Размеры у блока из газобетона: U-образные блоки YTONG — где купить, размеры, цены и характеристики у-образного блока

Содержание

Какие бывают размеры газобетона

Газобетонные блоки бывают различной толщины и высоты, но по длине они стандартные — 600 или 625 мм. Начнем с того, что газоблоки бывают как для несущих стен, так и для перегородок. Для несущих и заполняемых стен применяются блоки толщиной от 200 до 400мм. Для перегородок используют толщиной от 75 до 150 мм.

Таблицы размеров газоблоков смотрите ниже по статье!

По высоте газоблоки также отличаются, имея три варианта: 200, 250, 300мм. Для перегородочных блоков бывают и увеличенные по высоте блоки в 500 мм.

Блоки бывают полностью гладкими, бывают с пазами и с карманами для захвата, которые упрощают их переноску.

Если вы выбираете газобетонные блоки для самостоятельно строительства, то вам очень важно знать их вес. Вес блоков зависит от их толщины, высоты и плотности. Есть блоки весом в 20 кг, а есть и по 45 кг.

Представьте себе, как трудно переносить сотни таких блоков, и как неудобно проводить кладку из них. Потому, прежде чем определятся с размерами блоков, определите для себя приемлемый вес блоков, которые вы сможете таскать.

Также советуем вам ознакомиться с нашей предыдущей статьей – расчет количества газобетона.

Итак, мы разобрались, что чем блоки крупнее, тем они тяжелее, и менее удобны, но с другой стороны, на возведение стены уйдет на 50% меньше блоков высотой 300мм, в сравнении с блоками 200мм. Также отметим меньший расход клея при блоках большей высоты, так как количество рядов уменьшится + уменьшится количество мостиков холода.

Ну и перейдем к самому главному – таблицам размеров и весов газобетонных блоков. Стоит отметить, что приведенные данные справедливы для сухого состояния газобетона, ведь мокрый газобетон весит больше.

Размеры и вес газобетона D300

Размеры и вес D400

Размеры и вес D500

Размеры и вес D600

Также полезными для вас будут таблицы по количеству газоблоков в кубометре, и про количество их на поддонах. Более подробно про это читайте тут.

Размеры изделий из газобетона

Помимо стандартных газобетонных блоков, заводы производят газобетонные перемычки, U-блоки и газобетонные плиты перекрытия.

U-блоки, также как и стандартные блоки, могут быть размерами от 200 до 400 мм по толщине, а в длину от 500 до 625 мм, высотой – 250 мм.

Газобетонные перемычки и перекрытия обладают заводским армированием, причем арматура сварная и покрыта специальным защитным составом.

Размеры газобетонных перемычек

  • Длина от 1200 до 3000 мм.
  • Высота от 200 до 400 мм.
  • Толщина от 100 до 400 мм.

Стоит отметить, что тонкие короткие перемычки можно установить на проем самостоятельно (силами двух мужчин), а толстые длинные перемычки можно установить только при помощи кранов или специальных блочных приспособлений. Ведь длинные толстые перемычки могут весить вплоть до полтонны.

Размеры газобетонных плит перекрытия

  • Длина: 2,5м – 6м.
  • Ширина: до 625 мм.
  • Толщина: 150 – 300 мм.

Надеемся, что мы смогли дать вам исчерпывающую информацию про размеры газобетонных изделий. Стройте дома грамотно, и пусть строительство приносит вам удовольствие.

размеры и способы изготовления своими руками

При строительстве дома из газобетона во время монтажа некоторых узлов возникает необходимость в использовании блоков нестандартной конфигурации. В частности это касается процесса устройства дверных и оконных проемов, а также армопоясов первого и второго этажей, где элементы специфичной формы существенно облегчают работу. Здесь и находят свое применение U-образные блоки из газобетона.

Использование газобетона в строительстве – первый шаг на пути к энергоэффективному дому

При своей форме У-образный газобетонный блок не лишен всех преимуществ, типичных для газобетона:

  • прочность и долговечность, достигаемые автоклавной обработкой;
  • легкость, возникающая благодаря сотням тысяч воздушных ячеек, пронизывающих структуру материала;
  • негорючесть
    и отсутствие токсичных испарений при критическом повышении температуры;
  • высокий показатель теплоизоляции, обеспечиваемый пористостью материала;
  • экологическая безопасность, благодаря использованию натуральных ингредиентов, таких как вода, песок, цемент и известь;
  • идеальная геометрия каждого блока, позволяющая делать стыки между элементами максимально тонкими;
  • отличная звукоизоляция за счет способности пористого материала к поглощению энергии звуковой волны;
  • низкий показатель водопроницаемости по причине замкнутости пор.

В своей совокупности преимущества газосиликата обеспечивают ему лидерство на рынке высокоэффективных строительных материалов.

Сложная конфигурация не в ущерб универсальности

U-образный газобетонный блок многофункционален в своем применении. Они могут быть использованы в качестве несъемной опалубки при изготовлении армированных перемычек и сооружения ребер жесткости в следующих целях:

  • Возведение перемычек над дверными и оконными проемами.
  • Устройство монолитного пояса жесткости:
    • заливка опоры для мауэрлатов и стропил;
    • база для опирания сборных железобетонных плит.
  • Производство прочих перемычек сборного или сборно-монолитного типа.

Справка

Данное конструктивное решение было создано для облегчения возведения здания без трудоемкой подгонки под основной стеновой материал. По этой причине они выпускаются в нескольких размерах, идентичных стандартным показателям рядового материала.

Размеры U-блоков

Такое разнообразие позволяет собрать идеальный «конструктор» с безупречными сопряжениями во всех плоскостях.

Нюансы формата, специфика работы с материалом особой конфигурации

Не существует строительного материала без недостатков, и даже идеальный с виду продукт может таить в себе скрытый изъян. Блокам U-образной формы нельзя приписать категоричный перечень слабых мест, скорее это будут

нюансы выбора и работы с материалом:

  • дороговизна в сравнении со стандартным стеновым элементом;
  • необходимость штучной покупки;
  • дефицит продукта в «высокий» строительный сезон;
  • более высокая теплопроводность по сравнению со стеновым материалом.

Практически все эти проблемы решаются тщательным планированием на этапе расчета материала под готовый проект. Но если процесс стройки уже запущен, а блоков необходимой конфигурации нет в наличии, то данную проблему можно решить несколькими способами.

U-блок своими руками — способы изготовления

Если сроки поджимают, а нужной конфигурации нет в наличии, или просто хочется сэкономить деньги, при этом потратив время и силы, то можно реализовать необходимые стеновые конструкции без применения готовой формы. Здесь есть два варианта:

Формование классического рядового блока

Для этого потребуется много усилий и наличие специального инструмента. Последовательность действий следующая:

  • разметка согласно требуемым размерам, исходя из толщины стены;
  • выполнение 2-х основных пропилов, определяющих толщину стенок;
  • произведение нескольких вспомогательных пропилов или высверливаний для удобства обработки;
  • извлечение внутренней части при помощи молотка каменщика и его окончательная формовка.

