапространением тепла снизу вверх | ||||
Г▼ — воздушная прослойка горизонтальная при распространении тепла сверху вниз | ||||
tв > 0 ℃ — положительная температура воздуха в прослойке | ||||
tв | ||||
Если любая из поверхностей воздушной прослойки, или обе одновременно, оклеены алюминиесвой фольгой, то значение сопротивления теплопередаче принимают вдвое большим. |
Таблицы коэффициентов теплопроводности различных групп строительных материалов
Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
Наименование материала | ρ Средняя плотность материала кг/м³ | λ₀ Коэффициент теплопроводности в идеальных условиях и в сухом состоянии Вт/(м×℃) | λА Коэффициент теплопроводности для условий эксплуатации А Вт/(м×℃) | λБ Коэффициент теплопроводности для условий эксплуатации Б Вт/(м×℃) |
Кирпичная кладка из сплошного кирпича на различных растворах | ||||
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе | 1800 | 0,56 | 0,70 | 0,81 |
Стандартный керамический на цементно-шлаковом растворе | 1700 | 0,52 | 0,64 | 0,76 |
Стандартный керамический на цементно-перлитовом растворе | 1600 | 0,47 | 0,58 | 0,70 |
Силикатный на цементно-песчаном кладочном растворе | 1800 | 0,70 | 0,76 | 0,87 |
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе | 1200 | 0,35 | 0,47 | 0,52 |
— то же, но с плотностью | 1000 | 0,29 | 0,41 | 0,47 |
Шлаковый, на цементно-песчаном кладочном растворе | 1500 | 0,52 | 0,64 | 0,70 |
Кладка из пустотного кирпича | ||||
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе | 1600 | 0,47 | 0,58 | 0,64 |
— то же, но с плотностью кирпича 1300 кг/м³ | 1400 | 0,41 | 0,52 | 0,58 |
— то же, но с плотностью кирпича 1000 кг/м³ | 1200 | 0,35 | 0,47 | 0,52 |
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе | 1500 | 0,64 | 0,70 | 0,81 |
— то же, четырнадцатипустотный | 1400 | 0,52 | 0,64 | 0,76 |
Кладка или облицовка поверхностей натуральным камнем | ||||
Гранит или базальт | 2800 | 3,49 | 3,49 | 3,49 |
Мрамор | 2800 | 2,91 | 2,91 | 2,91 |
Туф | 2000 | 0,76 | 0,93 | 1,05 |
— то же, но с плотностью | 1800 | 0,56 | 0,70 | 0,81 |
— то же, но с плотностью | 1600 | 0,41 | 0,52 | 0,64 |
— то же, но с плотностью | 1400 | 0,33 | 0,43 | 0,52 |
— то же, но с плотностью | 1200 | 0,27 | 0,35 | 0,41 |
— то же, но с плотностью | 1000 | 0,21 | 0,24 | 0,29 |
Известняк | 2000 | 0,93 | 1,16 | 1,28 |
— то же, но с плотностью | 1800 | 0,70 | 0,93 | 1,05 |
— то же, но с плотностью | 1600 | 0,58 | 0,73 | 0,81 |
— то же, но с плотностью | 1400 | 0,49 | 0,56 | 0,58 |
Таблица коэффициентов теплопроводности бетонов различного типа
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
Бетоны на плотном заполнителе | ||||
Железобетон | 2500 | 1.69 | 1.92 | 2.04 |
Бетон на натуральном гравии или щебне | 2400 | 1.51 | 1.74 | 1.86 |
Бетоны на натуральных пористых заполнителях | ||||
Пемзобетон | 1600 | 0.52 | 0.6 | 0.68 |
— то же, но с плотностью | 1400 | 0.42 | 0.49 | 0.54 |
— то же, но с плотностью | 1200 | 0.34 | 0.4 | 0.43 |
— то же, но с плотностью | 1000 | 0.26 | 0.3 | 0.34 |
— то же, но с плотностью | 800 | 0.19 | 0.22 | 0.26 |
Туфобетон | 1800 | 0.64 | 0.87 | 0.99 |
— то же, но с плотностью | 1600 | 0.52 | 0.7 | 0.81 |
— то же, но с плотностью | 1400 | 0.41 | 0.52 | 0.58 |
— то же, но с плотностью | 1200 | 0.29 | 0.41 | 0.47 |
Бетон на вулканическом шлаке | 1600 | 0.52 | 0.64 | 0.7 |
— то же, но с плотностью | 1400 | 0.41 | 0.52 | 0.58 |
— то же, но с плотностью | 1200 | 0.33 | 0.41 | 0.47 |
— то же, но с плотностью | 1000 | 0.24 | 0.29 | 0.35 |
— то же, но с плотностью | 800 | 20 | 0.23 | 0.29 |
Бетоны на искусственных пористых наполнителях | ||||
Керамзитобетон на кварцевом песке с поризацией | 1200 | 0.41 | 0.52 | 0.58 |
— то же, но с плотностью | 1000 | 0.33 | 0.41 | 0.47 |
— то же, но с плотностью | 800 | 0.23 | 0.29 | 0.35 |
Керамзитобетон на керамзитовом песке или керамзитопенобетон | 1800 | 66 | 0.8 | 0.92 |
— то же, но с плотностью | 1600 | 0.58 | 0.67 | 0.79 |
— то же, но с плотностью | 1400 | 0.47 | 0.56 | 0.65 |
— то же, но с плотностью | 1200 | 0.36 | 0.44 | 0.52 |
— то же, но с плотностью | 1000 | 0.27 | 0.33 | 0.41 |
— то же, но с плотностью | 800 | 0.21 | 0.24 | 0.31 |
— то же, но с плотностью | 600 | 0.16 | 0.2 | 0.26 |
— то же, но с плотностью | 500 | 0.14 | 0.17 | 0.23 |
Керамзитобетон на перлитовом песке | 1000 | 0.28 | 0.35 | 0.41 |
— то же, но с плотностью | 800 | 0.22 | 0.29 | 0.35 |
Перлитобетон | 1200 | 0.29 | 0.44 | 0.5 |
— то же, но с плотностью | 1000 | 0.22 | 0.33 | 0.38 |
— то же, но с плотностью | 800 | 0.16 | 0.27 | 0.33 |
— то же, но с плотностью | 600 | 0.12 | 0.19 | 0.23 |
Шлакопемзобетон | 1800 | 0.52 | 0.63 | 0.76 |
— то же, но с плотностью | 1600 | 0.41 | 0.52 | 0.63 |
— то же, но с плотностью | 1400 | 0.35 | 0.44 | 0.52 |
— то же, но с плотностью | 1200 | 0.29 | 0.37 | 0.44 |
— то же, но с плотностью | 1000 | 0.23 | 0.31 | 0.37 |
Шлакопемзопено и шлакопемзогазобетон | 1600 | 0.47 | 0.63 | 0.7 |
— то же, но с плотностью | 1400 | 0.35 | 0.52 | 0.58 |
— то же, но с плотностью | 1200 | 0.29 | 0.41 | 0.47 |
— то же, но с плотностью | 1000 | 0.23 | 0.35 | 0.41 |
— то же, но с плотностью | 800 | 0.17 | 0.29 | 0.35 |
Вермикулетобетон | 800 | 0.21 | 0.23 | 0.26 |
— то же, но с плотностью | 600 | 0.14 | 0.16 | 0.17 |
— то же, но с плотностью | 400 | 0.09 | 0.11 | 0.13 |
— то же, но с плотностью | 300 | 0.08 | 0.09 | 0.11 |
Ячеистые бетоны | ||||
Газобетон, пенобетон, газосиликат, пеносиликат | 1000 | 0.29 | 0.41 | 0.47 |
— то же, но с плотностью | 800 | 0.21 | 0.33 | 0.37 |
— то же, но с плотностью | 600 | 0.14 | 0.22 | 0.26 |
— то же, но с плотностью | 400 | 0.11 | 0.14 | 0.15 |
— то же, но с плотностью | 300 | 0.08 | 0.11 | 0.13 |
Газозолобетон, пенозолобетон | 1200 | 0.29 | 0.52 | 0.58 |
— то же, но с плотностью | 1000 | 0.23 | 0.44 | 0.59 |
— то же, но с плотностью | 800 | 0.17 | 0.35 | 0.41 |
Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
Обычный цементно-песчаный раствор | 1800 | 0.58 | 0.76 | 0.93 |
Сложный раствор из цемента, песка, извести | 1700 | 0.52 | 0.7 | 0.87 |
Цементно-шлаковый раствор | 1400 | 0.41 | 0.52 | 0.64 |
Цементно-перлитовый раствор | 1000 | 0.21 | 0.26 | 0.3 |
— то же, но с плотностью | 800 | 0.16 | 0.21 | 0.26 |
Известково-песчаный раствор | 1600 | 0.47 | 0.7 | 0.81 |
— то же, но с плотностью | 1200 | 0.35 | 0.47 | 0.58 |
Гипсово-перлитовый раствор | 600 | 0.14 | 0.19 | 0.23 |
Гипсово-перлитовый поризованный раствор | 500 | 0.12 | 0.15 | 0.19 |
— то же, но с плотностью | 400 | 0.09 | 0.13 | 0.15 |
Гипсовые плиты литые конструкционные | 1200 | 0.35 | 0.41 | 0.47 |
— то же, но с плотностью | 1000 | 0.23 | 0.29 | 0.35 |
Листы гипсокартона (сухая штукатурка) | 800 | 0.15 | 0.19 | 0.21 |
Таблица коэффициентов теплопроводности дерева, изделий на основе древесины, а также других природных материалов
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
Хвойная древесина (сосна иди ель) поперек волокон | 500 | 0,09 | 0,14 | 0,18 |
— они же — вдоль волокон | 500 | 0,18 | 0,29 | 0,35 |
Древесина плотных лиственных пород (дуб, бук, ясень) поперек волокон | 700 | 0,1 | 0,18 | 0,23 |
— они же — вдоль волокон | 700 | 0,23 | 0,35 | 0,41 |
Клееная фанера | 600 | 0,12 | 0,15 | 0,18 |
Облицовочный картон | 1000 | 0,18 | 0,21 | 0,23 |
Картон строительный многослойный | 650 | 0,13 | 0,15 | 0,18 |
Плиты древесно-волокнистые (ДВП), древесно-стружечные (ДСП), ориентированно-стружечные (ОСП) | 1000 | 0,15 | 0,23 | 0,29 |
— то же, но для плотности | 800 | 0,13 | 0,19 | 0,23 |
— то же, но для плотности | 600 | 0,11 | 0,13 | 0,16 |
— то же, но для плотности | 400 | 0,08 | 0,11 | 0,13 |
— то же, но для плотности | 200 | 0,06 | 0,07 | 0,08 |
Плиты фибролитовые, арболит на основе портландцемента | 800 | 0,16 | 0,24 | 0,3 |
— то же, но для плотности | 600 | 0,12 | 0,18 | 0,23 |
— то же, но для плотности | 400 | 0,08 | 0,13 | 0,16 |
— то же, но для плотности | 300 | 0,07 | 0,11 | 0,14 |
Плиты камышитовые | 300 | 0,07 | 0,09 | 0,14 |
— то же, но для плотности | 200 | 0,06 | 0,07 | 0,09 |
Плиты торфяные термоизоляционные | 300 | 0,064 | 0,07 | 0,08 |
— то же, но для плотности | 200 | 0,052 | 0,06 | 0,064 |
Пакля строительная | 150 | 0,05 | 0,06 | 0,07 |
Таблица коэффициентов теплопроводности материалов, применяемых в термоизоляционных целях
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
Минеральная вата, стекловата | ||||
Маты минеральной ваты прошивные или на синтетическом связующем | 125 | 0.056 | 0.064 | 0.07 |
— то же, но для плотности | 75 | 0.052 | 0.06 | 0.064 |
— то же, но для плотности | 50 | 0.048 | 0.052 | 0.06 |
Плиты минеральной ваты на синтетическом и битумном связующих — мягкие, полужесткие и жесткие | 350 | 0.091 | 0.09 | 0.11 |
— то же, но для плотности | 300 | 0.084 | 0.087 | 0.09 |
— то же, но для плотности | 200 | 0.07 | 0.076 | 0.08 |
— то же, но для плотности | 100 | 0.056 | 0.06 | 0.07 |
— то же, но для плотности | 50 | 0.048 | 0.052 | 0.06 |
Плиты минеральной ваты на органофосфатном связующем — повышенной жесткости | 200 | 0.064 | 0.07 | 0.076 |
Плиты из стеклянного штапельного волокна на синтетическом связующем | 50 | 0.056 | 0.06 | 0.064 |
Маты и полосы из стеклянного волокна прошивные | 150 | 0.061 | 0.064 | 0.07 |
Синтетические утеплители | ||||
Пенополистирол | 150 | 0.05 | 0.052 | 0.06 |
— то же, но для плотности | 100 | 0.041 | 0.041 | 0.052 |
— то же, но для плотности | 40 | 0.038 | 0.041 | 0.05 |
Пенопласт ПХВ-1 и ПВ-1 | 125 | 0.052 | 0.06 | 0.064 |
— то же, но для плотности | 100 и менее | 0.041 | 0.05 | 0.052 |
Пенополиуретан плитный | 80 | 0.041 | 0.05 | 0.05 |
— то же, но для плотности | 60 | 0.035 | 0.041 | 0.041 |
— то же, но для плотности | 40 | 0.029 | 0.04 | 0.04 |
Пенополиуретан напылением | 35 | 0.027 | 0.033 | 0.035 |
Плиты из резольноформальдегидного пенопласта | 100 | 0.047 | 0.052 | 0.076 |
— то же, но для плотности | 75 | 0.043 | 0.05 | 0.07 |
— то же, но для плотности | 50 | 0.041 | 0.05 | 0.064 |
— то же, но для плотности | 40 | 0.038 | 0.041 | 0.06 |
Пенополиэтилен | 30 | 0.03 | 0.032 | 0.035 |
Плиты из полиизоцианурата (PIR) | 35 | 0.024 | 0.028 | 0.031 |
Перлитопласт-бетон | 200 | 0.041 | 0.052 | 0.06 |
— то же, но для плотности | 100 | 0.035 | 0.041 | 0.05 |
Перлитофосфогелевые изделия | 300 | 0.076 | 0.08 | 0.12 |
— то же, но для плотности | 200 | 0.064 | 0.07 | 0.09 |
Каучук вспененный | 85 | 0.035 | 0.04 | 0.045 |
Утеплители на натуральной основе | ||||
Эковата | 60 | 0.041 | 0.054 | 0.062 |
— то же, но для плотности | 45 | 0.038 | 0.05 | 0.055 |
— то же, но для плотности | 35 | 0.035 | 0.042 | 0.045 |
Пробка техническая | 50 | 0.037 | 0.043 | 0.048 |
Листы пробковые | 220 | 0.035 | 0.041 | 0.045 |
Плиты льнокостричные термоизоляционные | 250 | 0.054 | 0.062 | 0.071 |
Войлок строительный шерстяной | 300 | 0.057 | 0.065 | 0.072 |
— то же, но для плотности | 150 | 0.045 | 0.051 | 0.059 |
Древесные опилки | 400 | 0.092 | 1.05 | 1.12 |
— то же, но для плотности | 200 | 0.071 | 0.078 | 0.085 |
Засыпки минеральные | ||||
Керамзит — гравий | 800 | 0.18 | 0.21 | 0.23 |
— то же, но для плотности | 600 | 0.14 | 0.17 | 0.2 |
— то же, но для плотности | 400 | 0.12 | 0.13 | 0.14 |
— то же, но для плотности | 300 | 0.108 | 0.12 | 0.13 |
— то же, но для плотности | 200 | 0.099 | 0.11 | 0.12 |
Шунгизит — гравий | 800 | 0.16 | 0.2 | 0.23 |
— то же, но для плотности | 600 | 0.13 | 0.16 | 0.2 |
— то же, но для плотности | 400 | 0.11 | 0.13 | 0.14 |
Щебень из доменного шлака, шлаковой пемзы и аглоперита | 800 | 0.18 | 0.21 | 0.26 |
— то же, но для плотности | 600 | 0.15 | 0.18 | 0.21 |
— то же, но для плотности | 400 | 1.122 | 0.14 | 0.16 |
Щебень и песок из вспученного перлита | 600 | 0.11 | 0.111 | 0.12 |
— то же, но для плотности | 400 | 0.076 | 0.087 | 0.09 |
— то же, но для плотности | 200 | 0.064 | 0.076 | 0.08 |
Вермикулит вспученный | 200 | 0.076 | 0.09 | 0.11 |
— то же, но для плотности | 100 | 0.064 | 0.076 | 0.08 |
Песок строительный сухой | 1600 | 0.35 | 0.47 | 0.58 |
Пеностекло или газостекло | ||||
Пеностекло или газо-стекло | 400 | 0.11 | 0.12 | 0.14 |
— то же, но для плотности | 300 | 0.09 | 0.11 | 0.12 |
— то же, но для плотности | 200 | 0.07 | 0.08 | 0.09 |
Таблица коэффициентов теплопроводности кровельных, гидроизоляционных, облицовочных, рулонных и наливных напольных покрытий
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
Асбестоцементные | ||||
Листы асбестоцементные плоские («плоский шифер») | 1800 | 0.35 | 0.47 | 0.52 |
— то же, но для плотности | 1600 | 0.23 | 0.35 | 0.41 |
На битумной основе | ||||
Битумы нефтяные строительные и кровельные | 1400 | 0.27 | 0.27 | 0.27 |
— то же, но для плотности | 1200 | 0.22 | 0.22 | 0.22 |
— то же, но для плотности | 1000 | 0.17 | 0.17 | 0.17 |
Асфальтобетон | 2100 | 1.05 | 1.05 | 1.05 |
Изделия из вспученного перлита на битумном связующем | 400 | 0.111 | 0.12 | 0.13 |
— то же, но для плотности | 300 | 0.067 | 0.09 | 0.099 |
Рубероид, пергамин, толь, гибкая черепица | 600 | 0.17 | 0.17 | 0.17 |
Линолеумы и наливные полимерные полы | ||||
Линолеум поливинилхлоридный многослойный | 1800 | 0.38 | 0.38 | 0.38 |
— то же, но для плотности | 1600 | 0.33 | 0.33 | 0.33 |
Линолеум поливинилхлоридный на тканевой подоснове | 1800 | 0.35 | 0.35 | 0.35 |
— то же, но для плотности | 1600 | 0.29 | 0.29 | 0.29 |
— то же, но для плотности | 1400 | 0.23 | 0.23 | 0.23 |
Пол наливной полиуретановый | 1500 | 0.32 | 0.32 | 0.32 |
Пол наливной эпоксидный | 1450 | 0.029 | 0.029 | 0.029 |
Таблица коэффициентов теплопроводности металлов и стекла
Наименование материала | ρ кг/м³ | λ₀ Вт/(м×℃) | λА Вт/(м×℃) | λБ Вт/(м×℃) |
Сталь, в том числе — арматурная стержневая | 7850 | 58 | 58 | 58 |
Чугун | 7200 | 50 | 50 | 50 |
Алюминий | 2600 | 221 | 221 | 221 |
Медь | 8500 | 407 | 407 | 407 |
Бронза | 7500÷9300 | 25÷105 | 25÷105 | 25÷105 |
Латунь | 8100÷8800 | 70÷120 | 70÷120 | 70÷120 |
Стекло кварцевое оконное | 2500 | 0.76 | 0.76 | 0.76 |
Сейчас для утепления различных строений используются, преимущественно, синтетические материалы. Они имеют отличные характеристики, а также в большинстве своем очень удобны в монтаже.
