Теплопроводность пеноблока — PROКирпич | Кирпич в Нижнем Новгороде
Блоки
Views: 712
Все строительные материалы оцениваются по ряду важных критериев: например, прочность, цена, экологичность, предположительные сроки эксплуатации и так далее. Одним из ключевых качеств стеновых строительных материалов является теплопроводность. От того какой коэффициент теплопроводности имеет материал зависит, на сколько тепло будет зимой в вашем доме. Если вы ищите альтернативу кирпичу или шлакоблокам и хотите, чтобы теплопроводность материала была более низкой, чем других материалов, то стоит обратить свое внимание на пеноблоки. Все потому, что этот материал обладает множеством прекрасных характеристиками. А теплопроводность пеноблока является одной из самых низких.
Теплопроводность пеноблока в сравнении с другими стойматериалами
Чтобы вы точно убедились в низкой теплопроводности пеноблока, приведем примеры некоторых других материалов с указанием их теплопроводности.
[b]Справка[/b]. Теплопрово́дность — способность тел к теплообмену (переносу энергии) от более нагретых частей тела к менее нагретым. В системе СИ единицей измерения коэффициента теплопроводности является Вт/(м·K) (ватт/(метр·Кельвин). В строительстве коэффициент принято обозначать литерой λ. Чем меньше теплопроводность материала, тем лучше энергосберегающие свойства
Теплопроводность силикатного кирпича составляет 0,8-0,9 Вт/м*К, керамический кирпич имеет теплопроводность в 0,8 Вт/м*К,м шлакоблок – 0,65 Вт/м*К. Теперь подошла очередь пеноблока, его теплопроводность составляет 0,2 – 0,4 Вт/м*К. Как видите на данный момент это наилучший материал, который как можно больше сохраняет тепло в помещение.
От чего зависит теплопроводность пеноблока.
В основном на теплопроводность пеноблоков влияет их плотность и прочность. Чем ниже плотность тем выше коэффициент теплопроводности. Пенобетонные блоки по плотности подразделяются на три вида:
- теплоизоляционные — низкая плотность (400 — 500 кг/м. куб) с большим количеством пустот, применяются для теплоизоляции стен;
- конструкционно-теплоизоляционные — средняя плотность (600 — 700 кг/м.куб), обладают несущей способностью, подходят для возведения несущих стен зданий с небольшой этажностью;
- конструкционные пеноблоки — высокая плотность (1100 — 1200 кг/м.куб), малое содержание пустот, применяются для возведения несущих стен.
Коэффициент теплопроводности пенобетона
Вид пенобетона | Марка пенобетона | Коэффициент теплопроводности λ |
---|---|---|
D300 | 0,08 | |
D400 | 0,10 | |
D500 | 0,12 | |
Конструкционно — теплоизоляционный | D500 | 0,12 |
D600 | 0,14 | |
D700 | 0,18 | |
D800 | 0,21 | |
D900 | 0,24 | |
Конструкционный | D1000 | 0,29 |
D1100 | 0,34 | |
D1200 | 0,38 |
Пеноблоки с плотностью 400 – 500 кг/ м3 имеют самую низкую теплопроводность, поэтому они в основном используются для строительства межкомнатных перегородок и теплоизоляции стен внутри помещения. Пеноблоки с показателями плотности в 1100 – 1200 кг/м3 можно использовать для строительства жилых зданий и других помещений. Их вес и теплопроводность гораздо выше из-за уменьшения размеров пор внутри пеноблока.
Подводя итоги можно сказать, что пенобетон имеет отличные характеристики по теплопроводности, хорошо удерживает тепло и является достаточно экологичным материалом. Для его производства используется: цемент, песок, вода и натуральный пенообразующий компонент.
Ну, а выбирая пеноблоки всегда помните, что теплопроводность пеноблока зависит от количестве и размеров пор внутри. Чем меньше пор и их размеры не большие, тем лучше будет сохранятся тепло.