Важно!

Такой метод позволяет собственноручно изготовить элемент с любыми требуемыми параметрами.

Например, можно увеличить ширину внешней стенки для улучшения показателей теплопроводности.

Изготовление такого блока своими силами хорошо демонстрирует следующее видео:

Применение электроинструмента для резки газобетона заметно ускоряет процесс:

При использовании данного варианта не избежать потерь материала. Также

для работы с хрупким газосиликатом потребуется навык, который ещё придется наработать.

Сборка U-формы из нескольких блоков различной толщины

Принцип работы также прост и может быть реализован с минимальными физическими и денежными затратами. Это выкладка по месту на клей стенок будущего элемента из блоков малой толщины, рассчитанной исходя из ширины стены. Взгляните на предложенную схему:

Так, например, для изготовления U-образных блоков толщиной 375 мм потребуются обычные блоки толщиной  150 мм, 75 мм и 50 мм. Сборка происходит по месту в следующем порядке:

  1. Сначала с наружной стороны стены укладываем на клей обычным способом блоки толщиной 150 мм.
  2. Далее блоки толщиной 75 мм отпиливаем по высоте 175 мм и монтируем на клей лежа. Это будет дно U- образного блока. Одной стороной этот блок приклеивается на нижний блок. Другой стороной — к блоку толщиной 150 мм.
  3. Теперь нам нужно приклеить блоки толщиной 50 мм с внутренней стороны стены.

Когда клей схватится, мы получим прочную конструкцию, не уступающую по крепости оригинальным U-блокам.

Главное преимущество такой замены в быстроте и простоте изготовления, ведь достаточно будет сделать лишь 1 пропил с помощью ножовки по газобетону без последующего формования. И собрать конструкцию на клей.

В целом, использование U-блока при строительстве из газобетона актуально и оправдано. Данная форма применима как для изготовления ограждающих конструкций, так и для использования в качестве несъемной опалубки. А идеальное примыкание ко всем используемым элементам сводит к минимуму наличие мостиков холода в доме, а значит гарантирует постройку теплого и комфортного дома.

Мы старались написать лучшую статью. Если понравилось — пожалуйста, поделитесь ею с друзьями или оставьте ниже свой комментарий. Спасибо!

Отличная статья 19

Основные размеры блоков газобетонных — классификация

Применение газобетона в индивидуальном строительстве: виды и размеры блоков

Различные газоблоки активно используются в строительной сфере, благодаря отличным технико-экономическим показателям. Специальная технология автоклавной обработки гарантирует четкие размеры блоков газобетонных. Правильный подбор материалов позволит снизить затраты на строительство, а также уменьшит сроки проведения работы.

Сравнительные габариты

Содержание статьи

Классификация газоблока

От размеров применяемых материалов, зависит расчет проектных параметров строящегося здания на:

  • Степень прочности;
  • Теплоизоляцию конструкции;
  • Выбор вида кладки стен и перегородок;
  • А также на затраты по транспортированию, хранению и монтажу.

Конечная цена на кирпичи, также будет зависеть от их геометрических размеров.

Габариты и вес

Главные геометрические параметры определяются по:

  • Их ширине;
  • В высоту;
  • Длине.

Стандартные габариты

Обратите внимание! Размер по ширине, влияет на прочностные характеристики, теплоизоляцию и звукоизоляцию стеновой конструкции. Поэтому для устройства наружных стен применяются в основном материал толщиной 30 см, для перегородок – 10 см или 15 см.

По высоте и длине материал подбирается с учетом удобного монтажа, пропорционально общим параметрам стен. Изготовление нормируется ГОСТом 31360-2007.

Они производятся:

  • Стандартных параметров;
  • Нестандартные.

Выпускаются обычные газоблоки всеми производителями данной продукции. Нестандартные габариты могут быть выпущены по индивидуальным заказам, или являться особенностью конкретной марки.

Ассортимент продукции

Геометрические параметры зависят от:

  • Формы;
  • Назначения и места применения;
  • Категории материала.

Категории материала

Категория газобетонным кирпичам присваивается согласно предельным отклонениям:

  • I категория;
  • II категория.

Предельные отклонения устанавливаются согласно его:

  • Индивидуальному размеру;
  • Геометрической форме;
  • Общему внешнему виду.

Предельные отличия от заданных параметров

Геометрические параметры

Отклонения по геометрическим размерам определяются по:

  • Длине кирпича;
  • Толщине;
  • А также высоте.
Отклонения по форме

Отклонения от правильности по форме рассматриваются по таким параметрам как:

  • Разность длин диагоналей;
  • Прямолинейность всех ребер кирпича.

Отклонения от правильной геометрической формы – фото

Отклонения во внешнем виде

По внешнему виду газоблоки оцениваются на предмет трещин, сколов, глубину отбитостей:

  • Углов;
  • Продольных и поперечных ребер;
  • Пазов и гребней – при их наличии.

Таблица предельных отклонений различных параметров газобетонных изделий

Формы блоков из газобетона

По форме кирпичи изготавливаются:

  • Гладкими прямоугольными;
  • Прямоугольными с карманами для захвата;
  • С системой паз – гребень;
  • U-образными;
  • Нестандартных форм.

Типоразмеры

Газоблок также могут производиться с фигурными фасками и впадинами.

Сфера применения

По сфере применения различаются:

  • Для возведения стен;
  • Устройства перемычек;
  • Укладки и крепления плит перекрытий;
  • Возведение несъемной опалубки под фундамент.

При устройстве стен габариты варьируются в зависимости от:

  • Однослойная конструкция;
  • Многослойная конструкция.

Использование материала в качестве несъемной опалубки возможно только при условии применения защитной гидроизоляции кирпича.

Блоки из газобетона стандартного размера

Обычные газобетонные материалы могут иметь максимальные параметры:

  • По длине до 62,5 см;
  • В ширину – 50 см;
  • В высоту – 50 см.

Гладкие блоки из газобетона

Прямоугольные ровные газоблоки применяются для устройства:

  • Несущих и самонесущих стеновых конструкций;
  • Перегородок внутри помещений;
  • Оконных и дверных перемычек.
Материалы для несущих и самонесущих наружных конструкций

Прямые гладкие  – размеры по стандарту:

  • высотой 20 см или 25 см;
  • длиной 60 см или 62,5 см.

По толщине:

  • 20 см;
  • 25 см;
  • 28 см;
  • 30 см;
  • 36 см;
  • 40 см;
  • 50 см.

Гладкие изделия прямоугольной формы

Перегородочные газобетонные изделия

Легкие перегородочные плиты изготавливаются толщиной до 15 см.

Применяются в качестве:

  • Перегородок внутри здания;
  • Устройстве различных коммуникаций.