Исходя из значений в таблицах выше, из категории синтетических утеплителей одним из самых энергоэффективных является PIR-плита. При плотности всего 35 кг/м³ коэффициент теплопроводности у нее в среднем составляет 0,024 Вт/м*К. Но он может быть и меньше в зависимости от технологии производства PIR-плиты у того или иного производителя.
Сравнение теплопроводности PIR-плит и других материалов
Так, например, PIR-плиты LOGICPIR от российского производителя ТЕХНОНИКОЛЬ имеют показатель теплопроводности всего 0,022 Вт/м*К. Почему значение так снижается? Дело в том, что этот вид утеплителя с обеих сторон имеет фольгированный слой. Фольга, как известно, сама по себе способна отлично отражать тепловую энергию в обратную сторону, то есть в помещение. Благодаря этому свойству энергоэффективность материала растет, а теплопотери в доме снижаются. Таким образом PIR-утеплитель, имеющий такой слой с одной и другой стороны, гораздо лучше выполняет свои функции, чем, например, PIR-материал с бумажным технологическим покрытием.
В целом же LOGICPIR — обычная PIR-плита, которая представляет собой пористый материал с множеством микроячеек, наполненных воздухом. Она очень тонкая (толщина варьируется в пределах 2-5 см), легкая, не нагружает строительные конструкции, но при этом прочная и достаточно плотная, чтобы выдерживать некоторые физические воздействия. Инертна к химическим воздействиям, биологически устойчива и, кроме того, не склонна к возгораниям.
PIR-плита ТЕХНОНИКОЛЬ
Во время эксплуатации (а срок использования PIR-плит LOGICPIR составляет 50 лет) материал не теряет своих свойств. Его коэффициент теплопроводности не меняется даже при намокании: сам по себе утеплитель не впитывает воду. Дополнительную парозащиту обеспечивает и тот самый фольгированный слой — если при монтаже плит проклеить все стыки алюминиевым скотчем, то формируется непрерывный слой пароизоляции, не пропускающий влагу. Словом, это неплохой вариант синтетического утеплителя с одними из самых высоких характеристик.
Видео: Утепление каркасного дома PIR плитами
Таблица теплопроводности материалов на А
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 840 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0.116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Для чего используются такие расчеты в практическом приложении?
Оценка эффективности имеющейся термоизоляции
А для чего бывает необходимо вычислять это сопротивление, какая от этого практическая польза?
Такими расчетами можно очень точно оценить степень термоизоляции своего жилья.
Дело в том, что для различных климатических регионов России специалистами рассчитаны так называемые нормативные показатели этого сопротивления теплопередаче, отдельно для стен, перекрытий и покрытий. То есть если сопротивление конструкции отвечает этой норме, то за утепление можно быть спокойным.
Значение этих нормированных сопротивлений для разных строительных конструкций можно найти, воспользовавшись предлагаемой картой схемой.
Карта-схема территории России для определения нормированных значений сопротивлений теплопередаче.
Если не дотягивает – надо принимать меры, усиливать термоизоляцию, чтобы минимизировать потери тепла. И, стало быть, решить обратную задачу. То есть с использованием той же формулы (сопротивление от коэффициента теплопроводности и толщины) найти ту толщину утепления, которая восполнит имеющийся «дефицит» до нормы.
Термоизоляционную конструкцию сразу следует делать с опорой на проведенные теплотехнические расчеты.
Ну а если термоизоляции пока нет, то тут и вовсе все просто. Тогда потребуется определить, какой слой выбранного утеплительного материала обеспечит выход на нормированное значение сопротивления теплопередаче.
Определение уровня тепловых потерь
Еще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.
Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.
Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.
R = Δt / q
Δt — разница температур по обе стороны конструкции, ℃.
q — удельное количество теряемого тепла, Вт.
То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.
Q = S × Δt/R
Q — теплопотери через ограждающую конструкцию, Вт.
S — площадь этой конструкции, м².
Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.
Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?
Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.
Таблица приведенных значений сопротивления теплопередаче для окон, остекленных балконных дверей, световых проемов (фонарей)
Материал и схема запонения проема | Приведенное термическое Ro, м ² × °С/Вт | |
Д и ПВХ | А | |
Двойное остекление в спаренных переплетах | 0.4 | — |
Двойное остекление в раздельных переплетах | 0.44 | 0,34* |
Тройное остекление в раздельно-спаренных переплетах | 0.55 | 0.46 |
Однокамерный стеклопакет: | ||
— из обычного стекла | 0.38 | 0.34 |
— из стекла с твердым селективным покрытием | 0.51 | 0.43 |
— из стекла с мягким селективным покрытием | 0.56 | 0.47 |
Двухкамерный стеклопакет: | ||
— из обычного стекла (с межстекольным расстоянием 6 мм) | 0.51 | 0.43 |
— из обычного стекла (с межстекольным расстоянием 12 мм) | 0.54 | 0.45 |
— из стекла с твердым селективным покрытием | 0.58 | 0.48 |
— из стекла с мягким селективным покрытием | 0.68 | 0.52 |
— из стекла с твердым селективным покрытием и заполнением аргоном | 0.65 | 0.53 |
Обычное стекло и однокамерный стеклопакет в раздельных переплетах: | ||
— из обычного стекла | 0.56 | — |
— из стекла с твердым селективным покрытием | 0.65 | — |
— из стекла с мягким селективным покрытием | 0.72 | — |
— из стекла с твердым селективным покрытием и заполнением аргоном | 0.69 | — |
Обычное стекло и двухкамерный стеклопакет в раздельных переплетах: | ||
— из обычного стекла | 0.68 | — |
— из стекла с твердым селективным покрытием | 0.74 | — |
— из стекла с мягким селективным покрытием | 0.81 | — |
— из стекла с твердым селективным покрытием и заполнением аргоном | 0.82 | — |
Два однокамерных стеклопакета в спаренных переплетах | 0.7 | — |
Два однокамерных стеклопакета в раздельных переплетах | 0.74 | — |
Четырехслойное остекление в двух спаренных переплетах | 0.8 | — |
Блоки стеклянные пустотные (с шириной кладочных швов 6 мм) размером: | ||
-200×200 ×100 мм | 0,31 (без переплета) | |
-250×250 ×100 мм | 0,33 (без переплета) | |
Примечания: | ||
Д и ПВХ — переплеты из дерева или пластика (поливинилхлорида) | ||
А — переплеты из алюмииия | ||
* — перепеты из стали | ||
все указанные значения даны для площади остекления 75% от площади светового проема |
Понятно, что тепловые потери будут считаться, исходя из площади остекления и разницы температур.
Надо заметить, что профессиональные теплотехнические расчеты учитывают еще и множество различных поправочных коэффициентов, в том числе на инсоляцию (воздействие солнечных лучей), светопоглощающие и отражающие свойства поверхностей, неоднородность конструкций и другие. Но для самостоятельной первичной оценки достаточно и того алгоритма, что приведен выше.
Для любителей же более обстоятельного подхода можно порекомендовать следующий видеосюжет:
Видео: Алгоритмы профессионального расчета сопротивления теплопередаче стен
Мы же завершим публикацию онлайн-калькулятором, который вполне позволяет на бытовом уровне решить ряд задач, о которых шла речь выше.
Калькулятор расчета термического сопротивления ограждающей конструкции
Перейти к расчётам
Таблица теплопроводности материалов на Б[adsp-pro-18]
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Таблица теплопроводности материалов на Кл…
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0.29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.2 | 1150 |
Таблица теплопроводности материалов на Р
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Ракушечник | 1000…1800 | 0.27…0.63 | — |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Таблица теплопроводности материалов на Пер-Пи
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Таблица теплопроводности материалов на Ка…
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Каменноугольная пыль | 730 | 0.12 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Таблица теплопроводности материалов на Д-И
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Таблица теплопроводности материалов на М-О
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0.7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.038 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0.15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Таблица теплопроводности материалов на Ке…-Ки…
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Таблица теплопроводности материалов на Г
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Газо- и пенобетон, газо- и пеносиликат | 300…1000 | 0.08…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Таблица теплопроводности материалов на С-
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Таблица теплопроводности материалов на По-Пр
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996 – 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 200…600 | 0.065…0.145 | 1060 |
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе | 200…500 | 0.057…0.113 | 1060 |
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах | 200…500 | 0.052…0.105 | 1060 |
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах | 200…500 | 0.062…0.121 | 1060 |
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.28 | — |
Пробка техническая | 50 | 0.037 | 1800 |
Таблица теплопроводности материалов на Л
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Коэффициенты теплопроводности материалов (по СНиП II-3-79*)
Коэффициенты теплопроводности материалов (по СНиП II-3-79*) |
Коэффициенты теплопроводности материалов (по СНиП II-3-79*)
| |
Материал | Вт/м·К° |
Железобетон | 1,69 |
Бетон на гравии и щебне из природного камня | 1,51 |
Туфобетон (пл. 1800)1Туфобетон (пл. 1800)1 | 0,64 |
Туфобетон (пл. 1600) | 0,52 |
Туфобетон (пл. 1400) | 0,41 |
Туфобетон (пл. 1200) | 0,29 |
Пемзобетон (пл. 1600) | 0,52 |
Пемзобетон (пл. 1400) | 0,42 |
Пемзобетон (пл. 1200) | 0,34 |
Пемзобетон (пл. 1000) | 0,26 |
Пемзобетон (пл. 800) | 0,19 |
Бетон на вулканическом шлаке (пл. 1600) | 0,52 |
Бетон на вулканическом шлаке (пл. 1400) | 0,41 |
Бетон на вулканическом шлаке (пл. 1200) | 0,33 |
Бетон на вулканическом шлаке (пл. 1000) | 0,24 |
Бетон на вулканическом шлаке (пл. 800) | 0,20 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон (пл. 1800) | 0,66 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон (пл. 1600) | 0,58 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон (пл. 1400) | 0,47 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон (пл. 1200) | 0,36 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон (пл. 1000) | 0,27 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон (пл. 800) | 0,21 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон (пл. 600) | 0,16 |
Керамзитобетон на керамзитовом песке и керамзитопенобетон (пл. 500) | 0,14 |
Керамзитобетон на кварцевом песке с поризацией (пл.1200) | 0,41 |
Керамзитобетон на кварцевом песке с поризацией (пл.1000) | 0,33 |
Керамзитобетон на кварцевом песке с поризацией (пл.800) | 0,23 |
Керамзитобетон на перлитовом песке (пл.1000) | 0,28 |
Керамзитобетон на перлитовом песке (пл. 800) | 0,22 |
Шунгизитобетон (пл. 1400) | 0,49 |
Шунгизитобетон (пл. 1200) | 0,36 |
Шунгизитобетон (пл. 1000) | 0,27 |
Перлитобетон (пл. 1200) | 0,29 |
Перлитобетон (пл. 1000) | 0,22 |
Перлитобетон (пл. 800) | 0,16 |
Перлитобетон (пл. 600) | 0,12 |
Шлакопемзобетон (пл. 1800) | 0,52 |
Шлакопемзобетон (пл. 1600) | 0,41 |
Шлакопемзобетон (пл. 1400) | 0,35 |
Шлакопемзобетон (пл. 1200) | 0,29 |
Шлакопемзобетон (пл. 1000) | 0,23 |
Шлакопемзопено и шлакопемзогазобетон (пл. 1600) | 0,47 |
Шлакопемзопено и шлакопемзогазобетон (пл. 1400) | 0,35 |
Шлакопемзопено и шлакопемзогазобетон (пл. 1200) | 0,29 |
Шлакопемзопено и шлакопемзогазобетон (пл. 1000) | 0,23 |
Шлакопемзопено и шлакопемзогазобетон (пл. 800) | 0,17 |
Бетон на доменных и гранулированных шлаках (пл. 1800) | 0,58 |
Бетон на доменных и гранулированных шлаках (пл. 1600) | 0,47 |
Бетон на доменных и гранулированных шлаках (пл. 1400) | 0,41 |
Бетон на доменных и гранулированных шлаках (пл. 1200) | 0,35 |
Аглопоритобетон и бетоны на топливных шлаках (пл. 1800) | 0,70 |
Аглопоритобетон и бетоны на топливных шлаках (пл. 1600) | 0,58 |
Аглопоритобетон и бетоны на топливных шлаках (пл. 1400) | 0,47 |
Аглопоритобетон и бетоны на топливных шлаках (пл. 1200) | 0,35 |
Аглопоритобетон и бетоны на топливных шлаках (пл. 1000) | 0,29 |
Бетон на зольном гравии (пл. 1400) | 0,47 |
Бетон на зольном гравии (пл. 1200) | 0,35 |
Бетон на зольном гравии (пл. 1000) | 0,24 |
Вермикулитобетон (пл. 800) | 0,21 |
Вермикулитобетон (пл. 600) | 0,14 |
Вермикулитобетон (пл. 400) | 0,09 |
Вермикулитобетон (пл. 300) | 0,08 |
Газо- и пенобетон, газо- и пеносиликат (пл. 1000) | 0,29 |
Газо- и пенобетон, газо- и пеносиликат (пл. 800) | 0,21 |
Газо- и пенобетон, газо- и пеносиликат (пл. 600) | 0,14 |
Газо- и пенобетон, газо- и пеносиликат (пл. 400) | 0,11 |
Газо- и пенобетон, газо- и пеносиликат (пл. 300) | 0,08 |
Газо- и пенозолобетон (пл. 1200) | 0,29 |
Газо- и пенозолобетон (пл. 1000) | 0,23 |
Газо- и пенозолобетон (пл. 800) | 0,17 |
Цементно-песчаный раствор | 0,58 |
Сложный (песок, известь, цемент) расвор | 0,52 |
Известково-песчаный раствор | 0,47 |
Цементно-шлаковый раствор (пл. 1400) | 0,41 |
Цементно-шлаковый раствор (пл. 1200) | 0,35 |
Цементно-перлитовый раствор (пл. 1000) | 0,21 |
Цементно-перлитовый раствор (пл. 800) | 0,16 |
Гипсоперлитовый раствор | 0,14 |
Поризованный гипсоперлитовый раствор (пл. 500) | 0,12 |
Поризованный гипсоперлитовый раствор (пл. 400) | 0,09 |
Плиты из гипса (пл. 1200) | 0,35 |
Плиты из гипса (пл. 1000) | 0,23 |
Листы гипсовые обшивочные (сухая штукатурка) | 0,15 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 0,56 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 0,52 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 0,47 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 0,70 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе (пл. 1200) | 0,35 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе (пл. 1000) | 0,29 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 0,52 |
Кладка из керамического пустотного плотностью 1400 кг/м3 кирпича на цементно-песчаном растворе | 0,47 |
Кладка из керамического пустотного плотностью 1300 кг/м3 кирпича на цементно-песчаном растворе | 0,41 |
Кладка из керамического пустотного плотностью 1000 кг/м3 кирпича на цементно-песчаном растворе | 0,35 |
Кладка из силикатного 11-типустотного кирпича на цементно-песчаном растворе | 0,64 |
Кладка из силикатного 14-типустотного кирпича на цементно-песчаном растворе | 0,52 |
Гранит, гнейс и базальт | 3,49 |
Мрамор | 2,91 |
Известняк (пл. 2000) | 0,93 |
Известняк (пл. 1800) | 0,70 |
Известняк (пл. 1600) | 0,58 |
Известняк (пл. 1400) | 0,49 |
Туф (пл. 2000) | 0,76 |
Туф (пл. 1800) | 0,56 |
Туф (пл. 1600) | 0,41 |
Туф (пл. 1400) | 0,33 |
Туф (пл. 1200) | 0,27 |
Туф (пл. 1000) | 0,21 |
Сосна и ель поперек волокон (ГОСТ 8486-66*, ГОСТ 9463-72*) | 0,09 |
Сосна и ель вдоль волокон | 0,18 |
Дуб поперек волокон (ГОСТ 9462-71*, ГОСТ 2695-83) | 0,10 |
Дуб вдоль волокон | 0,23 |
Фанера клееная (ГОСТ 3916-69) | 0,12 |
Картон облицовочный | 0,18 |
Картон строительный многослойный (ГОСТ 4408-75*) | 0,13 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74*, ГОСТ 10632-77*) (пл. 1000) | 0,15 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74*, ГОСТ 10632-77*) (пл. 800) | 0,13 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74*, ГОСТ 10632-77*) (пл. 600) | 0,11 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74*, ГОСТ 10632-77*) (пл. 400) | 0,08 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74*, ГОСТ 10632-77*) (пл. 200) | 0,06 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе (пл. 800) | 0,16 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе (пл. 600) | 0,12 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе (пл. 400) | 0,08 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе (пл. 300) | 0,07 |
Плиты камышитовые (пл. 300) | 0,07 |
Плиты камышитовые (пл. 200) | 0,06 |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) (пл. 300) | 0,064 |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) (пл. 200) | 0,052 |
Пакля | 0,05 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) (пл. 125) | 0,056 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) (пл. 75) | 0,052 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) (пл. 50) | 0,048 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) (пл. 350) | 0,091 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) (пл. 300) | 0,084 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) (пл. 200) | 0,070 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) (пл. 100) | 0,056 |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) (пл. 50) | 0,048 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) | 0,064 |
