Теплопроводность керамический блок: Что такое коэффициент теплопроводности блоков «Поротерм»? — Полезные статьи Unimart24

Содержание

Теплопроводность керамических блоков (Поротерм): коэффициент, теплопередача поризованного кирпича

Керамический кирпич производится полнотелым и пустотелым. Структура влияет на эксплуатационные свойства строительного материала и характеристики стен из выбранного вида кирпича. В зависимости от климатических условий, они должны надежно сохранять температуру внутри помещений и обладать высокими теплоизоляционными свойствами. Способность кирпича к передаче тепла зависит от его плотности. Теплопроводность керамического кирпича с отверстиями выше, чем у полнотелого.

Определение термина

В физике теплопроводностью называется способность тела (в нашем случае, поризованного блока) проводить тепло от более нагретых частей к менее нагретым. Количественно она выражается в величине, называемой коэффициентом теплопроводности и обозначается как Вт/(м*С). Еще одни вариант международного обозначения – греческая буква λ (лямбда).

Проще говоря, теплопроводность керамического блока показывает, сколько тепла (в градусах) уходит из здания через внешнюю стену, в пересчете на единицу площади. Важно знать о том, что тем этот показатель ниже, тем меньше тепла будет уходить наружу, и тем более «теплой», при прочих равных условиях, будет стена.

Уровень теплопроводности тесно связан с другими характеристиками керамоблока (как впрочем, и любого другого строительного материала). В их числе:

  • Пустотность.
  • Пористость.
  • Плотность.

Чем выше уровень пустотности, пористости и ниже плотность, тем теплопроводность будет ниже (что в нашем случае – хорошо), и наоборот. Получается, что оптимальная теплопроводность керамоблока достигается путем увеличения технологических пустот, а также пор (от чего и произошло название материала – поризованная керамика). Но при этом, как правило, будет снижаться плотность блока и его марка прочности. Сразу же хочется отметить, что этой прочности, в любом случае, с большим запасом будет достаточно для возведения малоэтажных (2-3 этажа) коттеджей с несущими стенами. И уж тем более ее будет достаточно для заполнения внешних стен и перегородок в многоэтажном каркасно-монолитном строительстве. Для сравнения: марка прочности газобетонных блоков в 2-3 раза ниже, чем у керамических блоков, но даже они вполне подходят для кладки несущих стен коттеджей.

Особенности кладки керамоблока

Высокие параметры теплосопротивления стены из керамических блоков обусловлены не только их форматом и низкой теплопроводностью, но и наличием шип-пазовой системы фиксации элементов. При кладке раствор используется только в горизонтальном шве, по вертикали блоки стыкуются, и между ними также образуется замкнутая воздушная полость. Вкупе с хорошей геометрией блоков такой способ значительно упрощает кладку, а стены получаются достаточно ровными. Что впоследствии упрощает уже отделочные работы – тонкослойной штукатуркой не обойдешься, но и лишнего объема из-за «горбов» накидывать не придется. Толщина кладочных швов стандартная.

Илья ЕфремовВедущий технический специалист

Кладка из керамических блоков должна соответствовать СП «Каменные и армокаменные конструкции», в котором регламентируется толщина шва в 8-12 мм. Однако в Европе есть случаи, когда керамический блок укладывали на тонкий слой клея.

Тонкошовная кладка допускается, когда блоки шлифованные, что большая редкость для отечественного рынка ввиду их высокой стоимости. А для дополнительного сокращения теплопотерь сквозь швы, рекомендуется применять готовые кладочные смеси.

Илья ЕфремовВедущий технический специалист

Швы из кладочного раствора между керамическими блоками влияют не только на прочность кладки, но и на ее теплопроводность. Через данные швы, ввиду их плотности, быстрее проходит холод. Чтобы холод не проходил через швы, при кладке керамических блоков используют специальный теплый кладочный раствор, в составе которого присутствует перлит, значительно улучшающий теплопроводность раствора. Тем самым, кладка в плане теплопроводности становится более равномерной.