При стандартной высоте в 20 см и длине в 60 см они изготавливаются различными по толщине:

  • 7,5 см;
  • 10 см;
  • 12 см;
  • 15 см.

Газоблок для строительства перегородок

Перемычки для проемов

Перемычки для оконных и дверных проемов имеют уменьшенную длину в 0,5 м, стандартную высоту в 0,2 м, различаются по толщине:

  • В 25 см;
  • В 30 см;
  • В 36 см;
  • В 40 см.

Перемычки для проемов

Система паз – гребень

Важно! Для более быстрого, точного и простого монтажа кирпичей из газобетона, их изготавливают со специальными пазами и гребнями. Такая система замка позволяет сделать кладку ровной, часто не требуется нанесение клея на боковые поверхности изделий, что ведет к значительной экономии клеевых составов.

Блок БГМ

Это возможно только при очень правильной геометрии газобетонных материалов, с минимальными отличиями габаритов.

Готовое строение

U-подобные изделия из газобетона

Такой вид применяется:

  • при устройстве перемычек над окнами и дверями;
  • укладке плит перекрытий.

U-образный элемент

При стандартной высоте 25 см имеют габариты по:

  • толщине – начиная с 20 см до 50 см;
  • и в длину – 0,5 м или 0,6 м.

Габариты U-образных изделий

Часто U-образный элемент используется в качестве перемычки над проемами.

Схема изготовления железобетонной перемычки из U-блоков

При опирании плит перекрытий по верхнему ряду изделий выполняется армирующий пояс.

Он необходим для:

  • Более равномерного распределения нагрузки от плиты перекрытия;
  • Усиления опорной конструкции стены.

Армирующий пояс

Параметры газобетонных материалов U-образных подбираются согласно проектным расчетам. Блоки монтируются по периметру здания, внутрь укладывается арматура, заливается бетонный раствор. Плиты перекрытия укладываются на армопояс.

Нестандартные геометрические размеры газобетонных изделий

Отклонения от стандартных параметров обычно делаются производителями для индивидуальных проектов зданий.

Нестандартная форма

Возможен такой вариант при выпуске линеек продукции с определенным уклоном.

Дугообразные изделия

На строительной площадке нестандартные элементы достигаются при помощи обычной ножовки. Простота обработки газобетонных изделий позволяет получить блок любого размера, например, чтобы четко завершить ряд кладки. Доборные элементы также необходимы для выполнения перевязки кладки из газобетона.

Изготовление доборного элемента

Обычно для изготовления доборных элементов используются блоки с повреждениями. Если необходима другая форма изделия, то сделать скосы и выемки достаточно просто своими руками.

Доборный элемент

Расчет количества газобетонных блоков

Обычно у каждого производителя газоблоков можно увидеть калькуляторы по расчету количества материала и общей стоимости. Но упрощенно сделать такой расчет можно самостоятельно.

Инструкция по подбору количества газобетонных блоков в зависимости от размеров:

  • Выбрать необходимую ширину (м) – параметр В.
  • Необходимо измерить общую длину всех стен в метрах – параметр L.
  • Определить среднюю высоту стены, (м) – H.
  • Вычислить общую площадь всех планируемых проемов – параметр S.

Расчет производится согласно формуле: V=(L*Н-S)*1,05*В. Коэффициент 1,05 применяется для учета обрезки. V – требуемый объем газобетона на здание в м3.

Исходя из общего объема, можно посчитать их количество:

Блоки из газобетона – размеры и объем

Подобрав габариты, сделав расчет их количества, можно смело приступать к постройке дома. При правильном учете всех факторов, он получится прочным, теплым и долговечным.

Больше информации можно получить из видео в этой статье.

Расчет газобетонных блоков и клея

Размеры газобетонных блоков для несущих стен, марки, советы по выбору

По своим характеристикам газобетон подходит как для кладки несущих конструкций, так и возведения изоляционных перегородок. При выборе конкретной марки и размеров изделия отталкиваются от назначения и условий эксплуатации объекта строительства. Толщину стен, разделяющих разные температурные зоны, определяет теплотехнический расчет. Но главным требованием является обеспечение соответствующей несущей способности, а именно выдержки весовой и механической нагрузки. Нормы, зависящие от типа перегородки или перекрытия, являются минимально допустимыми, уменьшать их нельзя.

Оглавление:

  1. Разновидности газоблоков
  2. Особенности выбора изделий для разных конструкций
  3. Полезные рекомендации

Виды газобетонных блоков

В зависимости от формата и типа поверхности различают обычные прямоугольные варианты с гладкими стенками, аналогичные с системами захвата или «шип-паз», Т-образные для монтажа перекрытий, U-образные для закладки армопояса, дверных или оконных проемов. Прочностные характеристики газобетона определяются его плотностью и пористостью, как и теплоизоляционные свойства. Выделяют следующие марки:

1. От D350 до D500 – теплоизоляционные, оптимальные для возведения газобетонных перегородок или внутренней утепляющей прослойки. Выделяются высокой пористостью и имеют самый низкий коэффициент теплопроводности из всех разновидностей.

2. D500-D900 – конструкционно-теплоизоляционные, востребованные в частном строительстве, в том числе для кладки наружных стен и несущих перегородок. На практике для легких построек используют газоблоки от М400, но лишь при условии их качественной автоклавной обработки и надежной защиты от внешней влаги.

3. D900-D1200 – конструкционные, с повышенной прочностью.

Типовой размер газобетонного блока для несущей стены: 600 мм по длине (у некоторых производителей – 625), в пределах 200-300 по высоте, и от 75 до 500 по ширине. Данные значения приведены для прямых и пазогребневых изделий, к стеновым обычно относят превышающие 300 мм в ширину, остальные – к перегородочным, хотя встречаются и исключения. Самыми востребованными считаются 600×300×200 и 625×300×250 мм, вес варьируется в пределах 17-40 кг, одна штука замещает не менее 17 кирпичей.

Выбор газоблоков для кладки несущих стен

Рекомендуемый минимум:

Назначение конструкции, дополнительные условияОптимальная марка газоблоковТолщина стены из газобетона, мм
Несущие наружные стены и внутренние перегородки в частных домахD600300
Нежилые помещения: хозпостройки, гаражи, летние кухниD400 и D500200
Несущие наружные в домах без внешнего утепленияD500360
Цокольные этажи и подвалы, при условии обязательной и качественной гидроизоляции

 

D600

 

300-400

(меньше – для внутренних подвальных ненесущих стен)

Межквартирные перегородкиD500 и D600200-300
Утепляющие прослойкиD300От 300
Внутренние ненесущие перегородки, возводимые с целью разделения жилых зон и звукоизоляции100-150

Требуемый класс (и, соответственно, марка) газобетона также зависит от этажности. Допустимый минимум для одноэтажных легких построек составляет В2,0, в пределах 3-х этажей – В2,5, В3,5. Чем выше здание, тем жестче нормативы к прочности блоков, при строительстве частного дома выше двух армирование (закладка монолитной ленты по всему периметру) в верхней части стены из газобетона обязательно. Самонесущие перегородки разрешается строить из В2,0. В целях экономии их обычно выкладывают толщиной в пределах 100-150 мм. Рост ширины перегородки возможен в двух случаях: при повышенных требованиях к шумозащите и при планировании размещения на них подвесных конструкций: полок, мебели, пролетов или тяжелой техники. Допустимый минимальный предел – 200 мм.