Плиты минераловатные полужесткие на крахмальном связующем (ТУ 400-1-61-74 Мосгорисполкома) (пл. 200) | 0,07 |
Плиты минераловатные полужесткие на крахмальном связующем (ТУ 400-1-61-74 Мосгорисполкома) (пл. 125) | 0,056 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 0,056 |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 0,061 |
Пенополистирол (ТУ 6-05-11-78-78) (пл. 150) | 0,05 |
Пенополистирол (ТУ 6-05-11-78-78) (пл. 100) | 0,041 |
Пенополистирол (ГОСТ 15588-70*) | 0,038 |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) (пл. 125) | 0,052 |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) (пл. 100 и менее) | 0,041 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) (пл. 80) | 0,041 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) (пл. 60) | 0,035 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) (пл. 40) | 0,029 |
Плиты из резольно-фенолформальдегидного пенопласта (ГОСТ 20916-75) (пл. 100) | 0,047 |
Плиты из резольно-фенолформальдегидного пенопласта (ГОСТ 20916-75) (пл. 75) | 0,043 |
Плиты из резольно-фенолформальдегидного пенопласта (ГОСТ 20916-75) (пл. 50) | 0,041 |
Плиты из резольно-фенолформальдегидного пенопласта (ГОСТ 20916-75) (пл. 40) | 0,038 |
Перлитопластбетон (ТУ 480-1-145-74) (пл. 200) | 0,041 |
Перлитопластбетон (ТУ 480-1-145-74) (пл. 100) | 0,035 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) (пл. 300) | 0,076 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) (пл. 200) | 0,064 |
Гравий керамзитовый (ГОСТ 9759-83) (пл. 800) | 0,18 |
Гравий керамзитовый (ГОСТ 9759-83) (пл. 600) | 0,14 |
Гравий керамзитовый (ГОСТ 9759-83) (пл. 400) | 0,12 |
Гравий керамзитовый (ГОСТ 9759-83) (пл. 300) | 0,108 |
Гравий керамзитовый (ГОСТ 9759-83) (пл. 200) | 0,099 |
Гравий шунгизитовый (ГОСТ 19345-83) (пл. 800) | 0,16 |
Гравий шунгизитовый (ГОСТ 19345-83) (пл. 600) | 0,13 |
Гравий шунгизитовый (ГОСТ 19345-83) (пл. 400) | 0,11 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорит (ГОСТ 11991-83) (пл. 800) | 0,18 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорит (ГОСТ 11991-83) (пл. 600) | 0,15 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорит (ГОСТ 11991-83) (пл. 400) | 1,122 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) (пл. 600) | 0,11 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) (пл. 400) | 0,076 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) (пл. 200) | 0,064 |
Вермикулит вспученный (ГОСТ 12865-67) (пл. 200) | 0,076 |
Вермикулит вспученный (ГОСТ 12865-67) (пл. 100) | 0,064 |
Песок для строительных работ (ГОСТ 8736-77*) | 0,35 |
Пеностекло или газостекло (ТУ 21-БССР-86-73) (пл. 400) | 0,11 |
Пеностекло или газостекло (ТУ 21-БССР-86-73) (пл. 300) | 0,09 |
Пеностекло или газостекло (ТУ 21-БССР-86-73) (пл. 200) | 0,07 |
Листы асбестоцементные плоские (ГОСТ 18124-75*) (пл. 1800) | 0,35 |
Листы асбестоцементные плоские (ГОСТ 18124-75*) (пл. 1600) | 0,23 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76*, ГОСТ 9548-74*) (пл. 1400) | 0,27 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76*, ГОСТ 9548-74*) (пл. 1200) | 0,22 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76*, ГОСТ 9548-74*) (пл. 1000) | 0,17 |
Асфальтобетон (ГОСТ 9128-84) | 1,05 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) (пл. 400) | 0,111 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) (пл. 300) | 0,087 |
Рубероид (ГОСТ 10923-82), пергамин (ГОСТ 2697-83), толь (ГОСТ 10999-76*) | 0,17 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) (пл. 1800) | 0,38 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) (пл. 1600) | 0,33 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) (пл. 1800) | 0,35 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) (пл. 1600) | 0,29 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) (пл. 1400) | 0,23 |
Чугун | 50 |
Алюминий (ГОСТ 22233-83) | 221 |
Медь (ГОСТ 859-78*) | 407 |
Сопутствующие товары | «ЛСР. Стеновые»
Газобетонная крошка ЛСР
Характеристики:
-
Фракция, мм 0 – 40
-
Насыпная плотность, кг/м3 (не более) 330
-
Расчетный коэффициент теплопроводности λб, Вт/м.оС (не более) 0,12
-
Прочность (сдавливанием в цилиндре), МПа (не менее) 0,5
-
Группа горючести НГ
Область применения:
-
Теплоизоляционная засыпка полов, чердачных перекрытий и пазух многослойных ограждающих конструкций [при Rтр = 4,6 м2.оС/Вт (для покрытий) толщина засыпки составит 0,5 м];
-
Уклонообразующая засыпка плоских кровель;
-
Звукоизоляционная подсыпка перекрытий, отделяющих встроенные помещения коммерческого назначения от жилых помещений;
-
Водоудерживающий пористый наполнитель при устройстве стяжек и бетонных подготовок.
Форма отгрузки:
Плюсы и минусы в сравнении с керамзитом:
Единственный недостаток газобетонной крошки – запыленность (3-5% по объему). При работе с ней желательно использовать защитные очки и респиратор.
В отличие от керамзита газобетонная крошка, за счет высокой шероховатости поверхности и неправильной формы частиц, не «осыпается». По сформированному уклону можно спокойно ходить, не опасаясь «растоптать» выглаженную поверхность. Именно это свойство определяет более высокую технологичность газобетонной крошки в сравнении с керамзитом. Дополнительный плюс – меньшая теплопроводность, которая может быть учтена в теплотехническом расчете.
Использование газобетонной крошки для создания уклона на плоской кровле
Точные геометрические параметры блоков ЛСР позволят вести тонкошовную кладку с использованием клея ЛСР, который готовится непосредственно на строительной площадке из сухой смеси и воды.
В первую очередь, использование клея дешевле, чем использование цементно-песчаного раствора. Его расход меньше в шесть раз, а цена выше всего в два — два с половиной.
Во вторую очередь, использование мелкозернистого клея исключает образование так называемых «мостиков холода», — прослоек материала с выскокй теплопроводностью, приводящих к снижению однородности кладки и росту теплопотерь.
В третьих, толстый слой раствора увеличивает шанс сделать кладку неровной, а клей только подчеркпвает ровность блоков ЛСР.
И, наконец, кладка из блоков ЛСР на тонкослойном клеевом растворе прочнее кладки с толстыми швами. И прочность при сжатии, и прочность при изгибе у такой кладки будут выше за счет когезионного характера сцепления между бетоном и клеем.
Смешивание рекомендуется производить механическим способом (миксером, дрелью с насадкой и т. п.) путем постепенного добавления сухого раствора в заранее отмеренное количество воды комнатной температуры при постоянном перемешивании до получения однородной массы.
Полученный раствор должен отстояться 10-15 минут для полного растворения специальных добавок, после повторного перемешивания в течение 1 минуты клей готов к применению. Температура полученного раствора и основы должна быть не ниже + 5°С.
В процессе ведения работ необходимо время от времени перемешивать готовый раствор для поддержания однородности его консистенции.
Установка блока на нанесенный раствор должна быть осуществлена в течении 15 минут.
Общие рекомендации по зимней кладке:
В холодное время года (до -15ºС) используйте клей «ЛСР Зимний» c противоморозной добавкой
Ведение кладки на клею имеет много достоинств.
Зимнюю сухую клеевую смесь нужно хранить в тепле, затворять горячей (+40..+60 С) водой. Выносить на подмости к кладке в утепленной емкости с крышкой. При отрицательных температурах время от расстилания раствора до укладки на него блоков и время коррекции уложенного блока сокращаются. При зимней кладке нужен сплошной контроль качества заполнения и толщины клеевых швов.
Рецептура приготовления |
компоненты |
|
сухая смесь, г |
вода, л |
|
ЛСР клей |
1000 |
0.3 |
ЛСР клей «Зимний» |
1000 |
0.2 |
Толщина блока ЛСР |
Расход клея |
|
Кг/куб.м |
Кг/кв.м |
|
ЛСР 100 |
19,3 |
1,9 |
ЛСР 150 |
19,9 |
2.9 |
ЛСР 200 |
16,4 |
3,3 |
ЛСР 250 |
15,9 |
4,0 |
ЛСР 300 |
15,5 |
4,6 |
ЛСР 375 |
15,1 |
5.7 |
ЛСР 400 |
15 |
6,0 |
Теплопроводность бетона и кирпича
Полная таблица теплопроводности различных строительных материалов
В моей работе достаточно часто бывает необходимо уточнить теплопроводность различных материалов. Чтобы каждый раз не искать в справочниках, я решил собрать данные по теплопроводности строительных материалов в таблицу.
Каковую здесь для Вашего удобства и выкладываю. Пользуйтесь!
И не забывайте советовать друзьям.
Таблица теплопроводности материалов | |||
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м·град) | Теплоемкость, Дж/(кг·град) |
ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 840 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0.116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0.05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо- и пенобетон, газо- и пеносиликат | 300…1000 | 0.08…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0.29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.2 | 1150 |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0.7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.038 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0.15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Парафин | 870…920 | 0.27 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пемза | 400…700 | 0.11…0.16 | — |
Пемзобетон | 800…1600 | 0.19…0.52 | 840 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пеногипс | 300…600 | 0.1…0.15 | — |
Пенозолобетон | 800…1200 | 0.17…0.29 | — |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол «Пеноплекс» | 35…43 | 0.028…0.03 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0.041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеносиликальцит | 400…1200 | 0.122…0.32 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0.082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) | 200 | 0.064 | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) | 50…350 | 0.048…0.091 | 840 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996 – 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 200…600 | 0.065…0.145 | 1060 |
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе | 200…500 | 0.057…0.113 | 1060 |
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах | 200…500 | 0.052…0.105 | 1060 |
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах | 200…500 | 0.062…0.121 | 1060 |
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.28 | — |
Пробка техническая | 50 | 0.037 | 1800 |
Ракушечник | 1000…1800 | 0.27…0.63 | — |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Шевелин | 140…190 | 0.056…0.07 | — |
Шелк | 100 | 0.038…0.05 | — |
Шлак гранулированный | 500 | 0.15 | 750 |
Шлак доменный гранулированный | 600…800 | 0.13…0.17 | — |
Шлак котельный | 1000 | 0.29 | 700…750 |
Шлакобетон | 1120…1500 | 0.6…0.7 | 800 |
Шлакопемзобетон (термозитобетон) | 1000…1800 | 0.23…0.52 | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 800…1600 | 0.17…0.47 | 840 |
Штукатурка гипсовая | 800 | 0.3 | 840 |
Штукатурка известковая | 1600 | 0.7 | 950 |
Штукатурка из синтетической смолы | 1100 | 0.7 | — |
Штукатурка известковая с каменной пылью | 1700 | 0.87 | 920 |
Штукатурка из полистирольного раствора | 300 | 0.1 | 1200 |
Штукатурка перлитовая | 350…800 | 0.13…0.9 | 1130 |
Штукатурка сухая | — | 0.21 | — |
Штукатурка утепляющая | 500 | 0.2 | — |
Штукатурка фасадная с полимерными добавками | 1800 | 1 | 880 |
Штукатурка цементная | — | 0.9 | — |
Штукатурка цементно-песчаная | 1800 | 1.2 | — |
Шунгизитобетон | 1000…1400 | 0.27…0.49 | 840 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка | 200…600 | 0.064…0.11 | 840 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка | 400…800 | 0.12…0.18 | 840 |
Эбонит | 1200 | 0.16…0.17 | 1430 |
Эбонит вспученный | 640 | 0.032 | — |
Эковата | 35…60 | 0.032…0.041 | 2300 |
Энсонит (прессованный картон) | 400…500 | 0.1…0.11 | — |
Эмаль (кремнийорганическая) | — | 0.16…0.27 | — |
termoizol.com
Коэффициент теплопроводности материалов
Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материалов
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | 0 | ||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Таблица теплопроводности строительных материалов
Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.
Сравнивают самые разные материалы
в сухом состоянии | при нормальной влажности | при повышенной влажности | |
ЦПР (цементно-песчаный раствор) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка | 0,25 | ||
Пенобетон, газобетон на цементе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементе, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон, газобетон на цементе, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон, газобетон на извести, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на извести, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон, газобетон на извести, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Оконное стекло | 0,76 | ||
Арболит | 0,07-0,17 | ||
Бетон с природным щебнем, 2400 кг/м3 | 1,51 | ||
Легкий бетон с природной пемзой, 500-1200 кг/м3 | 0,15-0,44 | ||
Бетон на гранулированных шлаках, 1200-1800 кг/м3 | 0,35-0,58 | ||
Бетон на котельном шлаке, 1400 кг/м3 | 0,56 | ||
Бетон на каменном щебне, 2200-2500 кг/м3 | 0,9-1,5 | ||
Бетон на топливном шлаке, 1000-1800 кг/м3 | 0,3-0,7 | ||
Керамическийй блок поризованный | 0,2 | ||
Вермикулитобетон, 300-800 кг/м3 | 0,08-0,21 | ||
Керамзитобетон, 500 кг/м3 | 0,14 | ||
Керамзитобетон, 600 кг/м3 | 0,16 | ||
Керамзитобетон, 800 кг/м3 | 0,21 | ||
Керамзитобетон, 1000 кг/м3 | 0,27 | ||
Керамзитобетон, 1200 кг/м3 | 0,36 | ||
Керамзитобетон, 1400 кг/м3 | 0,47 | ||
Керамзитобетон, 1600 кг/м3 | 0,58 | ||
Керамзитобетон, 1800 кг/м3 | 0,66 | ||
ладка из керамического полнотелого кирпича на ЦПР | 0,56 | 0,7 | 0,81 |
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) | 0,35 | 0,47 | 0,52 |
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) | 0,41 | 0,52 | 0,58 |
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) | 0,47 | 0,58 | 0,64 |
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) | 0,7 | 0,76 | 0,87 |
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот | 0,64 | 0,7 | 0,81 |
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот | 0,52 | 0,64 | 0,76 |
Известняк 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Известняк 1+600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Песок строительный, 1600 кг/м3 | 0,35 | ||
Гранит | 3,49 | ||
Мрамор | 2,91 | ||
Керамзит, гравий, 250 кг/м3 | 0,1 | 0,11 | 0,12 |
Керамзит, гравий, 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, 350 кг/м3 | 0,115-0,12 | 0,125 | 0,14 |
Керамзит, гравий, 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, 800 кг/м3 | 0,18 | ||
Гипсовые плиты, 1100 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсовые плиты, 1350 кг/м3 | 0,23 | 0,35 | 0,41 |
Глина, 1600-2900 кг/м3 | 0,7-0,9 | ||
Глина огнеупорная, 1800 кг/м3 | 1,4 | ||
Керамзит, 200-800 кг/м3 | 0,1-0,18 | ||
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 | 0,23-0,41 | ||
Керамзитобетон, 500-1800 кг/м3 | 0,16-0,66 | ||
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 | 0,22-0,28 | ||
Кирпич клинкерный, 1800 — 2000 кг/м3 | 0,8-0,16 | ||
Кирпич облицовочный керамический, 1800 кг/м3 | 0,93 | ||
Бутовая кладка средней плотности, 2000 кг/м3 | 1,35 | ||
Листы гипсокартона, 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Листы гипсокартона, 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Фанера клеенная | 0,12 | 0,15 | 0,18 |
ДВП, ДСП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
ДВП, ДСП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДВП, ДСП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДВП, ДСП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДВП, ДСП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 | 0,33 | ||
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 | 0,38 | ||
Линолеум ПВХ на тканевой основе, 1400 кг/м3 | 0,2 | 0,29 | 0,29 |
Линолеум ПВХ на тканевой основе, 1600 кг/м3 | 0,29 | 0,35 | 0,35 |
Линолеум ПВХ на тканевой основе, 1800 кг/м3 | 0,35 | ||
Листы асбоцементные плоские, 1600-1800 кг/м3 | 0,23-0,35 | ||
Ковровое покрытие, 630 кг/м3 | 0,2 | ||
Поликарбонат (листы), 1200 кг/м3 | 0,16 | ||
Полистиролбетон, 200-500 кг/м3 | 0,075-0,085 | ||
Ракушечник, 1000-1800 кг/м3 | 0,27-0,63 | ||
Стеклопластик, 1800 кг/м3 | 0,23 | ||
Черепица бетонная, 2100 кг/м3 | 1,1 | ||
Черепица керамическая, 1900 кг/м3 | 0,85 | ||
Черепица ПВХ, 2000 кг/м3 | 0,85 | ||
Известковая штукатурка, 1600 кг/м3 | 0,7 | ||
Штукатурка цементно-песчаная, 1800 кг/м3 | 1,2 |
Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Пробковое дерево | 0,035 | ||
Береза | 0,15 | ||
Кедр | 0,095 | ||
Каучук натуральный | 0,18 | ||
Клен | 0,19 | ||
Липа (15% влажности) | 0,15 | ||
Лиственница | 0,13 | ||
Опилки | 0,07-0,093 | ||
Пакля | 0,05 | ||
Паркет дубовый | 0,42 | ||
Паркет штучный | 0,23 | ||
Паркет щитовой | 0,17 | ||
Пихта | 0,1-0,26 | ||
Тополь | 0,17 |
Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.