С учетом только постельного шва и формата блоков, затраты на готовый теплый раствор в рамках общестроительного бюджета будут не настолько больше, чтобы выбирать самомес из соображений экономии.

Как и кирпичная, кладка из керамоблоков должна выполняться с перевязкой – существует специальная формула расчета шага перевязки, для получения оптимальной по монолитности и жесткости конструкции. S=0,4·H. Где:

  • S – шаг перевязки;
  • H – высота блока.

Высота блоков стандартная, 219 мм, шаг составит 88 мм, при этом увеличить его, к примеру, до 100 мм можно, а вот уменьшить, нельзя, согласно типовой технологической карте (ТТК) кладки стен из керамических блоков. По этой ТТК, под перекрытия из многопустотных железобетонных плит рекомендуется заливать армопояс.

Производители же блоков допускают возможность упрощенного усиления кладки арматурой без необходимости заливки армопояса.

Илья ЕфремовВедущий технический специалист

Армопояс под перекрытиями не нужен – перед установкой плит перекрытия достаточно проложить арматуру по периметру стены и немного увеличить высоту кладочного раствора. Специалисты технической поддержки проконсультируют по всем вопросам, от выбора материала, до дальнейшей эксплуатации дома.

Что касается «вечного» вопроса по поводу вентзазора между стеной из керамики и облицовочным экраном из кирпича – он не нужен. Наличие свободного вентилируемого пространства обязательно в композитных системах, включающих слой теплоизоляции.

Полная инструкция по кладке блоков – в формате видео.

Сравнение разных материалов

Сравним популярные стеновые материалы. Чтобы было понятно, приведенные ниже расчеты в таблицах основаны на СНиП 23-02-2003 «Тепловая защита зданий». Учитывалось, что в стенах нет дополнительной теплоизоляции (пенопласт, минеральная вата) или облицовочного кирпича.

МатериалРасчетное содержание влагиТеплопроводность Вт/(м*С) в сухом состоянииТеплопроводность Вт/(м*С) расчетное значениеТолщина стены, см
Древесина*20%0,090,1848
Керамический кирпич полнотелый2%0,560,81219
Керамический кирпич пустотелый2%0,410,58155
Ячеистый бетон**6%0,120,1643
Силикатный кирпич4%0,700,87230
Керамзитобетон10%0,580,79209
Поризованный блок***1%0,130,1438

* – сосна и ель поперек волокон; ** – ячеистый бетон плотностью 500 кг/1м3; *** – керамический блок Porotherm 38 Thermo, кладка на теплосберегающем растворе.

Теперь сравним коэффициент теплопроводности керамических блоков нескольких наиболее распространенных на российском рынке. Источники – официальные сайты производителей.

Наименование блокаТеплопроводность, Вт/(м*С)Толщина стены, ммНужно ли дополнительное утепление*
Porotherm 250,24250Да
Porotherm 380,145380Да
Porotherm 38 Thermo0,123380Нет
Porotherm 440,136440Нет
Porotherm 510,143510Нет
BRAER Ceramic Thermo 10,7 NF0,14380Да
BRAER Ceramic Thermo 12,4 NF0,139440Нет
BRAER Ceramic Thermo 14,3 NF0,14510Нет
KERAKAM 380,19380Да
KAIMAN 38 Самара0,084380Нет
KERAKAM 44 Самара0,128440Нет
KERAKAM 51 Самара0,16510Нет
10,7НФ 250ММ Гжель0,143250Да
12,3НФ Гжель0,131440Нет
14,3НФГжель0,143-0,17510Нет

* На примере г. Москвы и Московской области. В других городах с разными климатическими условиями потребность в дополнительном утеплении может меняться. Информацию о других регионах на примере блоков Поротерм (Wienerberger) можно узнать на официальном сайте компании.

Кстати, в большинстве случаев небольшие блоки формата 2,1NF, также именуемые двойным поризованным камнем, имеют чуть худшую теплопроводность, по сравнению с более крупными «собратьями». Причем это касается всех производителей.