Дополнительные учитываемые факторы при выборе толщины стен из газобетона

Указанные размеры актуальны исключительно при использовании материла автоклавной обработки, изготовленного в заводских условиях. Их качество можно и нужно проверять визуально и на ощупь: правильные изделия имеют гладкие стенки без сколов и внешних дефектов, они ни в коем случае не раскрашиваются. Блоки, не прошедшие пропаривание под давлением, уступают в прочности и не обеспечат требуемую несущую способность. Также по умолчанию они используются при строительстве домов в средней полосе, для конструкций, эксплуатируемых при нормальной влажности. При необходимости возведения в бассейнах, ванных, банях, подвалах применяются усиленные меры гидроизоляции.

Для исключения ошибок на стадии составления проекта следует провести прочностной и теплотехнический расчет размеров несущих конструкций с учетом их ожидаемой нагрузки и климатических условий. Коэффициент теплопроводности газобетона зависит от марки: от 0,072 Вт/м·°C у блоков D300, до 0,12 и выше у D600.

Взаимосвязь очевидна: чем плотнее и прочнее изделия, тем хуже их изоляционные способности. При равной средней температуре окружающего воздуха зимой разница между требуемым минимумом толщины стен, способных обеспечить нужное сопротивление потерям тепла, у марок с отличием в удельном весе от 100 кг/м3 достигает 1/3.

Требования к несущим конструкциям повышаются при строительстве домов в оконными проемами с большой площадью, эксплуатируемыми кровлями, высокой этажностью. В этом случае возможны несколько вариантов: использование конструктивных блоков с повышенной прочностью (более дорогих, что не всегда выгодно) или вертикальное армирование. Задействование монолитного ж/б каркаса с закладкой менее прочных, но хорошо держащих тепло элементов, считается разумной альтернативой. Но такие проекты требуют привлечения специалистов, они более сложны в реализации.

стандартные толщина и ширина газобетонных блоков для строительства наружных стен дома, высота и вес по ГОСТу

Все стремятся подобрать для строительства дома качественные, но бюджетные материалы. В стремлении сэкономить люди не всегда верно выбирают сырье, что ведет к неустойчивому строительству. Производители строительных принадлежностей предлагают широкий выбор материалов для постройки здания. Сегодня все большим спросом пользуется газобетон.

Характеристики материала

Газобетонный блок является камнем искусственной породы. Газоблок создают из специального ячеистого бетона.

Газобетон является разновидность бетона пористой породы. Для его создания используют цементный песок, кварцевый песок и специальные газообразователи, такие как паста из алюминия либо специальные суспензии. Некоторые производители смешивают перечисленные элементы с гипсом, золой или известью.

Полученная масса подвергается термической обработке в автоклавах при высоком температурном давлении. Благодаря химической реакции, которая происходит внутри автоклава, получается вспенивание цементного раствора с последующим его застыванием. Внутри застывшего цементного блока формируются поры. У некоторых производителей газоблоков в продукции пустоты занимают более восьмидесяти процентов. Большая процентность пор означает, что материал получился легким, а, следовательно, менее прочным. Вдобавок чем больше пор, тем хуже становится теплопроводность материала.

Кроме того, застройщики предпочитают газоблоки для постройки ненесущих и несущих стен, поскольку данные материал имеет особые свойства:

  • высокий показатель физико-технических характеристик;
  • повышение энергоэффективности постройки.

Решив использовать в постройке газобетонный блок, необходимо разузнать об основных технических характеристиках данного материала. Сделать это важно, поскольку так можно избежать неправильного выбора и переплаты за некачественный материал.

К основным достоинствам такого строительного материала, как газоблок, относят:

  • хорошая звукоизоляция, если толщина стенового бетона триста миллиметров, производимый шум меньше 60 дБ;
  • маленькая плотность, то есть легкость блока, что легче обычного бетона в пять раз, а кирпича – в два, а иногда и в три раза;
  • простота в использовании, газобетон легко режется с помощью ножовки по дереву;
  • при одинаковой толщине газоблока и кирпича теплопроводность блока лучше в пять раз;
  • экологичность материала позволяет безопасно и без вреда для здоровья проводить строительные работы;
  • скорость строительства увеличивается в несколько раз, поскольку бетоноблок имеет крупный размер и заменяет до пятнадцати кирпичей формата 1НФ;
  • в газобетонной кладке отсутствуют мостики холода;
  • бюджетная цена;
  • газобетонный материал является огнестойким благодаря пожаробезопасности ячеистого бетона

Несмотря на множество плюсов, материалу присуще и несколько минусов:

  • показатель влагопоглощения выше, чем у подобных строительных материалов;
  • низкая прочность материала.

На что влияют габариты?

Размеры газобетонных блоков имеют влияние на всю постройку в целом. Толщина такого материала влияет на прочность, теплоизоляцию и звукоизоляцию возводимой стены. Чем толще размер газоблока, тем значительно тише и теплее будет в здании. Поэтому рекомендуется для строения несущих и наружных стен выбирать газобетоны толщиной не менее тридцати сантиметров. Что касается строения перегородок, то здесь толщина не должна быть больше десяти либо пятнадцати сантиметров.

Помимо этого, высота строительного газоблока также влияет на процесс постройки.

  1. чем больше высота, тем меньше понадобится закупать бетонных блоков. Это позволит сэкономить деньги на строительном материале.
  2. чем выше и ровнее газобетон, тем прочнее будет конструкция здания. Вдобавок ровность материала исключает появления щелей.

Стандартные параметры

Размеры газобетонного материала, планируемого применить в строительстве, зависят от назначения будущей постройки. Газоблоки бывают разного назначения, но большим спросом на рынке строительных материалов пользуются два вида блоков: перегородочный и стеновой. Габариты одного бетонного блока регламентируются согласно стандартам ГОСТа.

Гостовский стандарт указывает, что размер должен укладываться в следующие параметры:

  • толщина (ширина) – диапазон от ста до пятисот миллиметров;
  • высота – в масштабе от двухсот до трехсот миллиметров;
  • длина до шестисот миллиметров.

Однако эти показатели меняются в зависимости от вида газобетона. Каждая форма блоков имеет свои типоразмеры. Но неизменным для всех остается то, что вес материала остается легким, даже несмотря на размер и длину, которые для всех видов составляет шестьсот пятьдесят миллиметров.