Бронза | 22-105 | Алюминий | 202-236 | |
Медь | 282-390 | Латунь | 97-111 | |
Серебро | 429 | Железо | 92 | |
Олово | 67 | Сталь | 47 | |
Золото | 318 |
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающихконструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.
stroychik.ru
Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.
Навигация по справочнику TehTab.ru: главная страница / / Техническая информация / / Физический справочник / / Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… / / Теплопроводность. Коэффициенты теплопроводности. / / Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
tehtab.ru
Коэффициент теплопроводности строительных материалов таблица
Любой строитель с уверенностью скажет вам, что прежде, чем приступить к непосредственному выполнению работ, необходимо тщательно разработать проект. Очевидно, что задания такого типа ложатся на плечи квалифицированных в этой области специалистов – проектировщиков. Чтобы деятельность проектировщика была успешной, будь то дипломированный мастер или только новичок, ему необходимо обладать большим количество информации о комплексе свойств материалов, задействованных в конкретном проекте. Специалисту не только придется создавать будущее сооружение с нуля, но и в процессе доработки корректировать его внешний вид. Кроме того, важным является и расчет теплотехнических параметров здания.
Успешная работа проектировщика не только гарантирует качественный результат в краткосрочной перспективе, но напрямую определяет состояние здание в далеком будущее.
Материал | Коэффициент теплопроводности, Вт/(м·°C) | ||
В сухом состоянии | Условия А («обычные») | Условия Б («влажные») | |
Пенополистирол (ППС) | 0,036 — 0,041 | 0,038 — 0,044 | 0,044 — 0,050 |
Пенополистирол экструдированный (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Войлок шерстяной | 0,045 | ||
Цементно-песчаный раствор (ЦПР) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка обычная | 0,25 | ||
Минеральная вата каменная, 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Минеральная вата каменная, 140-175 кг/м3 | 0,037 | 0,043 | 0,046 |
Минеральная вата каменная, 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата каменная, 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Минеральная вата каменная, 25-50 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата стеклянная, 85 кг/м3 | 0,044 | 0,046 | 0,05 |
Минеральная вата стеклянная, 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Минеральная вата стеклянная, 60 кг/м3 | 0,038 | 0,04 | 0,045 |
Минеральная вата стеклянная, 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Минеральная вата стеклянная, 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Минеральная вата стеклянная, 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Минеральная вата стеклянная, 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Минеральная вата стеклянная, 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Минеральная вата стеклянная, 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Пенобетон и газобетон на цементном вяжущем, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон и газобетон на цементном вяжущем, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон и газобетон на цементном вяжущем, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон и газобетон на цементном вяжущем, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон и газобетон на известняковом вяжущем, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Пенобетон и газобетон на известняковом вяжущем, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон и газобетон на известняковом вяжущем, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон и газобетон на известняковом вяжущем, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Медь | 382 — 390 | ||
Алюминий | 202 — 236 | ||
Латунь | 97 — 111 | ||
Железо | 92 | ||
Олово | 67 | ||
Сталь | 47 | ||
Стекло оконное | 0,76 | ||
Свежий снег | 0,10 — 0,15 | ||
Вода жидкая | 0,56 | ||
Воздух (+27 °C, 1 атм) | 0,026 | ||
Вакуум | 0 | ||
Аргон | 0,0177 | ||
Ксенон | 0,0057 | ||
Арболит (подробнее здесь) | 0,07 — 0,17 | ||
Пробковое дерево | 0,035 | ||
Железобетон плотностью 2500 кг/м3 | 1,69 | 1,92 | 2,04 |
Бетон (на гравии или щебне) плотностью 2400 кг/м3 | 1,51 | 1,74 | 1,86 |
Керамзитобетон плотностью 1800 кг/м3 | 0,66 | 0,80 | 0,92 |
Керамзитобетон плотностью 1600 кг/м3 | 0,58 | 0,67 | 0,79 |
Керамзитобетон плотностью 1400 кг/м3 | 0,47 | 0,56 | 0,65 |
Керамзитобетон плотностью 1200 кг/м3 | 0,36 | 0,44 | 0,52 |
Керамзитобетон плотностью 1000 кг/м3 | 0,27 | 0,33 | 0,41 |
Керамзитобетон плотностью 800 кг/м3 | 0,21 | 0,24 | 0,31 |
Керамзитобетон плотностью 600 кг/м3 | 0,16 | 0,2 | 0,26 |
Керамзитобетон плотностью 500 кг/м3 | 0,14 | 0,17 | 0,23 |
Крупноформатный керамический блок (тёплая керамика) | 0,14 — 0,18 | ||
Кирпич керамический полнотелый, кладка на ЦПР | 0,56 | 0,7 | 0,81 |
Кирпич силикатный, кладка на ЦПР | 0,70 | 0,76 | 0,87 |
Кирпич керамический пустотелый (плотность 1400 кг/м3 с учетом пустот), кладка на ЦПР | 0,47 | 0,58 | 0,64 |
Кирпич керамический пустотелый (плотность 1300 кг/м3 с учетом пустот), кладка на ЦПР | 0,41 | 0,52 | 0,58 |
Кирпич керамический пустотелый (плотность 1000 кг/м3 с учетом пустот), кладка на ЦПР | 0,35 | 0,47 | 0,52 |
Кирпич силикатный, 11 пустот (плотность 1500 кг/м3), кладка на ЦПР | 0,64 | 0,7 | 0,81 |
Кирпич силикатный, 14 пустот (плотность 1400 кг/м3), кладка на ЦПР | 0,52 | 0,64 | 0,76 |
Гранит | 3,49 | 3,49 | 3,49 |
Мрамор | 2,91 | 2,91 | 2,91 |
Известняк, 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Известняк, 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк, 1600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк, 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Туф, 2000 кг/м3 | 0,76 | 0,93 | 1,05 |
Туф, 1800 кг/м3 | 0,56 | 0,7 | 0,81 |
Туф, 1600 кг/м3 | 0,41 | 0,52 | 0,64 |
Туф, 1400 кг/м3 | 0,33 | 0,43 | 0,52 |
Туф, 1200 кг/м3 | 0,27 | 0,35 | 0,41 |
Туф, 1000 кг/м3 | 0,21 | 0,24 | 0,29 |
Песок сухой строительный (ГОСТ 8736-77*), 1600 кг/м3 | 0,35 | ||
Фанера клееная | 0,12 | 0,15 | 0,18 |
ДСП, ДВП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
ДСП, ДВП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДСП, ДВП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДСП, ДВП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДСП, ДВП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
Пакля | 0,05 | 0,06 | 0,07 |
Гипсокартон (листы гипсовые обшивочные), 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Гипсокартон (листы гипсовые обшивочные), 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1800 кг/м3 | 0,38 | 0,38 | 0,38 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1600 кг/м3 | 0,33 | 0,33 | 0,33 |
Линолеум из ПВХ на тканевой подоснове, 1800 кг/м3 | 0,35 | 0,35 | 0,35 |
Линолеум из ПВХ на тканевой подоснове, 1600 кг/м3 | 0,29 | 0,29 | 0,29 |
Линолеум из ПВХ на тканевой подоснове, 1400 кг/м3 | 0,2 | 0,23 | 0,23 |
Эковата | 0,037 — 0,042 | ||
Перлит вспученный, песок, плотность 75 кг/м3 | 0,043 — 0,047 | ||
Перлит вспученный, песок, плотность 100 кг/м3 | 0,052 | ||
Перлит вспученный, песок, плотность 150 кг/м3 | 0,052 — 0,058 | ||
Перлит вспученный, песок, плотность 200 кг/м3 | 0,07 | ||
Пеностекло, насыпное, плотность 100 — 150 кг/м3 | 0,043 — 0,06 | ||
Пеностекло, насыпное, плотность 151 — 200 кг/м3 | 0,06 — 0,063 | ||
Пеностекло, насыпное, плотность 201 — 250 кг/м3 | 0,066 — 0,073 | ||
Пеностекло, насыпное, плотность 251 — 400 кг/м3 | 0,085 — 0,1 | ||
Пеностекло, блоки, плотность 100 — 120 кг/м3 | 0,043 — 0,045 | ||
Пеностекло, блоки, плотность 121 — 170 кг/м3 | 0,05 — 0,062 | ||
Пеностекло, блоки, плотность 171 — 220 кг/м3 | 0,057 — 0,063 | ||
Пеностекло, блоки, плотность 221 — 270 кг/м3 | 0,073 | ||
Керамзит, гравий, плотность 250 кг/м3 | 0,099 — 0,1 | 0,11 | 0,12 |
Керамзит, гравий, плотность 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, плотность 350 кг/м3 | 0,115 — 0,12 | 0,125 | 0,14 |
Керамзит, гравий, плотность 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, плотность 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, плотность 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, плотность 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, плотность 800 кг/м3 | 0,18 | ||
Гипсоплиты, плотность 1350 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсоплиты, плотность 1100 кг/м3 | 0,23 | 0,35 | 0,41 |
Перлитобетон, плотность 1200 кг/м3 | 0,29 | 0,44 | 0,5 |
Перлитобетон, плотность 1000 кг/м3 | 0,22 | 0,33 | 0,38 |
Перлитобетон, плотность 800 кг/м3 | 0,16 | 0,27 | 0,33 |
Перлитобетон, плотность 600 кг/м3 | 0,12 | 0,19 | 0,23 |
Пенополиуретан (ППУ), плотность 80 кг/м3 | 0,041 | 0,042 | 0,05 |
Пенополиуретан (ППУ), плотность 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ), плотность 40 кг/м3 | 0,029 | 0,031 | 0,04 |
Пенополиэтилен сшитый | 0,031 — 0,038 |
Ваш дом может сохранят тепло
Достижения строительной индустрии, динамика развития которой поражает, дают нам возможность существенно экономить на содержании архитектурных сооружений. Сегодня можно построить не просто надежное, безопасное и эстетически привлекательно здание, но и придать ему такие свойства как поддержание определенного микроклимата и сохранение тепла. Для этого еще на этапе разработки проекта конструкции необходимо задействовать материалы, коэффициент теплопроводности которых соответствует нашим желаниям.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещенияНемного о понятии теплопроводности
Итак, ответ на вопрос «то такое теплопроводность?» заключается в следующем: это процесс, в рамках которого элементы, обладающие большим количеством тепла, передают его менее нагретым частям конструкции, данный обмен не прекратиться ровно до тех пор, пока общая температура сооружения полностью не уравновесится. Если проецировать данное утверждение на плоскость ограждающих систем здания, то становится очевидным, что суть теплопроводности сводится к временному отрезку, за который температура становится равной во всех элементах конструкции. Если это время достаточно продолжительное, то, соответственно, теплопроводность самих материалов, на порядок ниже.
Что определяет коэффициент?
В целях систематизации полученных экспериментальным и вычислительным путем знаний, ученые в свое время решили характеризировать проводимость тепла различными строительными материалами через определённое понятие, знакомое многим специалистам соответствующей сферы. Речь идет о так называемом коэффициенте теплопроводности материалов. Данный показатель указывает какое именно количество тепла способно пройти через стандартную единицу площади материальной поверхности за одну временную единицу. В случае, когда описываемый параметр высок, то теплопередача происходит значительно быстрее, а потому и здание, построенное из стройматериала с такими свойствами, остынет гораздо быстрее желаемого. Таким образом, можно сделать вывод, что для экономии в отопительный период необходимо выстраивать дома из таких продуктов, коэффициент которых как можно ниже. Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Факторы, определяющие величину коэффициента
Конечно же, имея дело с какой-либо величиной, необходимо помнить, что существует целая система факторов, оказывающая определяющее воздействие на данное свойство. На свойство теплопроводимости материала влияют:
- Структура. Если структура продукта неоднородна, то в нем обязательно присутствуют поры. В случае прохождения тепла сквозь пористую структуру происходит минимально возможное охлаждение. Итак, большое количество пор – залог качественного сохранения тепла.
- Плотность. Высокие показатели данного параметра определяют достаточно тесное взаимодействие молекул. Вследствие сам процесс теплообмена, а также уравновешивание температур, которое происходит в итоге, осуществляется достаточно оперативно.
- Влажность. Капельки жидкости, которые располагаются в порах продукта, выталкивают сухой воздух и ускоряют теплопередачу.
Чем пригодятся эти знания на практике?
В профессиональной среде строительные материалы распределяют на два типа, необходимо подчеркнуть, что такое распределение очень удобно для понимания актуальности использования тех или иных стройматериалов новичками. Предлагаются такие типы товаров:
- конструкционные;
- теплоизоляционные.
Конструкционная категория – это основа строительства стен, ограждений, перекрытий и прочих перегородок. С их свойствами вас ознакомит специально разработанная таблица теплопроводности, в которой в оптимальной форме изложены данные, заранее вычисленные специалистами. Согласно данному источнику в процессе создания железобетонных стен необходимо устанавливать толщину, приближенную к шести метрам. Однако, на практике совершить подобное практически нереально, ведь если придерживаться описанного правила, здание само по себе будет, пускай и прочным, но все же через чур громоздким, а это противоречит принципам функциональности и эргономичности в архитектуре.
Решим проблему громоздких конструкций
Что ж, практика, как и исторический опыт, свидетельствуют о том, что железобетонные строения, коэффициент теплопроводимости которых достаточно высок, все же являются безопасными, надежными, долговечными и функциональными. Чтобы не водружать на подобные стройматериалы еще и теплосберегательную функцию, можно с легкостью обойтись укладкой как внутри помещений, так и снаружи специальных продуктов.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковымСуществует несколько вариантов утепления архитектурных конструкций. Это разнообразие вызвано в первую очередь тем, что еще на этапе проектирования специалист обязан определить решительно все пути, через которое тепло может преждевременно покидать конструкцию и ликвидировать данную проблему. Внушительное количество тепла, как правило, теряется из-за плохого утепления:
- пола;
- стен;
- крыши;
- дверей, а также окон.
Если проектировщик допустит ошибку, жильцам получившегося сооружения придется довольствоваться малой долей энергии, которую производят теплоносители. Чтобы будущий дом был и надежным, и теплосберегательным, профессионалы соответствующей отрасли разработали комбинации продуктов с различными свойствами:
- Дом каркасного типа. В случае установки каркаса из древесины у работников получается обеспечить прекрасные прочностные показатели для всей конструкции в целом. Утеплительный элемент в таком случае располагается в свободном пространстве, которого предостаточно между стойками каркаса. Случается,так, что в итоге приходится утеплять с наружной стороны еще и сам каркас.
- Стандартный дом. Ели здание возводится из традиционных продуктов вроде кирпича, шлакоблоков и бетона, утеплительное покрытие укладывается на поверхности здания снаружи.
При грамотном подходе к делу сохранения тепла вы сможете сэкономить большое количество денег и сделать свое жилище еще более комфортабельным.
Таблица теплопроводности материалов Коэффициент теплопроводности материалов обновлено: Декабрь 4, 2017 автором: kranch0 (1 оценок, среднее: 5,00 из 5) Загрузка… Читайте по темеjsnip.ru
Газобетонные блоки на монтажную пену
Дата: 27.06.2019
Пользователи FORUMHOUSE делятся опытом возведения газобетонных стен по новой технологии
Возведение коттеджа из газобетона — одна из самых распространённых технологий домостроительства в нашей стране. Постоянные читатели FORUMHOUSE хорошо знают, что газоблоки надо класть на специальный клей.
Газобетон — на пену или клей
Клей для газобетона обеспечивает тонкошовность кладки (с толщиной шва в 1-2 мм), что уменьшает «мостики холода» и снижает теплопотери здания.
При кладке элементов на цементно-песчаный раствор толщина шва увеличивается до 10-12 мм. В пересчёте на площадь газоблоковой стены такие швы превращаются в мощные «мостики холода». Поскольку теплопроводность цементно-песчаного раствора выше, чем теплопроводность газобетона, это приводит к значительным теплопотерям.
При использовании клея через швы кладки теряется до 10% тепловой энергии, а при использовании цементно-песчаных растворов потери составляют до 30%.
Это приводит к необходимости дополнительного утепления дома и увеличению мощности отопительной системы. Также кладка газобетона на клей экономически более выгодна, чем кладка на цементно-песчаный раствор.