Просмотров: 712
Так же рекомендуем почитать
Популярное
Теплопроводность пеноблока
Одной из важнейших характеристик строительных материалов и в том числе характеристик пеноблока, является теплопроводность. Теплопроводность пеноблока — демонстрирует его возможности по передаче тепла. Чем выше коэффициент теплопроводности у строительного материала, тем холоднее будет в вашем доме в зимнее время, стены которого выполнены из материала с высоким коэффициентом теплопроводности. Важнейшее преимущество пеноблоков заключается в его пористой структуре, благодаря которой теплопроводность пенобетонных блоков является низкой. Но иногда появляется необходимость утеплить дом из пеноблоков.
Для того что бы лучше понять это, сравним теплопроводности различных строительных материалов, наиболее часто используемых для возведения стен:
- Силикатный кирпич — 0,8-0.9 Вт/м*ºK
- Керамический кирпич — 0.8 Вт/м*ºK
- Шлакоблок — 0,65 Вт/м*ºK
- Пеноблок — 0,2 — 0,4 Вт/м*ºK
Судя по вышеприведенным данным, становится ясно, что теплопроводность пеноблока самая низкая из всех приведенных в списке популярных строительных материалов.
Для более понятного объяснения можно сравнить толщину стен обеспечивающих одинаковое сохранение тепла в доме:
Стена из пеноблоков стандартного размера 300 мм в толщину (теплопроводностью 0. 2 Вт/м*ºK), будет обеспечивать сохранность тепла в доме, точно так же как и стена из шлакоблоков толщиной в 100 см или стена из керамических кирпичей в 120 см.
Теплопроводность пеноблока изменяется в зависимости от его плотности, а соответсвенно и прочности. Самые легкие, соответственно наименее прочные пеноблоки используются для теплоизоляции стен дома, а так же могут использоваться для строительства межкомнатных перегородок, речь идет про блоки плотность которых 400-500 кг /м3.
Существуют пенобетонные блоки со значительно более высокой плотностью, 1100-1200 кг /м3, они за счет уменьшения размера пор внутри блока, становятся наиболее прочными, подходят для возведения несущих стен, но они хуже сохраняют тепло, чаще всего такие блоки применяются в качестве строительного материала для возведения стен, 1-2 этажных домов. Побетонные блоки средней плотности, 600-700 кг /м3 так же могут спокойно выдерживать нагрузку от перекрытий и к тому же являются достаточно теплостойкими, что делает их наиболее популярными при строительстве частных домов, коттеджей и таунхаусов.
Важно понимать, что теплопроводность пенобетона зависит от количесва и размера пор внутри. Важным параметром пеноблоков является и точность исполнения пеноблоков, поскольку от этого на прямую зависит размер слоя раствора для кладки пеноблоков. Если из-за неточности изготовления пеноблоков (например если блоки были изготовлены на минизаводе по производству пеноблоков) толщина швов будет увеличиваться от положенных 2-4 мм до 10-12 из-за неровностей, то велика вероятность образования так называемых «мостиков холода», которые приведут к снижению тепла в доме и другим негативным последсвиям.
Метки: Метки Теплопроводность пеноблока
Термические свойства и преимущества изоляционных пенобетонов
Введение
Изменение климата является одной из самых тревожных глобальных проблем, которые мировые лидеры пытаются решить с начала 21 века. Поскольку осведомленность общественности об экологических проблемах продолжает расти, это также оказывает более заметное влияние на выбор потребителей. Глобальные усилия по обеспечению более устойчивого образа жизни получили широкое распространение, о чем свидетельствует резкий рост производства и продажи экологически чистых технологий на многочисленных мировых рынках.
Одним из примеров отрасли, на которую сильно влияет стремление потребителей к устойчивому развитию, является строительный сектор. Производители на этом рынке пытаются производить более экологически чистые продукты и производить их с использованием устойчивых и экологически чистых технологий. Это повышенное внимание к энергосберегающим возможностям продукта привело к резкому росту популярности изоляционных пенобетонов (ICF) в качестве предпочтительного материала для строительства новых зданий. Недавно провозглашенная оценка и увеличение спроса на МКФ привели к более глобальному производству материала, поскольку он используется во многих странах для различных коммерческих проектов, включая строительство квартир, отелей, магазинов и зданий кинотеатров.