Газоблок, используемый в сооружении наружной стены:

  • прямые – ширина от двухсот до трехсот миллиметров, высота от двухсот пятидесяти до трехсот миллиметров;
  • выполненные по системе паз-гребень и имеющие ручки захвата – толщина равна четыремстам миллиметрам, высота двумстам пятидесяти миллиметрам:
  • прямые, оснащенные ручками захвата – толщина равна четыремстам, высота двадцати пяти миллиметрам;
  • простые с системой паз-гребень – триста или четыреста на двести пятьдесят миллиметров.

Газоблоки для перегородок:

  • прямые – ширина сто пятьдесят миллиметров, высота двести пятьдесят;
  • перегородочные – сто на двести пятьдесят миллиметров.

Отличаются по размеру газобетонные блоки в форме буквы U. Они применяются в сооружении оконных и дверных проемов. Ширина их от двухсот до четырехсот миллиметров, высота – двести пятьдесят миллиметров.

Помимо перечисленных видов, распространены изделия, чья толщина не превышает семидесяти пяти миллиметров. Они необходимы для строительства межкомнатных перегородок, а также при строительстве несущих стен здания. Вдобавок они играют роль дополнительного утепления.

Как выбрать?

Многие люди, не знающие тонкостей строительного дела, сталкиваются с проблемой выбора газобетонного блока. Чтобы не совершить неправильный выбор, который впоследствии может привести к неустойчивости здания, выбирая вид блоков, рекомендуется следовать следующим критериям.

Выбирая газобетонный блок, важно помнить, что данный материал не универсален. Для проведения различных видов построек важно выбрать тот материал, который подходит цели строительства. Для строительства несущих стен и сооружения капитальных перегородок подходят стеновые блоки, при возведении внутренней перегородки используют перегородочный вид газоблока. Понять, в чем их отличие, несложно. Разница между перегородочным и стеновым блоком заключается в толщине. У перегородочных она не превышает двухсот миллиметров.

А также выбирая, рекомендуется уточнять плотность блока. Высокая плотность показывает высокую прочность материала и высокий показатель теплопроводности. Следовательно, стройматериалу, имеющему наивысшую отметку плотности, требуется продумать теплоизоляцию. Большой популярностью пользуется марка, имеющая среднюю плотность, D500. Она подходит для всех типов строительства. Но при возведении перегородок рациональнее будет применение марки D500.

При выборе габаритного блока строителю требуется узнать размер блока и провести расчет. Это необходимо для того, чтобы понять, какое количество блоков понадобится для возведения всех стен. Помимо этого, желательно уточнить у продавца о наличии паза и гребня в блоках. Это необязательное требование, но благодаря наличию данных элементов кладку проводить становится легче, а расход клея значительно экономнее. Однако цена такого вида блока значительно превышает стоимость обычного.

Еще один важным критерием, на который необходимо опираться, выбирая газобетонные блоки, является его марка. Чаще всего производимые газобетонные блоки всех марок изготавливаются одинаково с использованием одного оборудования и схожего состава. Если в магазине стоимость одной марки значительно превышает стоимость другой, то в ней покупатель просто переплачивает за бренд и известность той самой марки. Вдобавок следует обратить внимание на месторасположения завода, выпускаемой продукции. Зачастую высокая цена обусловлена удаленностью завода, и магазин переплачивает за логистику.

Проводя расчеты требуемого числа материала, строитель должен принять во внимание, что предположительный клеевой расход, который, как утверждают производители, они очень сильно занижают. Скорее всего, при проведении строительных работ потребуется намного больше материала. Точное количество расходного материала обуславливается качеством газоблока и его габаритов.

В соответствии со стандартами ГОСТа, допускаются не больше пяти процентов сколов и обломков на блочном материале. Однако данный показатель подходит лишь продукции первого сорта. Материалу второго сорта присущ показатель в десять процентов. Сколотый газобетон подойдет для проведения кладки наружных стен с последующей облицовкой. Выбор данного вида блока позволит сэкономить четверть затрат, планируемых расходовать на материал.

Заключительным важным критерием, помогающим выбрать блок – это сцепляющая основа. От вида сцепляющей основы меняется и вид самого газоблока. На сухую стяжку требуется подобрать стройматериал с отклонением по всем параметрам. Толщина блока должна составлять не больше полутора миллиметров. Кладка на клей также требует отклонение. Оно не должно быть больше двух миллиметров, а на кладку с использованием растворов – не более пяти.

Что такое газоблок, про его виды и размеры смотрите в видео ниже.

U образные блоки из газобетона: размеры, применение в строительстве

Легкие U образные блоки из газобетона – это многофункциональный профильный материал, который обширно используются при сооружении зданий из ячеистого бетона. Необычная геометрическая форма изделия позволяет выполнять самые различные конструкционные решения при возведении различного типа построек. Что представляют собой блоки U образной формы, и какие особенности их применения?

Общая характеристика U образных блоков

Газобетонные профильные блоки U образной формы достаточно востребованы в строительной сфере. Такой материал представляет собой бетонную смесь, наполненную воздушными порами.

Производятся газобетонные блоки автоклавным способом, при котором затвердевание раствора происходит при высокой температуре и давлении. Для изготовления используются такие компоненты:

  • портландцемент – М400;
  • вода;
  • алюминиевая пудра;
  • кварцевый мелкозернистый песок;
  • силикатные добавки.

Такой состав и методика изготовления материала позволяет получить ячеистые профильные изделия с хорошими техническими характеристиками:

  • высокие теплоизоляционные качества;
  • достаточная прочность;
  • длительность эксплуатации;
  • безвредность материала;
  • хорошие звукоизоляционные свойства;
  • огнестойкость;
  • невысокий уровень влагопоглощения;
  • устойчивость к резкой смене температурного режима.
U образные блоки из газобетона обладают высокими теплоизоляционными качествами

Также к основным свойствам блоков из газобетона относится легкость изделий.

Конструкционные особенности и габариты

Профильные U образные блоки выпускают одной длины, независимо от типоразмера. Их конструкция имеет расположенную продольно полость, а форма напоминает лоток. Одна стенка блока, которая предусмотрена для установки с наружной стороны здания, немного утолщена.

Изготавливаются газобетонные U образные блоки стандартных размеров:

  • высота – 20 и 25 сантиметров;
  • длина – 50 сантиметров;
  • ширина – 20,25, 28,8, 30, 36,5, 37,5 и 40 сантиметров.

В верхней части блока толщина стенки составляет 14,5 или 7 сантиментов.

Область применения

Газобетонные блоки U образной формы используются как профильный материал при строительстве зданий. Применяют их для таких целей:

  • монтаж перемычек для дверных или оконных проемов;
  • сооружение конструкции стационарной опалубки;
  • установка армированного пояса, укрепляющего стены здания;
  • создание опорных элементов крыши.
U образные блоки из газобетона применяют при монтаже перемычек для дверных или оконных проемов

Чаще всего из блоков в виде лотка монтируют перемычки. С такого материалом можно соорудить проемы самых оригинальных форм.