Мешок цементного раствора стоит дешевле, чем мешок клея аналогичного объёма. Но в конечном итоге, в перерасчёте на 1 м3 кладки, за счёт тонкого шва, расход клея будет в разы меньше, чем расход цементного раствора.
В последние годы в Европе набирает популярность пена для газобетона. Кладка штучных материалов – газоблок и тёплая керамика выполняется на специальный однокомпонентный пенополиуретановый клей – монтажную пену.
Клей-пена для газобетона.
Подобный метод:
- Улучшает теплоизоляционные свойства кладки, т.к. устраняются мостики холода.
- Ускоряется строительство дома, поскольку уменьшается количество «мокрых» процессов.
Имеет ли право на жизнь эта технология? Обратимся к опыту форумчан.
Особенности кладки газобетона на монтажную пену
Как и всё новое, подобная технология вызывает массу вопросов. Попробуем разобраться в основных моментах. Участник FORUMHOUSE под ником jek48:
Я хочу построить дом. Сначала думал возвести каркасник, но мой сосед – строитель со стажем – советует возводить дом из газо- или пенобетона. Причём кладку вести не на цементный раствор, а на монтажную пену (специальный ППУ-клей). Вот я и думаю, стоит ли так делать.
Мнения форумчан разделилось. Кто-то обеими руками «за» технологию. Кто-то думает, что дом из газо- или пенобетона, «собранный» на клей-пену, или сразу развалится, или недолго простоит. Главный вопрос вызывает долговечность такой кладки. Свойства цемента прогнозируемы и хорошо изучены в долгосрочной перспективе, но мы не можем сказать, что будет с монтажной пеной через 10-15 лет. Особенно в нашем климате – с частыми переходами через «0», сильными морозами, дождями и т.д.
Главный враг материалов на основе полимеров (к ним относится клей-пена) – это ультрафиолетовое излучение. При монтаже окон незакрытая пена, под воздействием солнечных лучей, разрушается за 1 год. Однако, в кладке она полностью изолирована от вредного воздействия ультрафиолета. Если оставить фасадные работы на потом, то максимум, что может случиться с ней в кладке – выгорит внешний слой шва шириной в 1-1.5 мм. Это не отразится на прочности конструкции. Но для гарантии при кладке нужно использовать не первый попавшийся ППУ-клей, купленный на строительном рынке, а специальный, предназначенный для подобных работ.
Газоблоки на пену-клей. Отзывы участников FORUMHOUSE
NadegniyУчастник FORUMHOUSE
Пена нужна специальная, с низким коэффициентом вторичного расширения, с однородной структурой, водостойкого типа. Другие просто развалятся.
Практика использования пены с низким вторичным коэффициентом расширения показала, что после её отвержения шов кладки не деформируется, сохраняется геометрическая стабильность уложенного блока как в горизонтальной, так и в вертикальной плоскости.
Чтобы этого добиться, кроме специальной пены, необходимо придерживаться технологии укладки газоблока. Для этого нужно выполнить следующие условия:
- Геометрия блоков должна быть идеальной.
- Особое внимание нужно уделить укладке элементов первого ряда. Ровность этого ряда задаёт всю геометрию будущей стены. Первый ряд традиционно укладывается на цементно-песчаный раствор.
- Все неровности нужно обязательно стачивать рубанком, а поверхность шлифовать тёрками.
- Перед выдавливанием пены элемент необходимо очистить от мусора и пыли.
- Его поверхность необходимо увлажнить кистью, смоченной в воде.
- Пена на блок (в зависимости от его ширины) наносится в одну, две или три полоски, по всей длине.
- Расстояние между полосками клеящего вещества – примерно 10 см.
- Чтобы излишки не выдавливало в щели, полоска наносится, не доходя 5 см до грани элемента.
При соблюдении этих рекомендаций пена, под весом блока, растекается тонким слоем по его поверхности, заполняя все мельчайшие неровности.
Это обеспечивает:
- повышенную адгезию;
- увеличивает пятно контакта;
- предотвращает дальнейшую усадку стены;
- минимизирует точечные нагрузки, т.к. элементы полностью ложатся друг на друга.
При тонкошовной кладке основная задача раствора – удержать блоки от сдвига. Фактически, дом можно сложить из них и «на сухую». Такое сооружение будет стоять (не в сейсмоопасном районе) только за счёт силы трения, возникающей между элементами.
Пена для газосиликатных блоков
JkorchУчастник FORUMHOUSE
Я долгое время проработал на монтаже окон и знаю, что на пену можно приклеивать даже тяжёлые материалы. Всё зависит от площади сопрягаемых поверхностей. Да и пена для газобетона – это уже не самый настоящий клей! Попробовал класть газосиликат на клей-пену. Отмечу, что с ней очень удобно работать, но блоки должны быть с минимальными отклонениями в размерах. Т.к. мои газосиликатные блоки были далеки от идеала, то пошёл на компромисс – пеной заполнял только вертикальные швы, а горизонтальные – обычным клеем.
Пена для кладки газосиликатных блоков.
Пена для кладки газобетона: отзывы участников FORUMHOUSE
На данный момент использование клей-пены вместо цементного раствора рекомендовано только при кладке ненесущих (внутренних перегородок) и самонесущих стен в каркасно-монолитном строительстве. Ее использование при кладке несущих стен пока в нашей стране официально не подтверждено. Хотя в Чехии и Польше кладка кладка монтажной пеной несущих стен выполняется с 2007 года. Пользователи FORUMHOUSE, как обычно, выступают первопроходцами новых технологий строительства. Рассмотрим их практический опыт.
Монтажная пена для пеноблоков
сердж 67пенаУчастник FORUMHOUSE
Я построил дом из пеноблока «на пену». Этот пеноблоковый дом стоит уже 5 лет. Используя ее, строю второй дом. На мой взгляд, пеноблоки на монтажную пену гораздо удобнее, чем возится с замешиванием раствора, добавлением воды, дальнейшей очисткой инструментов от остатков раствора. Излишки клея легко удаляются. Сама пеноблоковая кладка выглядит чистой и аккуратной.
Кладка пеноблока на монтажную пену.
По наблюдениям форумчанина, одного баллона пены с выходом в 65 литров хватает для укладки 25-27 элементов размером 400х625х250 мм.
Если набить руку, то 1 баллона хватит на кладку 1.5-2 кубов газобетона. Причём, после того как прошло несколько минут после укладки элемента, он отрывается уже с большим трудом и только при ударах большой киянкой. Через 15-20 минут оторвать блок, не повредив его, невозможно.
Ради эксперимента форумчанин с ником Gansales решил приклеить пеной три блока по торцам (для перемычки). Без армирования они держали свой вес, закреплённые только за самые концы (около 5 см с каждого края). Аналогичное испытание клей не выдержал.
GansalesУчастник FORUMHOUSE
Я строю свой дом в свободное от основной работы время. На участке нет воды. Если раньше приходилось для размешивания раствора возить воду в канистре, то сейчас всё просто – достал монтажный пистолет, установил баллон, быстро выдавил пену, положил блоки за пару часов вечером и еду домой.
Газобетон на пену, несущие стены.
При укладке на пену прибавляется много ручной работы по шлифовке блока, но и при укладке газобетона на клей его также необходимо шлифовать. По наблюдениям форумчанина, если сравнить стоимость кладки «клей/пена», то пена получается дороже примерно в 2 раза (здесь многое зависит от опыта каменщика и ширины используемых блоков). Но, при пересчёте стоимости укладки «на пену» одного ряда, итоговая цена увеличивается примерно на 5%, что на стоимость дома практически не влияет.
Пока что технология укладки штучных материалов на пену не прошла достаточной проверки временем – форумчане кладут несущие стены на свой страх и риск. Но метод «класть газобетон на пену» имеет преимущества:
- кладку можно вести на участке, на котором нет воды и электричества, необходимых для приготовления растворов на основе цемента;
- убираются «мостики холода»;
- увеличивается скорость кладки и экономится время;
- не нужно каждый раз в конце рабочего дня отмывать инструменты;
- процесс более технологичен и практически безотходен.
Источник: https://www.forumhouse.ru
Тепловые свойства цементного раствора при различных пропорциях смеси
Shafigh, P .; Asadi, I .; Махьюддин, Н. (2018) Бетон как тепломассовый материал для строительства — Обзор. J. Build. Англ. 19, 14-25.
Bhattacharjee, B .; Кришнамурти, С. (2004) Проницаемая пористость и теплопроводность строительных материалов. J. Mater. Civil Eng. 16 [4], 322-330.
Тонг, X.C. (2011) Методологии определения характеристик материалов для терморегулирования.В: Современные материалы для терморегулирования электронных корпусов. 2011 г., Springer. п. 59-129.
Zhang, W .; Мин, Н .; Гу, X .; Xi, Y .; Xing, Y. (2015) Мезомасштабная модель теплопроводности
Kim, K.-H .; Jeon, S.-E .; Kim, J.-K .; Ян, С. (2003) Экспериментальное исследование теплопроводности бетона. Джем. Concr. Res 33 [3], 363-371.
Демирбога Р. (2003) Влияние минеральных добавок на теплопроводность и прочность раствора на сжатие.Energ. Строить. 35 [2], 189–192.
Lertwattanaruk, P .; Макул, Н .; Сирипаттараправат, К. (2012) Использование измельченных отходов ракушек в цементных растворах для кладки и штукатурки. J Environ Manage. 111, 133-141.
Mo, K.H .; Bong, C.S .; Alengaram, U.J .; Jumaat, M.Z .; Яп С.П. (2017) Оценка теплопроводности, прочности при сжатии и остаточной прочности армированного полимерным волокном большого объема смеси с золой из пальмового масла. Констр. Строить. Матер. 130, 113-121.
Olmeda, J .; Де Рохас, M.S .; Frías, M .; Донателло, С .; Чизман, К. (2013) Влияние добавления нефтяного кокса на плотность и теплопроводность цементных паст и растворов. Топливо. 107, 138-146.
Baite, E .; Мессан, А .; Hannawi, K .; Tsobnang, F .; Prince, W. (2016) Физические и переносные свойства строительного раствора, содержащего крошки угольной золы из Теферире (Нигер). Constr Build Mater. 125, 919-926.
Руис-Эрреро, Дж.L .; Nieto, D.V .; López-Gil, A .; Arranz, A .; Fernández, A .; Lorenzana, A .; Merino, S .; De Saja, J.A .; Родригес-Перес, М.А. (2016) Механические и термические характеристики ячеистых бетонных и строительных материалов, содержащих отходы пластмасс. Constr Build Mater. 104, 298-310.
Widodo, S .; Ma’arif, F .; Ган, Б.С. (2017) Теплопроводность и прочность на сжатие легкого строительного раствора с использованием пемзы брекчии в качестве мелкого заполнителя. Pro. Англ. 171, 768-773.
Коцкал, Н.У. (2016) Исследование влияния различных мелких заполнителей на физические, механические и термические свойства строительных растворов. Констр. Строить. Матер. 124, 816-825.
Чжан, Х. (2011) Строительные материалы в гражданском строительстве. Эльзевир.
Сандин, К. (1995) Выбор и применение строительных растворов для кладки и штукатурки. В: Проблемы строительства, Том 7. http://lup.lub.lu.se/record/526113.
Малазийский стандарт (2003 г.) Портландцемент (обыкновенный и быстротвердеющий): Часть 1.Спецификация (вторая редакция), Малайзия, MS. 522. Департамент стандартов Малайзии, (2003).
ASTM C1437 (2007) Стандартный метод испытания потока гидравлического цементного раствора, ASTM International, West Conshohocken, PA, 2007. https: //
Blázquez, C.S .; Martín, A.F .; Nieto, I.M .; García, PC; Pérez, L.S.S .; Гонсалес-Агилера, Д. (2017) Анализ и исследование различных цементных материалов в вертикальных геотермальных замкнутых системах. Обновить. Энергия.114, 1189–1200.
Bentz, D.P .; Peltz, M.A .; Duran-Herrera, A .; Valdez, P .; Хуарес, К. (2011) Термические свойства больших объемов зольных растворов и бетонов. J. Build. Phys. 34 [3], 263-275.
Othuman, M.A .; Ван Ю. (2011) Тепловые свойства легкого пенобетона при повышенных температурах. Констр. Строить. Матер. 25 [2], 705-716.
Waller, V .; Де Ларрард, Ф .; Руссель, П. (1996) Моделирование повышения температуры в массивных структурах из высокопроизводительных вычислений.В: 4-й Международный симпозиум по использованию высокопрочного / высокопроизводительного бетона. РИЛЕМ САРЛ Париж.
Лайонс, А. (2014) Материалы для архитекторов и строителей, Рутледж, Лондон.
Хашеми, М .; Shafigh, P .; Карим, M.R.B .; Атис, К. (2018) Влияние соотношения крупного и мелкого заполнителя на свойства свежего и затвердевшего бетона, уплотненного роликами. Constr Build Mater. 169, 553-566.
ASTM C270-19ae1 (2019) Стандартные спецификации для строительного раствора для каменной кладки, ASTM International, West Conshohocken, PA, 2019.
Юксек, С. (2019) Механические свойства некоторых строительных камней из вулканических отложений горы Эрджиес (Турция). Матер. Construcc. 69 [334], e187.
Asadi, I .; Shafigh, P .; Hassan, Z.F.B.A .; Махьюддин, Н. (2018) Теплопроводность бетона-Обзор. J. Build. Англ. 20, 81-93.
Real, S .; Gomes, M.G .; Родригес, AM; Богас, Я. (2016) Вклад конструкционного бетона из легкого заполнителя в снижение эффекта тепловых мостов в зданиях.Constr Build Mater. 121, 460-470.
Хашеми, М., Шафиг, П., Аббаси, М. и Асади, И. (2019) Влияние использования песка с низким содержанием мелких частиц на свежие и затвердевшие свойства бетонного покрытия, уплотненного роликами. Примеры использования строительных материалов, 11, e00230.
Chung, S.-Y .; Han, T.-S .; Kim, S.-Y .; Kim, J.-H.J .; Youm, K.S .; Лим, Ж.-Х. (2016) Оценка влияния стеклянных шариков на теплопроводность изоляционного бетона с использованием микроконтактных изображений и функций вероятности.Джем. Concr. Compos. 65, 150–162.
(PDF) Термические свойства цементного раствора при различных пропорциях смеси
12 • P. Shafigh et al.
Materiales de Construcción 70 (339), июль – сентябрь 2020 г., e224. ISSN-L: 0465-2746. https://doi.org/10.3989/mc.2020.09219
5. Kim, K.-H .; Jeon, S.-E .; Kim, J.-K .; Ян, С. (2003) Экспериментальное исследование
на теплопроводность бетона.
Cem. Concr. Res 33 [3], 363-371. https: // doi.org / 10.1016 /
S0008-8846 (02) 00965-1.
6. Демирбога Р. (2003) Влияние минеральных примесей на теплопроводность
и прочность на сжатие гудрона mor-
. Energ. Строить. 35 [2], 189–192. https://doi.org/10.1016/
S0378-7788 (02) 00052-X.
7. Lertwattanaruk, P .; Макул, Н .; Сирипаттараправат, К. (2012)
Использование измельченных ракушек в цементных растворах
для кладки и штукатурки. J Environ Manage.111, 133-
141. https://doi.org/10.1016/j.jenvman.2012.06.032.
8. Mo, K.H .; Bong, C.S .; Alengaram, U.J .; Jumaat, M.Z .;
Яп, С.П. (2017) Оценка теплопроводности, прочности на сжатие и
остаточной прочности армированного полимерным волокном раствора
большого объема на основе смеси топливной золы из пальмового масла. Констр.
Сборка. Матер. 130, 113-121. https://doi.org/10.1016/j.
conbuildmat.2016.11.005.
9. Olmeda, J .; Де Рохас, М.S .; Frías, M .; Донателло, С .;
Чизмен, К. (2013) Влияние добавления нефтяного кокса
на плотность и теплопроводность
цементных паст и растворов. Топливо. 107, 138-146. https: // doi.
орг / 10.1016 / j.fuel.2013.01.074.
10. Baite, E .; Мессан, А .; Hannawi, K .; Tsobnang, F .; Prince,
W. (2016) Физические и переносные свойства строительного раствора, содержащего
зольных агрегатов угольного остатка из Теферире (Нигер).
Строительный матер.125, 919-926. https://doi.org/10.1016/j.
conbuildmat.2016.08.117.
11. Ruiz-Herrero, J.L .; Nieto, D.V .; López-Gil, A .; Arranz, A .;
Fernández, A .; Lorenzana, A .; Merino, S .; De Saja, J.A .;
Родригес-Перес, М.А. (2016) Механические и термические характеристики
ячеистых материалов для бетона и раствора
, содержащих пластиковые отходы. Constr Build Mater. 104, 298-310.
https://doi.org/10.1016/j.conbuildmat.2015.12.005.
12. Widodo, S .; Ma’arif, F .; Ган, Б.С. (2017) Thermal
Электропроводность и прочность на сжатие легкого
Строительный раствор с использованием пемзы брекчии в качестве мелкого заполнителя.
Pro. Англ. 171, 768-773. https://doi.org/ 10.1016 / j.
proeng.2017.01.446.
13. Kockal, N.U. (2016) Исследование влияния различных мелких заполнителей
на физические, механические и термические свойства растворов
. Констр. Строить.Матер. 124, 816-825.
https://doi.org/10.1016/j.conbuildmat.2016.08.008.
14. Чжан, Х. (2011) Строительные материалы в гражданском строительстве.
Эльзевир.
15. Сандин, К. (1995) Растворы для кладки и штукатурки
Выбор и применение. В: Building Issues, Vol 7. http: //
lup.lub.lu.se/record/526113.