ICF R-значение
Изоляционные пенобетонные пены предлагают более прочную, изоляционную и устойчивую альтернативу традиционным зданиям с деревянным каркасом, которая имеет как долгосрочные экономические, так и экологические преимущества с точки зрения снижения затрат и энергопотребления. Секрет их тепловой мощности заключается в сочетании пониженной теплопроводности и конвекции, а также в высокой тепловой массе. Эта выигрышная комбинация не только снижает энергопотребление здания, но и повышает комфорт внутри, блокируя сквозняки и обеспечивая превосходное поглощение тепла. На большинство желаемых тепловых свойств, отображаемых ICF, указывает их высокое значение R. «r» в значении R означает сопротивление материалам с более высоким значением R, имеющим лучшее сопротивление тепловому потоку по сравнению с материалами с низким значением R. Пенополистирол, из которого изготовлен ICF, является одним из лучших изоляционных материалов на рынке. ICF обычно содержат 5-дюймовую изоляцию из пенополистирола с испытательными изоляционными свойствами в диапазоне от R-22 до R-26.
Изоляция EPS также обладает оптимальными звукопоглощающими свойствами. Они пропускают только примерно на 12,5–25 % больше звука по сравнению с деревянными стенами. В глазах владельца бизнеса этот ключевой компонент МКФ делает его крайне желательным, особенно если здание расположено на шумной городской улице или в центре мегаполиса. Кроме того, здания и дома, построенные с использованием этих материалов, обеспечивают уровень безопасности, с которым мало кто может сравниться. В среднем они в 10 раз прочнее стандартной рамной конструкции и в несколько раз прочнее конструкции CMU из «шлакоблоков».
Комбинация ICF и EPS пользуется большим успехом у военных и правоохранительных органов благодаря своей взрыво- и баллистической стойкости. Пенополистирол уникален тем, что он не горит при воздействии высокой температуры, а вместо этого плавится. Несмотря на плавление в этих условиях, он не станет топливом для огня и обладает самозатухающими свойствами благодаря антипирену, добавляемому в пенополистирол всеми ведущими производителями ICF.
Рис. 1. Крупный план изоляции ICF с металлическим армированием.
Значения R являются ключевыми для измерения теплового сопротивления материала, однако при попытке оценить энергетические характеристики здания им не хватает уровня детализации, необходимого для определения фактических свойств теплопередачи в качестве единственной рассматриваемой величины. К основным факторам, которые более точно отражают энергетические характеристики здания, относятся теплопроводность, конвекция, излучение и масса.
Рисунок 2: Механизмы теплообмена, включая теплопроводность, излучение и конвекцию.
Теплопроводность ICF
Теплопроводность материала напрямую связана с его способностью эффективно способствовать передаче тепла через него. Теплопроводность также часто называют теплопроводностью, которая представляет собой передачу тепла через материал путем прямого контакта одной молекулы с другой. Проводимость — единственный фактор, который напрямую измеряется значением R. Изоляция с деревянным каркасом имеет значение R, доступное только с точки зрения самого высокого номинального компонента самой изоляции стены. Это значение может вводить в заблуждение, так как большинство строителей обычно называют здание со стенами R-13 или R-21, не раскрывая при этом, что эти значения являются единственным показателем самого высокого и наиболее теплоизолирующего материала во всей конструкции.
Деревянный каркас состоит из нескольких компонентов, которые имеют множество различных R-значений, что значительно снижает подлинную теплоизоляционную ценность здания, а в некоторых случаях составляет только половину рекламируемой ценности. С другой стороны, стены ICF состоят из центральной полости, предназначенной для размещения бетона между двумя слоями изоляционной пены EPS, которая обеспечивает два в основном непрерывных слоя изоляции с рейтингом R-22 или выше.