Коэффициент теплопроводности Поротерм и других перечисленных изготовителей примерно сопоставим. То же самое касается и теплопередачи внутренних перегородочных и доборных блоков. Кстати, о перегородках. В них уровень λ, как правило выше, чем для стеновых блоков и колеблется в пределах 0,20-0,25 Вт/(м*С). Однако это не является проблемой, поскольку они все равно используются только для внутренних работ.

Мои рекомендации по толщине стен

В таблице были рассмотрены лишь 4 производителя из числа наиболее распространенных. Есть и другие, но общая картина видна и так: мы видим, что при строительстве в климатических условиях Московского региона блоки толщиной 440мм и 510мм не требуют дополнительного утепления или использования облицовочного кирпича. В то же время, для всех блоков толщиной 250мм и части 330-миллиметровых требуется дополнительное утепление. В любом случае, ассортимент продукции, представленной на рынке – намного шире, чем в нашей таблице, поэтому в случае с каждым блоком разных производителей, все детали следует узнавать индивидуально.

При этом, теплопроводность поризованного кирпича, предназначенного для перегородок, не столь важна. Он используется для внутренних работ и не от него попросту не требуется таких же характеристик, как и для стеновых блоков.

Что такое поризованный керамический блок?

Нередко керамоблок с порами внутри называют крупноформатным камнем либо поризованной или теплой керамикой. Это более высокотехнологичная замена пустотелому красному кирпичу. По исходному сырью и многим эксплуатационным параметрам они схожи. Но по размеру керамический блок превосходит аналог как минимум в 2,1 раза.


Варианты керамических блоков

Форма у этого стройматериала сложная с системой «паз-гребень» с двух длинных сторон. Подобная гребенка позволяет минимизировать количество сквозных швов в кладке, что снижает общий коэффициент теплопроводности стены. В сравнении с возведенными из обычного кирпича строениями дома из керамических блоков получаются заведомо более теплыми.


Производство керамических блоков

При производстве этого стройматериала сначала глиняную массу формуют с добавлением внутрь поризаторов, а затем высушивают в сушилке и обжигают в печи. Весь цикл изготовления такого искусственного камня занимает несколько суток. Это не кустарное, а фабричное изделие. Покупая этот материал, владелец будущего дома может быть уверенным, что товар качественный и соответствует ГОСТ. На фабриках за этим следят строго.


Смесь глины и опилок для дальнейшего получения пустот

В качестве поризатора могут выступать:

  • Солома;
  • Опилки древесины;
  • Шелуха семечек или риса;
  • Торф и т. п.

Все это сгораемые материалы натурального происхождения. Главная их задача – выгореть дотла при обжиге керамического камня в печи. После них внутри остаются лишь многочисленные пустоты, которые и придают им высокие теплотехнические характеристики.

Общие выводы

Как мы видим, теплопроводность теплой керамики – это исключительно важный параметр. Однако помимо этого, при выборе следует учитывать и другие факторы, в том числе климатические условия региона и отсутствие или наличие дополнительного утепления или отделки облицовочным кирпичом. В целом же, для средней полосы России подходят все керамоблоки. Тем не менее, если вы не хотите использовать дополнительную теплоизоляцию, то имеет смысл купить блоки толщиной 440мм или 510мм, или же некоторые разновидности 380мм блоков. Если же вас не смущает будущий монтаж дополнительной «термошубы», то вполне можно обойтись и блоками для толщины стен 250мм и 380мм, при том условии, что вы обеспечите дополнительную теплоизоляцию в виде минваты или пенопласта, и декоративной штукатурки. Плюс этого варианта в том, что вам будет достаточно более тонкого фундамента, что сократит расходы и сроки его возведения.