16. Малазийский стандарт (2003 г.) Портландцемент (обычный
и быстротвердеющий): Часть 1. Технические условия (Вторая редакция
), Малайзия, штат Массачусетс.522. Департамент стандартов
Малайзия (2003 г.).
17. ASTM C1437 (2007) Стандартный метод испытаний гидравлического цементного раствора
, ASTM International,
West Conshohocken, PA, 2007. https://doi.org/10.1520/
C1437-07.
18. Blázquez, C.S .; Martín, A.F .; Nieto, I.M .; García, PC;
Pérez, L.S.S .; González-Aguilera, D. (2017) Анализ и
исследование различных цементных материалов в вертикальных геотермальных системах с замкнутым контуром
mal.Обновить. Энергия. 114, 1189–1200.
https://doi.org/10.1016/j.renene.2017.08.011.
19. Bentz, D.P .; Peltz, M.A .; Duran-Herrera, A .; Valdez, P .;
Хуарес, К. (2011) Термические свойства мух больших объемов
зольные растворы и бетоны. J. Build. Phys. 34 [3], 263-275.
https://doi.org/10.1177/174425
76613.
20. Othuman, M.A .; Ван, Ю. (2011)
Тепловые свойства легкого пенобетона при повышенных температурах.Констр.
Сборка. Матер. 25 [2], 705-716. https://doi.org/10.1016/j.
conbuildmat.2010.07.016.
21. Waller, V .; Де Ларрард, Ф .; Руссель, П. (1996)
Моделирование повышения температуры в массивных структурах из высокопроизводительных вычислений. В: 4-й
Международный симпозиум по использованию высокопрочного бетона /
Высокоэффективный бетон. РИЛЕМ САРЛ Париж.
22. Лайонс, А. (2014) Материалы для архитекторов и строителей,
Рутледж, Лондон.
23.Hashemi, M .; Shafigh, P .; Карим, M.R.B .; Атис, К.
(2018) Влияние соотношения крупного и мелкого заполнителя на
свежих и затвердевших свойств уплотненного валком бетонного покрытия
. Constr Build Mater. 169, 553-566. https: //
doi.org/10.1016/j.conbuildmat.2018.02.216.
24. ASTM C270-19ae1 (2019) Стандартная спецификация
для строительного раствора для каменной кладки, ASTM International,
West Conshohocken, PA, 2019. https: // doi.org / 10.1520 /
C0270-19AE01.
25. Юксек, С. (2019) Механические свойства некоторых строительных
камней из вулканических отложений горы Эрджиес (Турция).
Матер. Construcc. 69 [334], e187. https://doi.org/10.3989/
mc.2019.04618.
26. Asadi, I .; Shafigh, P .; Hassan, Z.F.B.A .; Махьюддин,
N.B. (2018) Теплопроводность бетона-Обзор.
J. Build. Англ. 20, 81-93. https://doi.org/10.1016/j.jobe.
2018.07.002.
27. Real, S .; Gomes, M.G .; Родригес, AM; Богас, Я.
(2016) Вклад конструкционного легкого заполнителя
бетон в снижение эффекта тепловых мостов в зданиях
. Constr Build Mater. 121, 460-470. https: // doi.
org / 10.1016 / j.conbuildmat.2016.06.018.
28. Хашеми, М., Шафиг, П., Аббаси, М. и Асади, И. (2019)
Влияние использования песка с низким содержанием мелких частиц на свежее и
затвердевшее бетонное покрытие из уплотненного роликами бетонного покрытия —
мент.«Практические примеры строительных материалов», №11, e00230.
https://doi.org/10.1016/j.cscm.2019.e00230.
29. Chung, S.-Y .; Han, T.-S .; Kim, S.-Y .; Kim, J.-H.J .; Youm,
K.S .; Лим, Ж.-Х. (2016) Оценка влияния стеклянных шариков
на теплопроводность изоляционного бетона
с использованием микроконтактных изображений и функций вероятности. Джем.
Concr. Compos. 65, 150–162. https://doi.org/10.1016/j.
cemconcomp.2015.10.011.
Влияние суррогатных заполнителей на теплопроводность бетона при температуре окружающей среды и повышенных температурах
Точная оценка теплопроводности бетона является важной частью проектирования здания с точки зрения термической эффективности и теплоизоляционных свойств материалов при различных температурах.Мы представляем экспериментальную оценку теплопроводности пяти образцов с теплоизоляцией из бетона, изготовленных с использованием легких заполнителей и стеклянных пузырьков вместо обычных заполнителей. Для оценки надежности тепловых данных и оценки влияния различных типов датчиков используются четыре различных метода измерения. Бетонные образцы также оцениваются через каждые 100 ° C во время нагрева до ~ 800 ° C. Показано, что нормальный бетон имеет теплопроводность ~ 2,25 Вт · м -1 K -1 .Суррогатные агрегаты эффективно снижают проводимость до ~ 1,25 Вт · м -1 K -1 при комнатной температуре. Показано, что размер заполнителя не влияет на теплопроводность: каждый из мелких и крупных заполнителей приводит к аналогичным результатам. Методы оценки поверхностного контакта имеют тенденцию к занижению теплопроводности, предположительно из-за высокого термического сопротивления между преобразователями и образцами. Термогравиметрический анализ показывает, что стадии потери массы цементного теста соответствуют эволюции теплопроводности при нагревании.
1. Введение
Новые корейские стандарты энергосберегающего проектирования для новых зданий и домов, вступающие в силу с сентября 2013 года, направлены на повышение энергоэффективности жилых и офисных зданий, на долю которых в 2007 году приходилось 19,6% общего потребления энергии [1, 2] . Они нацелены на снижение годового потребления энергии домохозяйствами на отопление с уровня 2005 года 120 кВтч м -2 до менее 30 кВтч м -2 к 2017 году. мм полистирольной изоляции или более толстые бетонные стены [1], меры, которые ранее считались слишком дорогостоящими [3].Использование недорогого подогрева пола и внутренней изоляции в быстро возводимых высотных домах Кореи, возводимых с 1980-х годов, привело к образованию поверхностного конденсата и плесени из-за разницы температур между бетонными стенами и внутренней изоляционной панелью.
Внешняя изоляция может решить эту проблему, но ее установка будет дорогостоящей и трудоемкой, а также может быть затруднена по закону. Возможно, более практичной альтернативой является разработка бетона с высоким термическим сопротивлением.Теплопроводность бетона можно легко снизить, заменив один или несколько его компонентов теплоизолирующими материалами, такими как легкие крупные заполнители или стеклянные пузыри [4]. Легкие заполнители используются, например, в жилых домах в Японии, что позволяет сэкономить 20% тепловой энергии для поддержания комнатной температуры ~ 20 ° C по сравнению с обычным бетоном [5]. Стеклянные пузыри также широко используются в качестве теплоизоляции при производстве изолированных труб и теплоотражающих красок [6].Бетоны, как сложные смеси различного состава, могут демонстрировать широкий диапазон теплопроводности (например, 0,6 ~ 3,6 Вт · м -1 K -1 ) в зависимости от используемых заполнителей и условий влажности, а также от диапазона температур. и методика тестирования [7–9]. Оценка теплопроводности бетонов, смешанных с различными синтетическими материалами, и ее изменения при повышенных температурах является сложной и более сложной задачей, чем оценка обычного бетона. Поэтому разработка методов точной оценки теплопроводности при различных температурах бетона с обычным или легким заполнителем (LWA) является важной частью проектирования теплоэффективной инфраструктуры.
Предыдущие экспериментальные и численные исследования показали тепловые свойства (например, теплопроводность, удельную теплоемкость и тепловую деформацию) конструкционного бетона и теплоизоляционного бетона, содержащего LWA и добавки, такие как волокно, переработанное стекло и метакаолин, при температуре окружающей среды и повышенных температурах. [10–13]. Плотность и теплопроводность бетона при нагревании часто снижаются. Однако изменение микроструктуры цементного теста при нагревании не было достаточно проанализировано в бетонах с нормальными или легкими заполнителями.Роль легких заполнителей и других добавок также еще предстоит полностью выяснить. Более того, надежность измерения теплопроводности зависит не только от метода измерения в установившемся или переходном состоянии, но и от типа преобразователя (например, пластина с горячей защитой, термоядерный бокс и термические игольчатые зонды) [4, 9 , 14, 15]. Важнейшими микроструктурными компонентами гидратированного цементного теста являются гидраты силиката кальция (C – S – H), составляющие до 67% продуктов гидратации, и гидроксид кальция [16].Эти компоненты определяют механические свойства пасты [17–19]. Дегидратация гидратов силиката кальция и дегидроксилирование гидроксида кальция объясняют потерю массы, наблюдаемую при нагревании. Связь между теплопроводностью и потерей массы микроструктурных компонентов гидратированного цементного теста четко не определена [19, 20].
Данная работа представляет собой исследование теплопроводности различных теплоизоляционных бетонов.Образцы, содержащие различные агрегаты и стеклянные пузырьки, сравнивают при температуре окружающей среды и повышенных температурах. Контрольный образец, содержащий нормальный заполнитель, сравнивается с пятью различными образцами из теплоизолированного бетона. Роль суррогатных агрегатов исследуется путем измерения теплопроводности образцов с использованием четырех различных методов испытаний: два, в которых используются встроенные зонды (термический игольчатый зонд и нагрев плоского источника), и два, использующие методы контактной горячей проволоки. Одним из методов горячей проволоки является стандартный метод ASTM C1113 для оценки температурно-зависимой теплопроводности [21].Также оценивается влияние мелких и крупных агрегатов на теплопроводность. Термогравиметрический анализ (ТГА) используется для сравнения последовательности потери веса во время нагревания с соответствующим изменением теплопроводности. Затем оценивается взаимосвязь между микроструктурным составом цементных паст и их теплопроводностью.
2. Материалы и методы
2.1. Материалы
Для изготовления образцов для испытаний используются различные комбинации обычного портландцемента (ASTM Тип I), мелкого заполнителя, обычного крупного заполнителя, двух типов легких крупных заполнителей и стеклянных пузырьков.Мелкие и крупнозернистые агрегаты происходят из дробленых пород схожего происхождения: они имеют одинаковую минералогию; отличается только размер зерна (в Корее нет явного природного источника мелких заполнителей, таких как очищенный прибрежный песок). Стеклянные пузырьки микрометрового размера (3 M, Ltd.) испытываются как частичная замена крупного заполнителя и для создания искусственных поровых пространств в бетоне. Два типа LWA (Argex от Argex NV, Ltd. и Asanolite от Taiheiyo Cement, Ltd.) испытываются в качестве замены оставшегося крупного заполнителя.Физические свойства различных заполнителей и стеклянных пузырьков перечислены в Таблице 1.
|
2.2. Подготовка образца
Теплоизолированный бетон получают путем замены крупного заполнителя стеклянными пузырьками и легкими заполнителями.Подробные пропорции смешивания перечислены в таблице 2. K обозначает образец со стеклянными пузырьками; добавленное число представляет объемную долю добавленных стеклянных пузырьков по отношению к общему объему заполнителя. Влияние размера заполнителя и объемной доли заполнителя на теплопроводность исследуется с использованием другой группы образцов: пасты, раствора и бетона (таблица 3).
|
2.3.1. Термический игольчатый зонд (встроенный тип при переходных процессах)Зонд (нержавеющая сталь, длина 60 мм, диаметр 1,3 мм) содержит нагревательный провод и термистор (East 30 Sensors Ltd.). Когда он находится в термической форме, он полностью погружается в образец. Постоянный ток генерирует тепло линейного источника в радиальном направлении от зонда, а температура одновременно контролируется каждые 0,5 с в течение 3 мин. Применимость метода к бетонам и другим строительным материалам, а также подробную теорию можно найти в других работах [4, 23, 24].Датчик должен быть встроен в бетон перед отверждением, что ограничивает его полезность при испытании на месте бетонных конструкций. 2.3.2. Контактный метод горячей проволоки (тип контакта при переходном процессе)Система тестирования (QTM-500, Kyoto Electronics Manufacturing, Co., Ltd.) следует принципам, аналогичным принципам термического игольчатого зонда. Однако датчик находится на поверхности образца, и тепло от линейного источника распространяется только в одном направлении. Этот метод может быть легко применен на месте , хотя для звукоизоляции требуется плоская и полированная контактная поверхность. 2.3.3. Метод плоского источника тепла (встроенный тип в квазистационарном режиме)Нагревательная пластина обеспечивает плоский источник тепла через образец, а последовательно встроенные термопары определяют пространственно-временное изменение температуры. Вся система теплоизолирована для минимизации потерь тепла. Зарегистрированные профили температуры интерпретируются с учетом сохранения энергии на основе закона Фурье. О надежности использования плоских источников тепла для измерения теплопроводности бетонов сообщалось ранее [4].Этот метод позволяет оценивать относительно большие образцы (размером в десятки сантиметров), хотя получение полного набора испытаний температурных профилей занимает несколько дней, поскольку система приближается к установившемуся состоянию. 2.3.4. ASTM C1113 (Постоянный контакт)Этот метод был первоначально разработан для огнеупоров при повышенных температурах. Перед нагревом в печи три образца в форме кирпича помещают между ними термопары и нагревательные провода. Достигается первое тепловое равновесие (для испытаний при 600 ° C период выдержки для устойчивого теплового состояния занимает более 4 дней).Затем платиновый нагревательный провод нагревается, и разница температур, измеренная двумя термопарами, используется для расчета теплопроводности. Связь между преобразователями и поверхностью образца не такая полная, как при встроенных типах тестирования. 2.4. Процедуры испытанийТермографическая форма, предназначенная для измерения при температуре окружающей среды, включает в себя два термических игольчатых зонда и пять последовательных термопар с интервалом 50 мм. После завершения измерения с использованием термального игольчатого зонда и плоского источника тепла форма разбирается, а поверхность образца тщательно очищается и полируется.Далее следуют измерения с использованием контактной термоэлектрической проволоки (например, устройства QTM-500). Затем независимо получают значения теплопроводности кирпичей с использованием метода ASTM C1113 при 45 ° C, 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, 600 ° C, 670 ° C и 770 °. С. Измерение повторяют трижды при каждой температуре. Печь нагревается до 55 ° C час -1 . Образцы пасты, цемента и бетона (цилиндры Ф 70 мм × 100 мм) испытывают с помощью термоигольчатых зондов. Во время отверждения периодически измеряют содержание воды и удельный вес, а значения электропроводности оценивают независимо через 7, 14 и 28 дней отверждения. 2,5. Термогравиметрический анализ (ТГА)Термогравиметрический анализ позволяет оценить изменяющиеся пропорции гидрата силиката кальция (C – S – H) и гидроксида кальция в гидратированных цементах обычного бетона при нагревании при 10 ° C мин. -1 от 25 ° С до 1000 ° С. Данные о весе и тепловом потоке получают при нагревании цементного теста. Затем тепловое поведение сравнивается с измеренной теплопроводностью при повышенных температурах, что позволяет выяснить взаимосвязь между химическими изменениями в образцах и их тепловыми свойствами. 3. Результаты и обсуждениеСначала представлены данные по теплопроводности, полученные с помощью различных методов испытаний. Контрольные образцы (паста, раствор и бетон) готовятся независимо, чтобы продемонстрировать влияние заполнителя и времени отверждения. Для образцов, нагретых до ~ 770 ° C, сообщается их зависящая от температуры теплопроводность с обсуждением их фазового превращения и связанных с ним химических реакций. 3.1. ТеплопроводностьНа рис. 3 сравниваются измеренные значения теплопроводности с результатами, полученными с помощью метода термического игольчатого зонда.Нормальный бетон показывает теплопроводность ~ 2,25 Вт · м -1 K -1 ; значения имеют тенденцию к линейному уменьшению с увеличением доли стеклянных пузырьков, достигая ~ 1,3 Вт · м −1 K −1 в образце K30. Это 42% -ное снижение теплопроводности при добавлении стеклянных пузырьков при 30% -ной объемной доле агрегатов в основном объясняется наличием в стеклянных пузырьках воздушных пустот субмикрометрового размера. Изменение плотности с 2370 кг м −3 (нормальный бетон) до 2011 кг м −3 (K30) сопровождается снижением прочности на сжатие (с 43.9 МПа в нормальном бетоне до 24,6 МПа в К30). Образец бетона с заполнителем Argex показывает теплопроводность от 1,25 Вт м -1 K -1 до 1,54 Вт м -1 K -1 , что ниже, чем у образца, содержащего асанолит. Это связано с тем, что Argex имеет более низкую насыпную плотность и более высокую водопоглощающую способность, что позволяет предположить, что у него больше внутренних пор, чем у Asanolite. Плотность воздушно-сухих образцов с Argex и Asanolite составляет 1848 кг м −3 и 1817 кг м −3 соответственно; их соответствующие измеренные значения прочности на сжатие равны 37.7 МПа и 36,0 МПа. Следовательно, замена крупного заполнителя легким заполнителем более эффективно снижает плотность бетона, сводя к минимуму его ослабление, чем использование стеклянных пузырьков. Методы тестирования со встроенными датчиками (термическая игла и плоский источник тепла) показывают аналогичные значения теплопроводности с меньшими отклонениями, чем два метода контактного типа, из-за минимального теплового сопротивления между датчиками и тестируемыми материалами (рисунки 3 ( а), 3 (б) и 3 (в)).Неполная связь, присущая методам контактной горячей проволоки и ASTM C1113, приводит к заниженной оценке теплопроводности на ~ 20%; однако эти два метода совместимы друг с другом (рис. 3 (d)). Влияние легких заполнителей и стеклянных пузырьков на теплопроводность четко представлено всеми методами, но встроенные методы, по-видимому, предоставляют количественно более точные данные благодаря определенному контакту между преобразователями и образцом. Методы контактного типа, вероятно, будут более применимы на практике, чем встроенные типы, потому что установка преобразователей не всегда возможна после строительства. 3.2. Влияние размера заполнителяСравнивается влияние мелких и крупных заполнителей на теплопроводность образцов пасты, раствора и бетона. Термические игольчатые зонды полностью вставлены в цилиндрические образцы (Φ 70 мм × 100 мм), а проводимость достигается через 7, 14 и 28 дней отверждения. Также отслеживаются изменения удельного веса и содержания воды (рис. 4). Паста имеет самое высокое содержание воды и самый низкий вес влажной единицы. Оба свойства со временем снижаются из-за испарения воды.Теплопроводность имеет тенденцию немного снижаться во время отверждения (рис. 5), хотя отверждение, по-видимому, имеет номинальный эффект. Образец пасты имеет наименьшее значение ~ 1 Вт · м −1 K −1 ; раствор и бетон имеют одинаковые значения ~ 2 Вт · м -1 K -1 . Хотя присутствие крупного заполнителя могло способствовать теплопроводности, нет заметной разницы между образцами с крупным или мелким заполнителем, предположительно из-за того, что два агрегата имеют одинаковое происхождение и, таким образом, являются одинаково хорошими проводниками тепла независимо от зерна. размер.Это говорит о том, что межфазное термическое сопротивление не влияет на свойства заполнителей в цементном тесте и что объемная доля заполнителей в бетонах в большей степени влияет на теплопроводность. Содержание воды влияет на теплопроводность, при этом более влажная паста показывает более низкую теплопроводность, чем раствор или бетон. Рисунок 4 показывает, что удельный вес образцов мало влияет на их теплопроводность. Поэтому желательно заменить любой агрегат суррогатами, чтобы уменьшить теплопроводность, при условии, что образцы не слишком сильно ослаблены. 3.3. Температурно-зависимая теплопроводностьНа рисунке 6 представлены результаты термогравиметрического анализа нормальных образцов бетона. Во время нагрева из цементного теста начинает испаряться свободная вода при температуре 100 ° C ~ 120 ° C [25]. Затем диссоциация воды, связанной с C-S-H, происходит между 150 ° C и 400 ° C [14, 26]; дегидроксилирование гидроксида кальция (кристаллы гидроксида кальция разлагаются на оксид кальция и воду) следует при 400 ° C и 600 ° C, когда происходит большая потеря веса и разупрочнение бетонов [25].Постепенное снижение веса с 600 ° C до 825 ° C объясняется декарбонизацией кальцита до оксида кальция [27]. Процентные потери массы, соответствующие дегидратации C – S – H, дегидроксилированию гидроксида кальция и декарбонизации кальцита, сведены в Таблицу 5. Средние данные теплопроводности для нормального бетона (измеренные методом ASTM C1113, наложены на Рисунок 6) постепенно уменьшается в соответствии с наблюдаемыми потерями массы. Сплошная среда в гидратированном цементном тесте, по-видимому, теряется при нагревании из-за образования пор, которые изначально были заняты микроструктурами, такими как гидраты силиката кальция и гидроксид кальция.