Рис. 3: Блоки изолирующих пенополистирола
Тепловая конвекция и ICF
Несмотря на то, что основное внимание изоляционных материалов обычно сосредоточено на теплопроводности, именно тепловая конвекция способствует большей части потерь тепла в здании. Конвекция характеризуется передачей тепла, которая происходит за счет движения токов внутри жидкости или газа. Когда речь идет о конвекции внутри здания, обычно это движение воздуха между внутренней и внешней частью здания или «фильтрация воздуха», которая характеризует качество изоляционного материала.
Обычной мерой измерения, используемой в строительной отрасли для описания фильтрации воздуха, является «обмен воздуха в час» при перепаде давления, создаваемом дверцей вентилятора, равном 50 Па (ACH50). Стандарты энергетической звезды США для новых домов требуют менее 4-7 ACH50. Эти стандарты чрезвычайно смягчены по сравнению с более строгими правилами, установленными в Канаде, где стандарт R-2000 составляет 1,5 ACH50, и в Швеции, где требуется 0,5 ACH50 или меньше. С точки зрения измерения изоляционных качеств, чем выше значение ACH50, тем сильнее происходит внутренняя и внешняя фильтрация воздуха.
В стандартном здании с деревянным каркасом конвекция проявляется в виде сквозняков и часто является самой большой причиной потерь энергии в здании. Инфильтрация воздуха может составлять более 40% от общей потери энергии, поскольку воздух часто просачивается через многочисленные трещины и стыки между «спичками», составляющими каркас деревянного здания. Типичный недавно построенный деревянный дом будет иметь ACH50 от 1,75 до 3, однако через пару лет это число может резко возрасти до значений от 5 до 10, поскольку древесина сжимается и портится. В старых деревянных домах отсутствует почти какая-либо теплоизоляция, и обычно их значения ACH50 составляют в среднем от 10 до 20.
Здания ICF намного превосходят конструкции с деревянным каркасом с точки зрения блокирования воздушного потока и поддержания стабильной температуры в помещении независимо от внешней погоды или климата. Большинство зданий ICF имеют ACH50 0,5-2,5 или меньше, причем эти значения сильно зависят от типа крыши и герметизирующего материала. Этот ограничительный воздушный поток полезен с точки зрения регулирования температуры, однако в этих герметичных зданиях необходимо поддерживать адекватный воздухообмен за счет использования механической вентиляции. Этот тип умеренного воздушного потока можно комбинировать с установками рекуперации тепла/энергии или наземными теплообменниками для дополнительной экономии.
Тепловое излучение и МКФ
Тепловое излучение является еще одним важным регулятором использования энергии в здании, и многие пренебрегают им при выборе материала для использования при строительстве конструкции. Тепловое излучение характеризуется передачей тепла через электромагнитные волны, которые в случае здания исходят в основном от УФ-излучения, испускаемого солнцем. Влияние этого метода теплопередачи на обмен энергией, происходящий внутри здания, в значительной степени зависит от таких факторов, как местоположение участка и преобладающий климат в этом регионе. Пассивные солнечные конструкции зданий могут помочь оптимизировать поглощающие и отражающие способности здания за счет использования солнечной ориентации, размещения окон и выбора идеальных элементов затенения, таких как выбор отделки и включение тепловой массы.
Рисунок 4: Компоненты конструкции пассивного дома, выходящие за пределы изоляции ICF.
Тепловая масса материала относится к его способности накапливать тепло. Бетон и сырцовые кирпичи имеют большую тепловую массу и действуют как батарея, хранящая тепло, которое высвобождается при понижении температуры окружающей среды. ICF с бетонным внешним видом может накапливать тепло в дневную жару, а затем отдавать его внутри ночью, поддерживая комфортную температуру при почти нулевом потреблении энергии. В умеренном климате бетон выполняет контрастную роль, задействуя пассивный солнечный дизайн, позволяя сильному зимнему солнцу нагревать стены и полы с высокой тепловой массой внутри и снаружи здания. Деревянные рамы почти не имеют тепловой массы, поэтому они не предлагают ни одного из этих преимуществ энергосбережения. Конструкция с высокой тепловой массой может быть легко встроена в стены и полы ICF, что снизит потребность в активных системах отопления и охлаждения за счет поддержания стабильной температуры окружающей среды в течение более длительного периода.