Достоинства и недостатки керамоблоков

Технология производства определяет следующие плюсы керамических блоков:

  • Низкая теплопроводность. Структура блока (большое количество заполненных воздухом пустот) определяет одно из его главных положительных качеств – отменную теплоизоляцию, позволяющую сохранять тепло. Вертикальные стыки обладают высокой герметичностью, не давая появляться мостикам холода.
  • Паропроницаемость. Стены из поризованных керамоблоков способны к регулированию влажности; это позволяет поддерживать оптимальный микроклимат в доме.
  • Прочность. Керамика после обжига не содержит влаги, поэтому керамоблоки обладают механической прочностью, большей, чем силикатные изделия (пено- и газоблоки). Это позволяет не использовать опорный каркас для зданий большой этажности.
  • Качество. В отличие от силикатных стеновых материалов для производства термоблоков непременно нужны заводские условия и специальное оборудование. Риск использования кустарных или дефектных изделий предельно низок.
  • Химическая и биологическая инертность. Материал невосприимчив к химикатам, плесени и микроорганизмам.


Достоинства как на ладони Источник ehnashop.ru

  • Экологичность и пожаробезопасность. Блоки производятся из безопасной для здоровья человека и негорючей глины.
  • Звукоизоляция. Свойство, повышающее комфорт жизни в доме из поризованной керамики.

Профессиональные строители выделяют следующие особенности керамических блоков, благоприятные для строительства:

  • Долговечность. Продолжительность эксплуатации составляет 50 и более лет (красный строительный кирпич – 25-50 лет).
  • Малый вес блока. Благодаря этому свойству снижается нагрузка на фундамент. На заливке основания можно сэкономить.
  • Быстрота кладки. Благодаря малому весу, наличию системы паз-гребень и крупным размерам время монтажных работ сокращается в три раза (если сравнивать с кирпичом).
  • Выгоды размера. Большие габариты позволяют отказаться от многослойной кладки (нередко достаточно одного блока толщиной 510 мм).
  • Экономия кладочного раствора. Количество раствора уменьшается на 30% благодаря меньшему количеству блоков.


Одно из достоинств – легкость блоков Источник domino.am
Образ идеального стройматериала несколько тускнеет из-за наличия следующих недостатков:

  • Цена. Поризованный керамический блок является относительно дорогим стройматериалом, особенно, если учесть приобретение доборных блоков и специального раствора.
  • Сложности доставки. Ударные нагрузки – бич пористых изделий. Прочные в кладке, при транспортировке керамоблоки нуждаются в аккуратном обращении.
  • Высокое водопоглащение. Пористость структуры стен требует дополнительной влагоизоляции, то же касается и условий хранения.
  • Сложности обработки. Для того, чтобы подогнать размер, понадобятся специальные инструменты.
  • Сложности эксплуатации. Если вы захотите прикрепить к стене кронштейн телевизора, придется воспользоваться химическим анкером или специально предназначенным для пустотелой керамики крепежом.

Видео описание

О распиле керамоблока аллигаторной пилой в следующем видео:

  • Комбинирование материалов. Нередки случаи, когда по каким-либо причинам строители используют сочетание теплоблоков и кирпича в возведении наружных стен. Кирпичные фрагменты кладки имеют теплопроводность, превышающую в 4-5 раз аналогичный показатель поризованной керамики. Дом с комбинированными стенами потребует больших затрат на обогрев; об экономии придется забыть.
  • Неоправданное увеличение бюджета. Для кладки внутренних стен принято использовать блоки толщиной до 250 мм. Вместо них нередко выбирают более габаритный материал (380 мм), что не улучшает качество жилья, а приводит к росту затрат.
  • Пренебрежение правилами хранения. Если строительные работы приостанавливаются, незаконченные стеновые конструкции и неиспользованные блоки необходимо защитить от атмосферной влаги.

Требуемое термическое сопротивление для различных регионов России.

В таблице ниже, приведено требуемое термическое сопротивление (Rтр

) для внешних стен жилых зданий для ряда городов России. Ниже по тексту показаны предлагаемые нами конструкции внешних стен, которые мы готовы реализовать в понравившемся Вам проекте дома. Сопоставьте значение требуемого термического сопротивления в вашем городе с термическими сопротивлениями предлагаемых конструкций.