Методы установки перемычек

Конструкцию для перекрытия дверей и окон из U образных блоков выполняют двумя способами – сборным и монолитным.

Сборная система

Такой вариант монтажа газобетонных перемычек применяется для проемов длиной не более 2,5 метров. На ровной твердой поверхности выкладываются U образные блоки, которые между собой скрепляются клеевым раствором.

Размер блока должен быть больше проема как минимум на 40 сантиметров. Это обусловлено тем, что при установке перемычки глубина нахлеста на стены с двух сторон составляет не менее 20 сантиметров. Для больших пролетов – 25 сантиметров.

После сборки блоков внутренняя часть U образной конструкции армируется, с внутренней стороны стены укладывается теплоизоляционная прослойка из пенополистирола. Затем лоток заполняется бетонным раствором, который хорошо уплотняется и выравнивается.

Когда армированная бетонная смесь полностью застынет, конструкцию поднимают с помощью грузоподъемного приспособления и устанавливают над проемом.

Монолитная сборная система

Такой вариант используется при сооружении окон или дверей большого размера. Изначально над пролетом закрепляется временная каркасная основа. Чаще всего выставляют опору из дерева. На нее устанавливаются газобетонные перемычки с опорой на стену в 25 сантиметров с каждой стороны проема.

Каждый U образный блок скрепляется специальным клеевым раствором для газобетона. После этого проводится армирование, теплоизоляция и заливка. По истечении двух недель, когда бетон окончательно застынет, деревянную основу демонтируют.

Монтаж U образных блоков для армированного пояса

Для создания армопояса заключительный ряд кладки тщательно смазывается клеевой смесью. Сверху устанавливаются газобетонные лотки. В них продольно располагают стержни арматуры, которые предварительно скрепляются вязальной металлической проволокой.

Армированный пояс необходим для возведения надежного строения

Армированный каркас фиксируется распорками. После этого в желоб вносится бетонный раствор. С помощью стального прута осуществляется уплотнение залитой массы, тем самым освобождая от воздушных полостей. Сверху поверхность бетонной смеси равняется с уровнем верхней плоскости профильного лотка.

Такая конструкция из газобетонных U образных блоков позволяет обеспечить надежное укрепление стен здания от различного типа нагрузок.

Рекомендации к технологии использования

Использование U образных блоков из газобетона имеет некоторые особенности:

  1. Перед заливкой бетона обязательно внутренняя часть лотка армируется. Подбор железных стержней проводится согласно виду каркаса, ширины пролета и классу бетонной смеси. Чаще всего применяется арматура диаметром от 10 до 16 миллиметров. Прочность конструкции во многом зависит от качества металлических прутов.
  2. Если лоток по ширине не превышает 12 сантиметров, то внутрь укладываются два армирующие прута. При ширине более 15 сантиметров используются четыре стержня, из которых с помощью проволоки делают решетку.
  3. Бетон заливается в газобетонный лоток до верхней кромки. После этого поверхность раствора выравнивается.
  4. После заливки внутренней части блока U образной формы последующая кладка стены проводится только через четыре недели. Такое время необходимо для того чтобы бетон окончательно набрал прочности.
  5. Перед тем как заполнить внутреннюю часть блока раствором следует для хорошего сцепления бетона увлажнить поверхность лотка.
  6. Толщина лоткового блока должна соответствовать толщине стены. Профильный материал подбирается под габариты газобетонных блоков, из которых сооружается здание.
  7. Каркас из армированных прутьев внутри U образного газобетонного материала выкладывается так, чтобы большая часть стальных стержней размещалась в его нижней части.

Поверхность укладки перемычки должна быть абсолютно ровной. Точный монтаж блоков можно провести с помощью строительного уровня. Чтобы значительно снизить тепловую отдачу газобетонного материала внутри лотка выкладывается теплоизоляционный слой.

Преимущества изделий

Легкие U образные блоки довольно популярны при строительстве домов из газобетона. Свое обширное применение они заслужили благодаря многочисленным достоинствам применения:

  1. Простата монтажа блоков. Благодаря пористой структуре материала газобетонные перемычки имеют небольшой вес. Поэтому их можно установить вручную без дополнительной техники. При достаточной легкости материала сохраняется высокая его прочность.
  2. Возможность кладки при пониженной температуре воздуха. Газобетонные блоки обладают высокой морозостойкостью – переменные циклы оттаивания и замораживания имеют показатель F100.
  3. Однородность конструкции всего здания. Лотковые блоки используются при строительстве домов из ячеистого бетона и изготавливаются из того же пористого материала. Такая особенность намного облегчает отделочные работы стен.
  4. Негорючесть. Блоки U формы изготовлены из газобетона, который обладает высокой огнестойкостью – не поддается горению на протяжении семи часов при высоком критическом температурном режиме. При повышенной температуре воздуха материал не выделяет токсичных веществ в воздух.
  5. Точность размеров изделий. Лотковые блоки изготавливают стандартных типоразмеров, которые отвечают различной толщине стен. Ширина выпускаемых перемычек соответствует размерам стандартных газобетонных блоков. Такие параметры значительно облегчают кладку и максимально уменьшают величину стыков между газобетонными элементами.
  6. Хороший уровень паропроницаемости поверхности материала. За счет такого качества блоки в форме лотка из газобетона не поддаются воздействию плесени и грибка. Коэффициент величины паропроницаемости газобетона – 0,2 мг/м/ч/Па.
  7. Обеспечение защиты от тепловых потерь. U образные блоки из газобетона наделены высокими теплоизоляционными качествами. Пористый материал не допускает образования « мостиков холода».
  8. Долговечность. Профильные газобетонные блоки изготавливаются автоклавным методом. Благодаря такой технологии эксплуатационный срок материала составляет более восьмидесяти лет.

С помощью блоков U образной формы можно выполнить различные конструкционные задачи при сооружении зданий из ячеистого газобетона. Сборная конструкция позволяет делать достаточно широкие проемы дверей и окон, что особенно ценится при индивидуальном строительстве.

для строительства дома, несущих, наружных стен

Объекты из такого материала сегодня встречаются достаточно часто. Блоки отличаются легкостью и надежностью, обладают определенными достоинствами, если сравнивать их с простым бетоном либо кирпичным материалом. В первую очередь строители выделяют хорошие теплоизоляционные свойства, которые достигаются добавлением в сырье алюминиевой пудры и пластификаторов. Но есть противоположная сторона медали – не очень высокая прочность. Поэтому следует выбирать оптимальные размеры газобетонных блоков. Кроме того, при строительстве не требуется дополнительная мера, как армирование стен из газосиликатных блоков.

Газобетонный блок – что это такое

Это камень искусственного происхождения, который изготавливается из ячеистого бетонного материала. С пеноблоками его путать не следует.

В первом варианте пустоты возникают из-за происходящих внутри химических процессов, а во втором – от добавления предварительно приготовленной пены.