На рисунке 7 показано изменение теплопроводности шести испытанных образцов при нагревании.Сплошная линия обозначает поведение обычного бетона для сравнения. Каждый образец показывает резкое увеличение теплопроводности около 100 ° C; выраженное изменение связано с испарением свободной воды, связанным с уменьшением скрытой теплоты при испарении [25, 28]. Хотя образование и распространение микротрещин, вызванных давлением пара после 300 ° C, может снизить теплопроводность, здесь они явно не проявляются. Образцы со стеклянными пузырьками демонстрируют значительное снижение теплопроводности на 400 ° C (обозначено как зона A) с последующим постепенным уменьшением (зона B).Бетоны из легкого заполнителя, которые показывают низкую теплопроводность при температуре окружающей среды, показывают наибольшие потери теплопроводности во время фаз испарения и обезвоживания ниже 400 ° C; Затем следует квазиасимптотическое поведение (рисунки 7 (e) и 7 (f)). Эти наблюдения показывают, что химические реакции при повышенных температурах не способствуют снижению теплопроводности. Присутствия пор в легких заполнителях, вероятно, достаточно для уменьшения теплопроводности и уменьшения эффектов любых дальнейших изменений химического состава, вызванных нагревом.Мы также предполагаем, что поглощение воды легкими агрегатами во время смешивания частично препятствует обезвоживанию не испаряющейся воды из C – S – H; последующие химические реакции в легких бетонах из заполнителя при нагревании не следуют аналогичному поведению, наблюдаемому в обычных бетонах. Тем не менее очевидно, что тип крупного заполнителя не только существенно определяет теплопроводность при температуре окружающей среды, но и влияет на его поведение при нагревании. 4. ВыводыТермическое поведение теплоизолированных бетонов с легкими заполнителями и стеклянными пузырьками, заменяющими обычно используемый крупнозернистый заполнитель, было охарактеризовано при температуре окружающей среды и повышенных температурах. Увеличение объемной доли стеклянных пузырьков привело к снижению теплопроводности бетона при сохранении достаточной прочности на сжатие для его практического использования. Два легких заполнителя были испытаны в качестве замены грубого заполнителя: их макро- и микропоры также снижали теплопроводность в бетоне.Для оценки бетонов сравнивались четыре метода. Два метода с использованием датчиков поверхностно-контактного типа (контактный метод горячей проволоки и стандартный метод ASTM C1113) имели тенденцию к занижению теплопроводности. Наличие регулярного заполнителя способствовало теплопроводности, но было обнаружено, что размер заполнителя не влияет на теплопроводность. Термогравиметрический анализ цементных паст выявил последовательность изменений их химического состава в процессе нагрева, которые следовали за наблюдаемым ими уменьшением теплопроводности.Введение внутренних пор в образцы, содержащие легкие заполнители, что связано с термическим разложением их компонентов при нагревании, вероятно, имело доминирующее влияние на термическое поведение бетонов. Это физическое изменение оказало большее влияние на теплопроводность, чем сами изменения химического состава. Возникновение квазипостоянной теплопроводности выше 400 ° C может быть связано не только с изначально высокой пористостью легких заполнителей, но и с поглощением воды легкими заполнителями во время смешивания и задержкой дегидратации C – S – H. Конфликт интересовАвторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи. БлагодарностиЭто исследование было поддержано грантом (Код 11-Технологические инновации-F04) Программы инновационных технологий в строительстве (CTIP), финансируемой Министерством земли, транспорта и морских дел правительства Кореи, Корейским центром исследований и разработок CCS ( KCRC) и грант Национального исследовательского фонда Кореи (NRF), финансируемый правительством Кореи (MSIP) (No.2011-0030040, 2013035972). Более экологичные строительные растворы и бетон с opизображение: масштабный фундамент для изучения геотермальной энергии. посмотреть еще Кредит: UPV / EHU Потребление сырья заметно увеличилось в промышленности в целом и в строительной отрасли в частности на фоне растущей озабоченности вопросами устойчивости.Бетон и строительный раствор являются наиболее часто используемыми материалами в строительстве, и в настоящее время проводится множество исследований, направленных на снижение вредного воздействия их производства. Бетон и раствор изготавливаются путем смешивания воды, песка, цемента и заполнителей. «Основная проблема заключается в количестве цемента, используемого для производства этого типа материала; при производстве цемента используется огромное количество энергии и природных ресурсов, что подразумевает высокий уровень выбросов CO2. В настоящее время проводятся различные исследования, направленные на сокращение количества требуется цемент.Мы работаем над заменой цемента и заполнителей (песка или гравия) ненатуральными материалами, чтобы сократить использование природных ресурсов и оптимизировать механические и термические свойства производимых материалов », — объясняет Роке Боринага Тревиньо, исследователь из Кафедра машиностроения UPV / EHU. С этой целью исследовательская группа анализирует побочные продукты различных промышленных процессов, которые позволяют использовать производимые растворы и бетоны для различных функций, в зависимости от приобретаемых ими механических и термических свойств: «Цель состоит в том, чтобы сократить как можно больше — объем промышленных побочных продуктов, которые попадают на свалки, и повторное использование этих продуктов в соответствии с требованиями экономики замкнутого цикла », — утверждает д-р Боринага.Недавно исследовательская группа исследовала три различных побочных продукта в трех разных областях. Особые случаи Во-первых, они изучали возможность использования промышленных металлических отходов в качестве арматуры в бетоне или растворе, анализируя растворы, армированные латунными волокнами от электроэрозионной обработки. Во-вторых, и связанные с этим направлением исследований, направленных на сокращение количества необходимого цемента, они исследовали использование отходов известкового шлама из бумажной промышленности, получив хорошие результаты с точки зрения теплопроводности и обнаружив, что полученный материал подходит для использования. в системах лучистого теплого пола.И, наконец, они использовали печной шлак в качестве заполнителя: «Теплопроводность песка, извлекаемого из электродуговых печей, низкая, что делает его хорошим вариантом для целей изоляции», — объясняет д-р Боринага. Хотя они изучают множество различных типов материалов, они делают фундаментальные исследования: «Наша работа — первый шаг в исследовании этих материалов. Побочные продукты и отходы производства не особенно однородны, что означает, что они сильно различаются в зависимости от их происхождения.Поэтому первым шагом является анализ свойств, которыми наделяет каждый конкретный вид отходов. «Важно провести эти анализы с большим количеством отходов разного происхождения и сравнить результаты, чтобы определить, подходят ли материалы для использования в производстве», — заключает он. ### ЖурналСтроительный журнал Заявление об отказе от ответственности: AAAS и EurekAlert! не несут ответственности за точность выпусков новостей, размещенных на EurekAlert! участвующими учреждениями или для использования любой информации через систему EurekAlert. Португалия — крупнейший производитель пробки (кора Quercus suber L% PDF-1.5 % 1 0 объект > / Метаданные 2 0 R / Страницы 3 0 R / StructTreeRoot 4 0 R / Тип / Каталог >> эндобдж 5 0 obj / ModDate (D: 20140212154414Z) /Режиссер / Название (Португалия — крупнейший производитель пробки \ (кора Quercus suber L) >> эндобдж 2 0 obj > транслировать application / pdf [PDF] Эффективная теплопроводность пенобетона разной плотности1 т. 2 (1) март 2011 г. Эффективная теплопроводность пенобетона разной плотности Md Azree Othuman Mydin 1 1 Sc… Md Azree Othuman MydinCRL Letters www.crl.issres.net Vol. 2 (1) 2011 Т. 2 (1) — март 2011 г. Эффективная теплопроводность пенобетона различной плотности 1 Md Azree Othuman Mydin1 Школа жилищного строительства, строительства и планирования, Universiti Sains Malaysia, 11800, Пенанг, Малайзия Резюме Основная цель данного исследования заключается в исследовании теплопроводности пенобетона. Пенобетонные образцы различной плотности от 650, 700, 800, 900, 1000, 1100 и 1200 кг / м3 с постоянным соотношением цемент-песок 2: 1 и водоцементным соотношением 0.5 были произведены. Данное исследование ограничивалось влиянием плотности, пористости и размера пор на теплопроводность пенобетона. Для определения теплопроводности пенобетона при различных плотностях использовался метод горячей защиты плиты. Величину пористости пенобетона определяли с помощью прибора вакуумного насыщения. В свою очередь, чтобы изучить влияние размера пор на теплопроводность пенобетона, измерения размера пор проводили под микроскопом с 60-кратным увеличением. Пенобетон с меньшей плотностью означает более низкую теплопроводность.Плотность пенобетона контролируется пористостью, где пенобетон более низкой плотности указывает на большую пористость. Следовательно, теплопроводность значительно изменяется в зависимости от пористости пенобетона, поскольку воздух является самым плохим проводником по сравнению с твердым и жидким из-за его молекулярной структуры. Ключевые слова: пенобетон, теплопроводность, жаропрочная плита, тепловые свойства, легкий бетон, пористый материал 1. Введение Энергоэффективность — важная проблема для качественного жилья.Энергия не только соответствует высокому проценту эксплуатационных расходов зданий, но также оказывает основное влияние на тепловой комфорт жителей. В наши дни спрос на энергоэффективное проектирование и строительство становится все более жизненно важным с ростом затрат на энергию и повышением осведомленности о последствиях глобального потепления. Здания в том виде, в котором они спроектированы и используются сегодня, создают серьезные экологические проблемы из-за чрезмерного потребления энергии и других природных источников.Тесная связь между использованием энергии в зданиях и экологическим ущербом возникает из-за того, что энергоемкие решения, направленные на строительство здания и удовлетворяющие его потребности в отоплении, охлаждении, вентиляции и освещении, вызывают серьезное истощение драгоценных ресурсов окружающей среды. 1 Автор для переписки: Md Azree, Электронная почта: [электронная почта защищена] © 2009-2012 Все права защищены. ISSR Journals 181 Эффективная теплопроводность пенобетона разной плотности Одним из способов снижения энергоемкости зданий является подбор строительных материалов.Нагрузку на обычную энергию можно снизить за счет использования материалов с низким энергопотреблением и эффективного проектирования конструкций. Выбор материалов также помогает добиться максимального комфорта в помещении. Например, использование материалов и компонентов с небольшой внутренней энергией или низкой теплопроводностью повысило комфорт внутри здания. Таким образом, высокий уровень изоляции при разработке любого нового материала является важным шагом на пути к энергоэффективному дизайну. Теплопроводность k — это процесс передачи высокотемпературной тепловой энергии внутри объекта или между двумя контактирующими объектами, что снижает температуру.В физике теплопроводность k — это свойство материала, описывающее его способность проводить тепло. Он появляется в основном в законе Фурье для теплопроводности. Когда объект нагревается, колебания молекул или атомов и плавание свободных электронов разряжают тепловую энергию до более низких температур в процессе передачи кинетической энергии. Согласно молекулярной динамике, температура объекта прямо пропорциональна средней кинетической энергии его состава [1]. 2 Теплопроводность (Вт / м · К) является результатом теплопроводности (см / с), удельной теплоемкости (Дж / г · К) и плотности [2] и зависит от его собственных минеральных характеристик, пористой структуры, химического состава, влажности. и температура.Энергетические характеристики здания во многом зависят от теплопроводности строительных материалов, которая отражает способность тепла проходить через материал при наличии разницы температур [3]. Теплопроводность обычных теплоизоляционных материалов составляет от 0,034 до 0,173 Вт / м · К [1]. Следовательно, использование строительных материалов с низкой теплопроводностью важно для уменьшения поступления тепла через оболочку в здание в таких странах с жарким климатом, как Малайзия.Пенобетон известен своими превосходными теплоизоляционными и звукоизоляционными характеристиками благодаря своей ячеистой микроструктуре. Теплопроводность пенобетона обычно составляет от 5 до 30% от теплопроводности бетона с нормальным весом и составляет от 0,1 до 0,7 Вт / мК для значений плотности в сухом состоянии от 600 до 1600 кг / м3 соответственно [4,5]. На практике бетон нормального веса должен быть в 5 раз толще пенобетона для достижения аналогичной теплоизоляции [6]. Сообщается, что теплопроводность пенобетона плотностью 1000 кг / м3 составляет одну шестую от значения типичного цементно-песчаного раствора [7].Поскольку пенобетон изготавливается путем нагнетания воздуха в смесь на основе цемента, плотность пенобетона напрямую зависит от воздуха внутри пенобетона. Ожидается, что плотность пенобетона должна сыграть важную роль в определении его тепловых свойств. Уменьшение плотности пенобетона на 100 кг / м3 приводит к снижению его теплопроводности на 0,04 Вт / мК [8]. Это исследование направлено на изучение теплопроводности пенобетона разной плотности и установление ключевых факторов, влияющих на теплопроводность этого материала.пенобетон семи плотностей (650, 700, 800, 900, 1000, 1100 и 1200 кг / м3) будет отлит и испытан при температуре окружающей среды для получения его эффективной теплопроводности с использованием метода горячей защиты. 2. Экспериментальная программа Пенобетон — относительно новый строительный материал по сравнению с бетоном нормальной прочности. Основным фактором, ограничивающим использование пенобетона в приложениях, является недостаточное знание характеристик материала при повышенных температурах. При применении в строительстве наиболее важными требованиями безопасности являются несущая способность и огнестойкость.Чтобы понять и в конечном итоге предсказать характеристики систем на основе пенобетона, на первом этапе необходимо знать свойства материала при температуре окружающей среды и повышенных температурах. Чтобы можно было предсказать огнестойкость строительной конструкции, необходимо определить ее температуру. Для количественной оценки структурных характеристик важно знать механические свойства материала при повышенных температурах. Будут установлены механические свойства пенобетона, в том числе на сжатие 182 Md Azree Othuman Mydin CRL Letters Vol.2 (1) 2011 Прочность, модуль упругости при сжатии, деформация при максимальной прочности на сжатие, зависимость напряжения от сжатия при сжатии, виды разрушения, предел прочности при изгибе и модуль упругости при изгибе. 2.1. Материалы Пенобетон, использованный в этом исследовании, был изготовлен из обычного портландцемента (OPC), мелкого песка, воды и стабильной пены. Основными целями этого исследования являются определение теплопроводности пенобетона при температуре окружающей среды, поэтому только постоянное соотношение цемента и цемента 2: 1 и соотношение воды и цемента 0.5 будет использоваться для всех партий пенобетона, изготовленных для данного исследования. Водоцементное соотношение 0,5 было признано удовлетворительным для достижения достаточной удобоукладываемости [9]. Как правило, используется следующее сырье. 2.1.1. Цемент Портландцемент, полученный от Cima Group of Companies Sdn. Bhd. (Перак, Малайзия). Используемый портландцемент соответствует портландцементу типа I согласно ASTM C150 [10] и BS12 [11]. 2.1.2. Отшлифуйте Мелкий песок с дополнительным просеиванием для удаления частиц размером более 2.Для улучшения текучести и стабильности пенобетона в смеси было использовано 36 мм, как в BS12620 [12]. 2.1.3. Вода В ходе этого экспериментального исследования для изготовления образцов пенобетона использовалась водопроводная вода. 2.1.4. Поверхностно-активные вещества В качестве поверхностно-активного вещества (вспенивающего агента) использовался Noraite PA-1 (на основе белка), который подходит для пенобетона плотностью от 600 до 1600 кг / м3. Noraite PA-1 происходит из природных источников, имеет вес около 80 грамм / литр и расширяется примерно в 12,5 раз при использовании с генератором пены.