Теплопроводность керамического блока — коэффициент и зависимость от толщины

Керамоблоки приобрели огромную популярность в строительстве, и теплопроводность керамического блока – важнейшая характеристика этого материала. Независимо от климатических условий и температурных перепадов, именно на блоки возложена роль сохранять стабильную температуру внутри здания. Действительно ли это так важно при выборе строительного материала?

Кратко о теплопроводности

Чтобы разобраться в значении основных характеристик керамоблоков в строительстве, нужно вернуться в школьный курс физики. Рассмотрим теплопроводность на примере поризованных керамических блоков. Это их свойство передавать тепло. Простыми словами – часть блока, которая сильнее нагрета, отдает свое тепло менее нагретым частям. Выражается эта величина в коэффициенте теплопроводности. Обозначение – Вт/м*С.

Именно на низкий показатель следует ориентироваться при выборе материала. Это гарантирует, что минимум тепла будет уходить наружу через стену. Соответственно, помещение будет хорошо утеплено, и в нем будет сохраняться стабильная температура.

Сравнение разных стройматериалов

У керамических блоков коэффициент теплопроводности из всех стройматериалов считается самым низким (0,14 Вт/м*С). Чтобы убедиться, что именно керамоблоки подходят для строительства и позволяют сократить расходы на утепление здания, можно сравнить этот параметр с характеристиками других материалов.

Так, у натурального камня, который также часто используется в строительстве, коэффициент колеблется от 0,6 Вт/м*С. Кладку, выполненную именно из этого материала, придется обязательно утеплять, что увеличивает расходы на строительство дома. Именно за счет утеплителя получится сохранить стабильной температуру в помещении.

Еще одно сравнение теплопроводности – газоблока и керамического блока. Здесь также побеждает второй вариант – у первого коэффициент колеблется от 0,5 Вт/м*С. Газоблоки лучше использовать для возведения внутренних перегородок – внутри помещения теплопроводность не столь важна, и этот параметр получится сохранить за счет наружных стен, выполненных именно из керамоблоков.

Важно помнить, что теплопроводность во многом также зависит от толщины или даже размеров блоков, из которых возводится здания. Если теплопроводность керамического блока 380 мм, который чаще всего используется в строительстве невысокая, то у пустотелого керамического кирпича (толщиной 155 мм) эти показатели значительно выше – от 0,8 Вт/м*С.

Производители керамоблоков, характеристики разных материалов


На российском рынке керамические блоки представлены разными производителями – как отечественными, так и зарубежными. Самыми популярными, благодаря качеству и надежности, считаются керамоблоки «Красная Гвардия», Штольц, Porotherm. Помимо сложной технологии производства, из-за чего строительный материал служит долгие годы, можно отметить и их отличную теплопроводность.

Для блоков, толщина которых превышает 38 см, не понадобится использование утеплителей. Поризованные керамические блоки теплопроводностью менее 0,14 Вт/м*С сохранят стабильное тепло даже в местности с суровым климатом. Их преимущество – не только сохранение тепла при отсутствии утеплителей, но и стоимость. По сравнению с зарубежными стройматериалами, они выгодно отличаются в цене.

Продукция «Красная Гвардия» не зря с каждым годом приобретает популярность на отечественном рынке. Продукция этого производителя морозоустойчива, имеет низкую теплопроводность. В каталоге компании «Группа Вертикаль» предоставлена в широком ассортименте. Использовать керамические блоки можно не только для возведения наружных стен. Благодаря пожароустойчивости и экологической безопасности они отлично подойдут и для внутренних перегородок.


Отметить в продукции «Красной Гвардии» можно и простоту монтажа. Керамоблоки имеют специальные гребни и пазы, что позволяет справиться с работой даже при отсутствии строительного опыта.

Приобрести у нас можно и продукцию компании «Штольц». Керамоблоки имеют отличную теплопроводность, устойчивы к резким температурным перепадам и сложным климатическим условиям, не подвержены разрушению под воздействием микроорганизмов. Блоки также отличаются повышенной износоустойчивостью, что гарантирует продолжительную эксплуатацию возведенного из них здания.