Довольно часто газобетон и газосиликат считают одним и тем же материалом. Но по факту второй тип считается подвидом первого. Основные компоненты, используемые в изготовлении, в каждом из случаев одинаковы. Различия заключаются в их пропорциональном соотношении и технологических особенностях производства. От этого материалы отличаются характеристиками по показателям плотности, прочности и способности проводить тепло.

В производстве газобетона используют:

  • цемент и песок;
  • известь;
  • чистую воду;
  • алюминиевую пудру в качестве газообразоваателя.

Во время соединения воды, алюминия и извести начинается выделение водорода, от чего в бетонной массе формируется большое количество пор, которые в определенных марках составляют около восьмидесяти процентов всего объема. Чем больше пустот, тем меньшей прочностью обладает блок, зато весит меньше. Здесь следует добавить, что и теплопроводность блоков оставляет желать лучшего.

Бетон разливается по формам и затвердевает, либо предварительно направляется в автоклав. Там под воздействием высокого температурного режима и давления материал набирает нужную прочность. Такая технология изготовления используется для получения блоков, идущих на строительство жилых объектов.

Размеры газобетона

Разрабатывая проектное решение на строительство дома и рассчитывая основные параметры по прочности и теплоизоляции, а так же выбирая кладку, необходимо в обязательном порядке определиться с размером газоблока для строительства дома.

При изменении форм и параметров блоков могут меняться характеристики. Утверждены ГОСТы, по которым производители обязаны изготавливать данный материал.

Блоки бывают U-образные и прямоугольные. Первый вариант применяется для устройства оконных и дверных проемов, с его помощью крепятся элементы перекрытий.

Размеры газобетона U-блоков следующие:

  • по высоте – 25 см;
  • по длине – 50 или 60 см;
  • по ширине – от 20 до 40 см.

Прямоугольные формы материала считаются стандартными, размеры газобетонных блоков в этом случае будут следующими:

  • в высоту – 20 либо 25 см;
  • в длину – 60 или 62.5 см;
  • в ширину – от 10 до 40 см.

При строительных работах по возведению внутренних стен в большинстве случаев применяют газоблочный материал, ширина которого составляет десять – пятнадцать сантиметров, а вот размеры газобетонных блоков для несущих стен по ширине могут составлять 20, 24, 30 и даже 40 см.

Учитывая уровень нагрузочного воздействия на стены, данные параметры могут меняться. И когда предполагается повышенная нагрузка на перегородки размер блока из газобетона для стен дома может быть следующим:

длина, ширина, высота газоблока, ммобъем одного элемента, куб. мразмер поддона с газоблоками, смколичество материала, шт
600 х 300 х 2000.036120 х 100 х 15050
600 х 250 х 1000.015120 х 100 х 150120
600 х 300 х 2500.045120 х 100 х 15040
600 х 400 х 2000.048120 х 100 х 12030

Это наиболее «ходовые» размеры газобетонных блоков для наружных стен, используемые в строительстве. А вот материал с размерами 625 х 250 х 200 и 625 х 250 х 100 является перегородочным, и применяется для выведения внутренних простенков.

Что оказывает влияние на параметры материала

Габариты блоков определяются по их теплоизоляционным и прочностным характеристикам, при этом учитываются удобство и пропорциональность кладочных работ, вероятные возможности облегчения производственного процесса.

Главный критерий – ширина газоблока. Она напрямую завязана на показателях прочности и способности проводить тепло. Как правило, это значение имеет показатель в тридцать сантиметров, но от ожидаемых нагрузок оно может быть больше или меньше. Длину газоблока и его высоту выбирают с учетом кратности общепринятых размеров объекта и удобства ведения кладочных работ.

Выбор параметров газоблока производится с учетом предполагаемых нагрузок на стены, требований по теплопроводности, рациональных расчетов, чтобы исключить применение дорогого материала, если в этом нет надобности.

Немаловажное значение имеет ряд условий, связанных с:

  • хранением;
  • транспортировкой;
  • удобством работы;
  • ценой;
  • строительными сроками.

Укладка блоков больших габаритов замедляет процесс строительных работ, потому что масса газоблока велика, что замедляет его перемещение по площадке.

Чтобы знать, сколько весит поддон газоблока, можно воспользоваться таблицей:

параметры, смвес 1 шт газоблока, кгвес 1 м3 газоблока, кг
60 х 20 х 2515.6 – 23.4940 – 1 400
60 х 20 х 3018.7 – 28940 – 1 400
60 х 20 х 4024.4 – 37.4740 – 1 130
60 х 25 х 107.62 – 11.7940 – 1 400
60 х 25 х 1511.7 – 17.6940 – 1 400
60 х 25 х 2519.5 – 29.3940 – 1 400
60 х 25 х 3023.4 – 35.1940 – 1 400
60 х 25 х 37.529.2 – 43.9940 – 1 400
60 х 25 х 4030.48 – 46.8740 – 1 130

Зная, сколько весит газоблок, и какие размеры бывают, можно без проблем определить, сколько штук окажется на поддоне. При этом необходимо учесть еще один показатель – плотность материала.

Достоинства и недостатки газобетонного материала

К преимуществам блоков относятся:

  • отличная звукоизоляция объекта. Стены толщиной в тридцать сантиметров дают показатель в 60 дБ;
  • невысокая плотность блоков придает им легкий вес. Материал в пять раз легче бетона, и в два – три – кирпича;
  • газоблок легко поддается обработке – его даже разрезают обычной ножовкой;
  • низкий показатель теплопроводности. Если взять одинаковые по толщине стены из газобетона и кирпича, то первый вариант превзойдет свой аналог почти в пять раз;
  • экологичность и безопасность – в производственном процессе опасных компонентов не применяется;
  • хорошая скорость проведения строительных работ. Одним блоком можно заменить кладку из десяти – пятнадцати кирпичей;
  • кладка из газобетона не создает «мостиков холода»;
  • ячеистый бетон отлично противостоит воздействию открытого пламени.

По стоимости среди остальных материалов газобетон обойдется значительно дешевле. Кроме того, блоки отличаются хорошей паропроницаемостью. Это дает возможность сравнивать их с древесиной. Только следует правильно выбирать марку материала.

Если возводятся перегородки или устраиваются теплоизоляционные прослойки, рекомендуется использовать блоки с небольшими размерами по толщине и с максимальным количеством внутренних пор. А вот к несущим конструкциям следует брать блоки с максимальным показателем плотности и прочности.

Если говорить про недостатки, то основных будет всего два:

  • высокое влагопоглощение;
  • низкий показатель прочности.

Низкий уровень прочности материала не окажет влияния на дом, если соблюдены все технологические особенности строительных работ.

Имеющиеся в блоке поры отлично удерживают тепло и изолируют посторонние шумы. Но одновременно с этим пустотные участки понижают прочность материала. По этой причине газобетон рекомендуется использовать для несущих стен, если строится объект в один – два этажа. В противном случае нижние ряды кладки могут деформироваться.