Стабильная пена была получена с помощью пеногенератора Portafoam TM2 System [13]. 2.2. Составы пенобетона В текущем исследовании образцы пенобетона размером 300 мм x 300 мм x 50 мм были изготовлены с семью различными плотностями, а именно 650, 700, 800, 900, 1000, 1100 и 1200 кг / м3. Все образцы пенобетона были изготовлены собственными силами. Цемент был смешан с песком, и вода перемешивалась в смесителе в течение нескольких минут. Затем постепенно добавляли пену до получения желаемой плотности. Соотношение цементно-песчаной и пенной смеси составляло 2: 1: 0.5. Для каждой плотности были приготовлены три идентичных образца, которые были испытаны с использованием метода горячей пластины через 14 дней после смешивания. Более подробная информация о пропорциях компонентов смеси и плотностях представлена в таблице 1. Целевой объем пенобетона, необходимый для каждой конструкции смеси, составлял 0,1 м3. 183 Эффективная теплопроводность пенобетона разной плотности ТАБЛИЦА 1: СОСТАВЛЯЮЩИЕ ДОПОЛНИТЕЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ПРОПОРЦИИ ПЕНОБЕТОННЫХ СМЕСЕЙ (кг / м3) Целевая влажная плотность (кг / м3) Цемент: 650 700800900 1000 1100 1200 774 826 929 1033 1136 1239 1343 2: 1 2: 1 2: 1 2: 1 2: 1 2: 1 2: 1 Вода: цемент Содержание портландцемента (кг / м3) Содержание песка (кг / м3) ПАВ Noraite PA-1 (м3) 0.5 0,5 0,5 0,5 0,5 0,5 0,5 39 41 46 52 57 62 67 19 21 23 26 28 31 34 0,063 0,060 0,055 0,050 0,045 0,040 0,035 2.3. Испытания пластин с горячей защитой Тест HGP проводился в соответствии с процедурой ASTM, описанной в [14]. Испытание плиты с горячей защитой обычно признано основным абсолютным методом измерения свойств теплопередачи гомогенных изоляционных материалов в виде плоских плит. Этот метод испытаний в установившемся режиме был стандартизирован ASTM International как стандартный метод испытаний ASTM C 177.Основной метод HGP состоит в основном из горячей и холодной пластины. При испытании HGP испытуемый образец помещают на узел плоского пластинчатого нагревателя, состоящего из электрически нагреваемой внутренней пластины (основного нагревателя), окруженной защитным нагревателем. Нагреватель ограждения тщательно контролируется для поддержания одинаковой температуры с обеих сторон зазора, разделяющего основной и защитный нагреватели. Это предотвращает боковой тепловой поток от основного нагревателя и гарантирует, что тепло от электрического нагревателя течет в направлении образца.На противоположной стороне образца расположены дополнительные плоские нагреватели (холодная пластина), которые регулируются при фиксированной температуре, выбранной оператором. При заданном подводе тепла к основному нагревателю температура узла горячей плиты повышается до тех пор, пока система не достигнет равновесия. Конечная температура горячей пластины зависит от потребляемой электроэнергии, теплового сопротивления образца и температуры холодной пластины. Средняя теплопроводность образца k определяется из уравнения теплового потока Фурье следующим образом: k = W d 1 × A ∆T … (1) где W — подводимая электрическая мощность к основного нагревателя, A — площадь поверхности основного нагревателя, ∆T — разность температур на образце, d — толщина образца. 2.4. Измерения пористости Величина пористости пенобетона была определена с помощью прибора вакуумного насыщения [15] для всех плотностей, рассмотренных в данном исследовании. Измерения пористости пенобетона проводились на срезах стержней диаметром 68 мм, вырезанных из центра 184 Md Azree Othuman Mydin CRL Letters Vol. 2 (1) 2011 Кубики 100 мм. Образцы сушили при 105 ° C до достижения постоянного веса, а затем помещали в эксикатор под вакуумом не менее чем на 3 часа, после чего эксикатор заполняли деаэрированной дистиллированной водой.Пористость рассчитывалась по следующему уравнению: ε = (Wsa t — Wdry) (Wsa t — Wwa t) × 100… (2) где ε — пористость (%), Wsat — вес в воздух насыщенного образца, Wwat — вес насыщенного образца в воде, а Wdry — вес высушенного в печи образца. 2.5. Измерение размера пор Для того, чтобы наблюдать влияние размера пор на теплопроводность пенобетона, необходимо установить размер пор для каждой плотности. Для целей данного исследования подготовка образца для измерения размера пор немного отличалась от рекомендованной ASTM C 457.В стандарте ASTM C 457 указаны размер и толщина образца, а также длина перемещения в методе линейного перемещения (LTM) в зависимости от размера заполнителя. Однако смеси из этого исследования не содержат грубых заполнителей, а состоят из большого количества воздуха (пены). Для обеспечения стабильности стенок воздушных пор во время полировки, особенно в более слабых образцах (меньшей плотности), все образцы были пропитаны в вакууме медленно схватывающейся эпоксидной смолой. Чтобы обеспечить согласованность результатов, все образцы были приготовлены с использованием аналогичных методов в одинаковых условиях окружающей среды, как указано ниже.Прежде всего, образцы размером 45 х 45 мм с минимальной толщиной 15 мм были вырезаны из центра двух случайно выбранных кубиков диаметром 100 мм с помощью алмазного резца. Лицевая сторона образца вырезалась перпендикулярно направлению разливки. Образцы заданного размера пропитывали ацетоном, чтобы остановить дальнейшую реакцию гидратации, перед сушкой при 105 ° C. Для обеспечения устойчивости стенок воздушных пор при полировке высушенные и охлажденные образцы пропитывали в вакууме медленно схватывающейся эпоксидной смолой. Пропитанные образцы полировали согласно ASTM C 457.После полировки и очистки образцы сушили при комнатной температуре в течение 1 суток. Наконец, для измерения размера пор рассматривался эффективный размер 40 x 40 мм. Размер пор измеряли в соответствии с ASTM C 457 под микроскопом с увеличением 60x на двух образцах, приготовленных в соответствии с процедурой, описанной ранее, для каждого образца пенобетона. Система анализа изображений состояла из оптического микроскопа и компьютера с программным обеспечением для анализа изображений. 3. Результаты и обсуждения Результаты испытаний всех образцов пенобетона приведены в Таблице 2.Дальнейшие обсуждения разделены на категории в зависимости от влияния плотности, размера пор и пористости на теплопроводность пенобетона. 185 Эффективная теплопроводность пенобетона разной плотности ТАБЛИЦА 2: СВОДКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ Плотность (кг / м3) Теплопроводность, k (Вт / мК) Пористость (%) Эффективная размер пор (мм) 650700800900 1000 1100 1200 0,23 0,24 0,26 0,28 0,31 0,34 0.39 74 71 64 57 51 47 44 0,72 0,69 0,63 0,59 0,55 0,51 0,48 3,1. Влияние плотности на теплопроводность Результаты показывают, что теплопроводность всех образцов пенобетона прямо пропорциональна плотности (рис. 1). Например, теплопроводность пенобетона снизилась с 0,39 до 0,28 Вт / мК, а затем снизилась до 0,23 Вт / мК для соответствующих плотностей 1200, 900 и 650 кг / м3 соответственно. Результаты подтвердили, что более низкая плотность трансформируется в более низкую теплопроводность, что сопоставимо с выводами других исследователей [16, 17].Как будет сказано в разделе 3.2, плотность пенобетона определяется его пористостью. Пенобетон высокой плотности будет иметь меньшее значение пористости по сравнению с пенобетоном низкой плотности, поэтому это повлияет на теплопроводность этого материала. Теплопроводность (Вт / мК). 0,4 0,35 0,3 0,25 0,2 600 700 800 900 1000 1100 1200 3 Плотность теплопроводности пенобетона различной плотности 186 1300 Md Azree Othuman Mydin CRL Letters Vol.2 (1) 2011 3.2. Влияние пористости и размера пор на теплопроводность На рис. 2 представлены типичные микроскопические изображения внутренней структуры пор пенобетона плотностью 1000 и 650 кг / м3. Ясно, что размеры пор неоднородны. Однако эти две цифры ясно показывают, что существует преобладающий размер пор, и что преобладающий размер пор в первую очередь зависит от плотности пенобетона. Преобладающий размер пор имеет тенденцию к увеличению по мере уменьшения плотности пенобетона из-за большего количества используемой пены (рис.3). На данный момент, из микроскопического анализа внутренних изображений пенобетона двух плотностей, доминирующий размер пор пенобетона плотностью 650 и 1000 кг / м3 был определен как 0,72 мм и 0,55 мм соответственно. Плотность пенобетона определяется пористостью или количеством воздуха внутри материала. Из рисунка 4 видно, что меньшая плотность пенобетона указывает на большую пористость или большее количество воздуха (больший размер пор). В результате теплопроводность значительно изменяется в зависимости от пористости пенобетона, поскольку воздух является самым плохим проводником по сравнению с твердым и жидким из-за его молекулярной структуры. (а) Плотность 650 кг / м3 (б) Плотность 1000 кг / м3 Рисунок 2 Размеры пор пенобетона для плотностей 650 и 1000 кг / м3 187 Эффективная теплопроводность пенобетона разной плотности Эффективная Размер пор (%) 0,8 0,7 0,6 0,5 0,4 600 700 800 900 1000 1100 1200 1300 00031300 000 / м) Рисунок 3 Эффективный размер пор пенобетона при различной плотности 4.Заключение Было проведено экспериментальное исследование по определению теплопроводности пенобетона разной плотности и факторов, влияющих на теплопроводность, методом Hot-Guarded Plate. По результатам испытаний можно сделать следующие выводы: 1. Поскольку пенобетон изготавливается путем нагнетания воздуха в смесь на основе цемента, плотность пенобетона напрямую зависит от воздуха (пористости) внутри пенобетона. Поэтому плотность пенобетона играет важную роль в определении его теплопроводности.Пенобетон меньшей плотности указывает на большую пористость. 2. Теплопроводность заметно меняется в зависимости от пористости пенобетона, потому что воздух является самым плохим проводником по сравнению с твердым и жидким из-за его молекулярной структуры. 3. Пенобетон с меньшей плотностью приводит к более низкой теплопроводности. 4. Преобладающий размер пор пенобетона в первую очередь зависит от плотности пенобетона, который имеет тенденцию к увеличению по мере уменьшения плотности пенобетона из-за большего количества пены. Выражение признательности Выражаем признательность Universiti Sains Malaysia в качестве организации, финансирующей это исследование.Автор также признателен за помощь, оказанную академическими членами и сотрудниками Школы жилищного строительства, строительства и планирования Университета Саинс Малайзия. Ссылки [1] Huang, C. L. Свойства структуры пор материалов, Fu-Han, Тайнань, Тайвань, 1980. [2] Yunsheng, X., Chung, D.D.L. Влияние добавления песка на удельную теплоемкость и теплопроводность цемента. Джем. Concr. Res. 2000. 30 (1): с. 59-61 188 Md Azree Othuman Mydin CRL Letters Vol.2 (1) 2011 [3] Будаиви, И., Абду, А., Аль-Хомуд, М. Вариации теплопроводности изоляционных материалов при различных рабочих температурах: влияние на охлаждающую нагрузку, вызванную оболочкой. J. of Archaeological Engineering 2002. 8 (4): p 125-132. [4] BCA. Пенобетон: состав и свойства. Отчет Ref. 46.042, Slough: BCA, 1994. [5] Джонс, М. Р., Маккарти, А. Предварительные взгляды на потенциал пенобетона в качестве конструкционного материала.Mag. Concr. Res. 2005. 57 (1): p 21-31. [6] Кесслер, Х.Г. Ячеистый легкий бетон, Concrete Engineering International, 1998. стр. 5660. [7] Олдридж, Д., Анселл, Т. Пенобетон: производство и проектирование оборудования, свойства, применение и потенциал. В: Материалы однодневного семинара по пенобетону: свойства, применение и новейшие технологические разработки, Университет Лафборо, 2001. [8] Weigler, H., Карл, С. Конструкционный бетон на легком заполнителе пониженной плотности Пенобетон на легком заполнителе. Int. J. Lightweight Concr. 1980. 2 (2): p 101-104. [9] Md Azree, O. M. Влияние использования добавок на прочность на сжатие легкого пенобетона. Магистерская диссертация, Школа жилищного строительства, строительства и планирования, Научный университет Малайзии, Пенанг, 2004 г. [10] ASTM. C 150-02a. Стандартные технические условия на портландцемент. ASTM, Вест Коншохокен, Пенсильвания, 2002.[11] BS EN 12. Спецификация портландцемента. Британский институт стандартов, Лондон, 1991. [12] BS EN 12620. Заполнители для бетона. Британский институт стандартов, Лондон, 2002 г. [13] Веб-сайт: www.portafoam.com [14] ASTM C 177-97. Стандартный метод испытаний для измерения стационарного теплового потока и свойств теплопередачи с помощью устройства с защищаемой горячей плитой. Американское общество испытаний и материалов, 1997. [15] Кабрера, Дж. Г., Линсдейл, К. Дж. Новый газопроницаемый пермеаметр для измерения проницаемости раствора и бетона.Mag. Concr. Res., 1998. 40 (144): p. 177-182. [16] Демирбога Р., Гул Р. Влияние вспученного перлитового заполнителя, микрокремнезема и летучей золы на теплопроводность легкого бетона. Concr. Res. 2003. 33 (10): p 723-727. [17] Нараянан Н., Рамамурти К. Структура и свойства газобетона: обзор. Цементно-бетонные композиты 2000. 22 (5): с. 321–329. 189 Более экологичные строительные растворы и бетон с оптимальной термической и механической эффективностью — campusa-magazineИсследователи из отдела машиностроения UPV / EHU изучают и оптимизируют механические и термические свойства новых строительных растворов и бетона, изготовленных с использованием промышленных побочных продуктов, таких как известковый шлам бумажной промышленности, латунные волокна и печной шлак, с цель сокращения потребления энергии и природных ресурсов и стимулирования экономики замкнутого цикла. Потребление сырья заметно увеличилось в промышленности в целом и в строительной отрасли в частности на фоне растущей озабоченности вопросами устойчивости. Бетон и строительный раствор являются наиболее часто используемыми материалами в строительстве, и в настоящее время проводится множество исследований, направленных на снижение вредного воздействия их производства. Бетон и раствор изготавливаются путем смешивания воды, песка, цемента и заполнителей. «Основная проблема — это количество цемента, используемого для производства этого типа материала; Производство цемента использует огромное количество энергии и природных ресурсов, что предполагает высокий уровень выбросов CO 2 .В настоящее время проводятся разнообразные исследования, направленные на снижение количества необходимого цемента. Мы работаем над заменой цемента и заполнителей (песка или гравия) ненатуральными материалами, чтобы сократить использование природных ресурсов и оптимизировать механические и термические свойства производимых материалов », — объясняет Роке Боринага Тревиньо, исследователь из Кафедра машиностроения UPV / EHU. С этой целью исследовательская группа анализирует побочные продукты различных промышленных процессов, которые позволяют использовать производимые растворы и бетоны для различных функций, в зависимости от приобретаемых ими механических и термических свойств: «Цель состоит в том, чтобы сократить как можно больше — объем промышленных побочных продуктов, которые попадают на свалки, и повторное использование этих продуктов в соответствии с требованиями экономики замкнутого цикла », — утверждает д-р Боринага.Недавно исследовательская группа исследовала три различных побочных продукта в трех разных областях. Особые случаиВо-первых, они изучали возможность использования промышленных металлических отходов в качестве арматуры в бетоне или растворе, анализируя растворы, армированные латунными волокнами от электроэрозионной обработки. Во-вторых, и связанные с этим направлением исследований, направленных на сокращение количества необходимого цемента, они исследовали использование отходов известкового шлама из бумажной промышленности, получив хорошие результаты с точки зрения теплопроводности и обнаружив, что полученный материал подходит для использования. в системах лучистого теплого пола.И, наконец, они использовали печной шлак в качестве заполнителя: «Теплопроводность песка, извлекаемого из электродуговых печей, низкая, что делает его хорошим вариантом для целей изоляции», — объясняет д-р Боринага. Хотя они изучают множество различных типов материалов, они делают фундаментальные исследования: «Наша работа — первый шаг в исследовании этих материалов. Побочные продукты и отходы производства не особенно однородны, что означает, что они сильно различаются в зависимости от их происхождения.Поэтому первым шагом является анализ свойств, которыми наделяет каждый конкретный вид отходов. «Важно провести эти анализы с большим количеством отходов разного происхождения и сравнить результаты, чтобы определить, подходят ли материалы для использования в производстве», — заключает он. . |