Теплопроводность строительного материала – важный параметр, на который следует обратить внимание при выборе. Керамические блоки – отличный вариант для любого здания, ведь благодаря хорошей теплопроводности они позволяют значительно сэкономить. Простота монтажа керамоблоков, отменная износоустойчивость – еще часть параметров, которые помогут в выборе материала. Важен и малый вес – эта характеристика снижает затраты на возведение фундамента.

Измерение теплопроводности керамики с помощью TLS-100

Возможность точного измерения теплопроводности материалов имеет решающее значение для определения областей применения, для которых их свойства идеально подходят. Существует множество способов проверки теплопроводности керамики, однако не все методы одинаковы. Точность каждого метода является важным решающим фактором в дополнение к более практическим соображениям, таким как длина измерения и простота настройки теста.

Портативная измерительная система Thermtest, TLS-100 (рис. 1), выполняет измерения теплопроводности и удельного сопротивления грунтов, твердых веществ и порошков в диапазоне от 0,1 до 5 Вт/мК. Измерения выполняются в соответствии со стандартом ASTM D5334 и имеют воспроизводимость 2% и точность 5%. Это оборудование является отличным и удобным выбором для использования в лаборатории и в полевых условиях и может работать в диапазоне температур от -40 до 100°C. На этой странице приложения мы продемонстрируем способность Thermtest TLS-100 измерять теплопроводность керамического стеатита и обожженного бисквитом глинозема, двух важных материалов для промышленного применения.

Рис. 1. Thermtest TLS-100 — это мощный измеритель теплопроводности в удобном портативном корпусе.

Стеатит, также известный как мыльный камень, высоко ценится за его термостойкость и изоляционные свойства. Он широко используется в электрических панелях, конструкции дровяных печей, столешниц и в качестве форм для расплавленного металла из-за его способности поглощать и медленно отдавать тепло, которому он подвергается, не становясь нестабильным или разрушаясь. Физические свойства этого материала могут различаться в разных карьерах из-за разного минерального состава и условий давления и температуры во время формирования. Как и стеатит, обожженный бисквитом глинозем используется в аэрокосмической, автомобильной и крупномасштабной промышленности благодаря своим изолирующим свойствам при высоких температурах. Это материал, который легко формуется и обрабатывается, и поэтому является удобным выбором.

Рисунок 2 . Фотография форм из стеатита, используемых для создания металлических предметов. Стеатит отлично подходит для использования в качестве форм, так как обладает высокой термостойкостью. 1

Процедура испытания теплопроводности керамики

TLS-100 работает путем введения игольчатого зонда в образец и выполняет измерения в течение установленного периода времени, когда образец нагревается и охлаждается. Эта установка приводит к минимальному повреждению образца из-за теста. Для этого конкретного испытания ученые Thermtest разрезали образцы обожженного бисквитом глинозема и стеатита на две части. Игольчатый зонд TLS-100 был покрыт тонким слоем термопасты, и две части каждого образца были зажаты вокруг зонда, обеспечивая превосходный тепловой контакт (рис. 3 и 4). Для каждого образца было проведено в общей сложности пять измерений с временем тестирования 120 секунд. TLS-100 одновременно измеряет как теплопроводность, так и удельное тепловое сопротивление.

Рисунок 3. Диаграмма, иллюстрирующая метод, используемый для размещения игольчатого датчика TLS-100 между двумя образцами обожженного оксида алюминия и стеатита.

Рис. 4. Фотографии испытательной установки, используемой для измерения теплопроводности керамического стеатита и обожженного бисквитом глинозема в лаборатории Thermtest.

Результаты измерения теплопроводности керамики

Значения теплопроводности и теплового сопротивления, измеренные прибором TLS-100, приведены в таблице 1. Средняя теплопроводность 5,077 Вт/мК была получена для обожженного бисквитом глинозема, что точно соответствует принятый диапазон теплопроводности для этого материала составляет от 5 до 5,25 Вт/мК. Значение 3,107 Вт/мК, полученное для образца стеатита, также хорошо соответствует эталонным материалам, которые обеспечивают теплопроводность стеатита 3 Вт/мК.