Возможность повторного использования ICF
При изучении тепловых свойств зданий ICF совершенно очевидно, что они могут экономить больше энергии и уменьшать фильтрацию воздуха по сравнению со стандартным деревянным домом, но их преимущества выходят за рамки физических свойств материала. Использование бетона вместо дерева для строительства может сэкономить значительное количество деревьев, потому что весь деревянный каркас исключается. Многие бетоны содержат переработанные компоненты за счет использования дополнительных материалов, таких как летучая зола или шлак, для замены части цементного заполнителя. Старый измельченный цемент также может быть переработан, чтобы уменьшить потребность в первичных заполнителях, и большинство стальной арматуры, используемой в процессе строительства, также могут быть переработаны.
Рисунок 5: Бетонная смесь, содержащая более крупные заполнители.
Здания ICF являются явным лидером среди строительных материалов, поскольку они предлагают лучшие экономические и экологические преимущества по сравнению со стандартными деревянными каркасными зданиями. Хотя первоначальная стоимость строительства из материалов ICF примерно на 3-5% выше по сравнению с классическим деревом, стоимость обслуживания и проживания значительно ниже. Расходы на страхование зданий ICF, как правило, дешевле из-за их повышенной прочности и огнестойкости. Владельцы зданий в конечном итоге скажут примерно на 20% больше о затратах на энергию при строительстве с использованием ICF по сравнению с деревянным.
Заключение
Если предположить, что срок службы здания составляет 100 лет, один дом ICF может сэкономить примерно 110 тонн CO2, что более чем компенсирует выбросы CO2, связанные с производством цемента, используемого для изготовления бетона, и может способствовать усилиям компании стать углеродно-нейтральными или углеродно-отрицательными. В то время, когда все думают об изменении климата, как никогда важно обеспечить совместную работу по минимизации нашего углеродного следа. Одним из способов достижения этой цели является замена устаревших строительных материалов, таких как древесина, современными изоляционными пенобетонами, что позволит как домовладельцам, так и крупным застройщикам внести свой вклад в смягчение негативного воздействия на окружающую среду и сокращение выбросов CO2.
Автор: Каллиста Уилсон | Младший технический писатель | Thermtest
Каталожные номера
Нужна ли теплоизоляция кирпичному дому? | Кирпичный сайдинг. (2020, 20 марта). Современный дизайн . https://gambrick.com/does-a-brick-home-need-insulation/
Бетонные опалубки с теплоизоляцией — энергоэффективность и теплостойкость (н.д.). Утепленные бетонные формы ICF от Quad-Lock. Получено 26 мая 2021 г. с https://www.quadlock.com/insulated-concrete-forms/ICF_energy_performance.htm
Изоляционные бетонные формы (ICF) . (н.д.). Получено 26 мая 2021 г. с https://www.cement.org/cement-concrete/paving/buildings-structures/concrete-homes/building-systems-for-every-need/insulating-concrete-forms-(ICFs)
14 июля, Сопротивление, 2020 | Катастрофа, Эффективность, E., Истории, F., Затраты, ICF и ICF?, W. (nd). Преимущества жизни в доме ICF | Журнал ICF Builder . Получено 26 мая 2021 г. с https://www.icfmag.com/2020/07/benefits-of-living-in-an-icf-home/ 9.0005
Microsoft Word — 02Revised.doc
%PDF-1.6 % 1 0 объект >>>]/OFF[]/Порядок[]/RBGroups[]>>/OCG[6 0 R 7 0 R]>>/Страницы 3 0 R/Тип/Каталог>> эндообъект 5 0 объект >/Шрифт>>>/Поля[]>> эндообъект 2 0 объект >поток 2017-01-18T15:01:27+01:002017-01-18T15:01:27+01:002017-01-18T15:01:27+01:00PScript5.