Таблица 1. Теплопроводность керамики: Теплопроводность и тепловое сопротивление стеатита и обожженного бисквита глинозема, полученные с использованием TLS-100 в лаборатории Thermtest.

Глинозем бисквитного обжига Стеатит
№ теста Теплопроводность (Вт/м·К) Удельное тепловое сопротивление (мК/Вт)
Тест # Теплопроводность (Вт/мК) Удельное тепловое сопротивление (мК/Вт)
1 5.005 0,199 1 3,098 0,322
2 4,953 0,201 2 3,076 0,325
3 5. 137 0,194 3 3.203 0,312
4 5.181 0,192 4 3,085 0,324
5 5.108 0,195 5 3,075 0,325
Среднее 5.077 0,196 Среднее значение 3.107 0,322

 

Эти тесты демонстрируют способность Thermtest TLS-100 быстро и точно измерять теплопроводность керамики с минимальным повреждением самого образца. При поиске оборудования для измерения теплопроводности TLS-100 является отличным выбором, который можно использовать как в лаборатории, так и в полевых условиях на самых разных образцах.

 

Теплота — Теплопроводность | Характеристики тонкой керамики | Мир тонкой керамики

  • ДОМ
  • Характеристики тонкой керамики
  • Тепло — Теплопроводность

Теплопроводность легко передает тепло

Свойство, которое измеряет, насколько хорошо тепло передается через материал, называется теплопроводностью. Среди тонкой керамики (также известной как «усовершенствованная керамика») некоторые материалы обладают высоким уровнем проводимости и хорошо передают тепло, в то время как другие обладают низким уровнем проводимости и передают меньше тепла. Нитрид алюминия и карбид кремния особенно хорошо передают тепло. Нитрид алюминия используется в корпусах полупроводников, которые излучают большое количество тепла, но не должны накапливать тепло внутри. Цирконий эффективно блокирует тепло, а его коэффициент теплопроводности низкий — 1/10 от коэффициента теплопроводности нержавеющей стали. Используется для стен печей, подвергающихся воздействию высоких температур.

Применение : Материалы с высокой теплопроводностью, такие как корпуса ИС. Материалы с низкой теплопроводностью, например, стены печи.

Введение в типы тонкой керамики (материалы) и различные характеристики

Описание

Теплопроводность

Свойство, которое измеряет, насколько легко тепло передается через материал, называется теплопроводностью. Для керамики на это свойство могут влиять такие факторы, как внутренняя пористость, границы зерен и примеси. Более высокие или более низкие уровни теплопроводности могут быть достигнуты в материалах Fine Ceramic путем контроля этих факторов.

Теплопроводность тонкой керамики

Теплопроводность создается движением электронов и передачей колебаний решетки. Металлы с низким электрическим сопротивлением и кристаллы, в которых колебания решетки легко передаются (например, кристаллы с атомами или ионами близких масс в узлах решетки, и ковалентные кристаллы с сильными связями), обладают высокой теплопроводностью.

Теплопроводность при комнатной температуре

Дополнительные сведения см. в разделе «Выдержка из значений графика».

Термин «тонкая керамика» взаимозаменяем с «усовершенствованной керамикой», «технической керамикой» и «инженерной керамикой». Использование зависит от региона и отрасли.

Следущая страница Химическая устойчивость

  • Изоляция
  • Проводимость
  • Диэлектричество
  • Пьезоэлектричество
  • Магнетизм

Характеристики тонкой керамики

  • Твердость
  • Жесткость
  • Прочность
  • Удельный вес

Характеристики тонкой керамики

  • Химическая стойкость
  • Биосовместимость

Характеристики тонкой керамики

  • Оптические свойства

Характеристики тонкой керамики

Люди, которые читают эту страницу, тоже читают.