Газобетон способен «дышать» и пропускать водяные пары. Но поры одновременно с этим представляют собой отличный резервуар, в котором скапливается влага. Если гидроизоляция плохая, блок промокает, что существенно увеличивает показатель его теплопроводности. В конечном итоге энергетическая эффективность этого строительного материала мгновенно исчезает.

По своей стоимости газобетон значительно ниже кирпичного материала, древесины и прочих конкурентов. Но при этом помните, что придется нести дополнительные расходы на гидроизоляционный слой и чистовую отделку фасада.

Ячеистый блок, не имеющий защиты с улицы, прослужит не долго. Вода, попавшая в стены, будет способствовать потерям тепла и во время морозов разрушать блоки.

Виды материала

Технологические особенности изготовления блоков разделяются на несколько способов:

  • автоклавные – такой метод еще называют синтезным процессом твердения. Застывание происходит в автоклавной установке под воздействием высокой температуры и давления;
  • неавтоклавные – гидратационного остывания. Процесс происходит в среде с насыщенными парами, при этом применяется прогрев электрическими устройствами.

По основному вяжущему компоненту блоки разделяются на:

  • цементные – в составе состоит пятьдесят процентов этого материала;
  • известковые – содержат повышенное количество негашеной извести;
  • шлаковые – более половины сырья состоит из шлака и гипса;
  • зольные – в них находится большой процент высокоосновной золы.

Отдельной группой выделяют смешанный блок, в состав которого входят известь, цементную массу и шлак.

Советы от профессионалов

Если вы решили строить здание из такого материала, следует воспользоваться некоторыми рекомендациями:

  • монтаж блоков выполняется специальным клеем. При создании шва необходимо пользоваться кельмой;
  • для устройства штроб лучше всего воспользоваться болгаркой и диском, имеющим алмазное напыление;
  • чтобы ускорить процесс строительных работ, разрешается при создании оконных и дверных проемов применять специальные блоки, имеющие подходящие формы;
  • во время кладки блоков необходимо пользоваться строительным уровнем. Это позволит контролировать ровность поверхности, избежать в последующем деформационных проявлений. При подгонке элементов хорошо помогает аппарат для шлифовки;
  • вести кладку одновременно с двух углов не рекомендуется;
  • резать газобетонные блоки лучше всего специальной пилой;
  • перед началом строительства на фундаментную основу накладывается гидроизоляционная прокладка.

Изучив технические характеристики, свойства и габариты блоков, вы сможете правильно выбрать материал, из которого построите недорогое, но вполне комфортное помещение.

Автоклавный газобетонный блок, размер (дюймы): 600 x 200 x 100 мм, 36 рупий / штука

Автоклавный газобетонный блок, размер (дюймы): 600 x 200 x 100 мм, 36 рупий / штука | ID: 14143659891

Спецификация продукта

Тип блока Блок AAC
Для использования в перегородках
Размер (дюймы) 600 x 200 x 100 мм

Описание продукта

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2010

Юридический статус Фирмы Физическое лицо — Собственник

Характер бизнеса Производитель

Количество сотрудников от 11 до 25 человек

Годовой оборот Rs.50 лакх — 1 крор

Участник IndiaMART с августа 2012 г.

GST36AMCPB5886F2Z1

Основанная в году 2010 , Devi Industries — чрезвычайно известная в отрасли фирма, которая возникла с видением того, чтобы быть наиболее предпочтительным выбором для клиентов. Форма собственности нашей компании ИП . Головной офис нашей корпорации находится по адресу Хайдарабад, Телангана .Соответствуя постоянно растущим требованиям клиентов, наша компания занимается производством из машины для производства кирпича, машины для производства блоков, бетонного кирпича и бетонного блока . Все предлагаемые нами продукты тщательно производятся под руководством высококлассных диспетчеров с использованием лучшего сырья и инновационных технологий в соответствии с нормами качества.

Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

Стандартный размер блока AAC и цена в Индии

Что такое блок AAC? | каков размер прямоугольного блока AAC в Индии? | Размер блока AAC | стандартный размер блока AAC | цена стандартного блока AAC

Что такое блок AAC?

Блок AAC — автоклавный газированный, легкий, сборный пенобетон, является экологически чистым и сертифицированным зеленым строительным материалом, подходящим для изготовления бетонных блоков, таких как блоки, которые являются легкими, несущими и обладают высокими изоляционными свойствами. .

Блок

AAC состоит из кварцевого песка, кальцинированного гипса, извести, цемента, воды и алюминиевого порошка. Продукты AAC отверждаются под действием тепла и давления в автоклаве.

◆ Вы можете подписаться на меня на Facebook и подписаться на наш канал Youtube

Вам также следует посетить: —

1) что такое бетон, его виды и свойства

2) Расчет количества бетона для лестницы и его формула

Из этой статьи мы знаем, каков размер прямоугольного блока AAC в Индии? AAC Размер блока измеряется в двух миллиметрах и дюймах.Обычный размер блока ACC в мм составляет 600 мм × 200 мм × 100 мм, а в дюймах — 24 ″ × 8 ″ × 4 ″ (длина × высота × ширина).

Каков размер прямоугольного блока AAC в Индии?

Мы знаем, что он выпускается в виде длинного листа бетона, и его можно разрезать по желаемой форме и размеру с помощью машины для резки бетона, поэтому для строительных и необходимых строительных работ доступны блоки AAC различных размеров.

Блоки

AAC автоклавированные пористые, легкие, сборные, пенобетон — это экологически чистый и сертифицированный экологически чистый строительный материал, подходящий для производства бетонных блоков, таких как блоки, которые являются легкими, несущими и обладают высокими изоляционными свойствами.

◆ ПОСМОТРЕТЬ ВИДЕО: БЛОК AAC

Значение блоков AAC

Значение блоков AAC заключается в том, что его продукты отверждаются под действием тепла и давления в автоклаве, и в смеси блока AAC и твердого материала присутствует воздух, хорошая прочность на сжатие, такая как бетон, поэтому его называют блоком AAC (автоклавный газобетон).

Стандартный размер блока AAC и цена в Индии

Фактический размер блока AAC остается на 10 мм меньше номинального размера для регулировки толщины строительного шва, в Индии используются блоки AAC различных размеров, в которых их длина составляет около 24 дюймов, их высота составляет около 8 дюймов, а их ширина должна быть в диапазоне от 3 до 12 дюймов.

Их имя обозначается их толщиной, например, блок AAC имеет толщину 4 дюйма, известную как полный 4-дюймовый CMU, толщину 5 дюймов, известный как полный 5-дюймовый CMU, толщину 6 дюймов, известный как полный 6-дюймовый CMU, толщину 8 дюймов, известный как полный 8 ″ CMU, толщина 10 дюймов, известная как полная 10 ″ CMU, и толщина 12 дюймов, известная как полная 12 ″ CMU.

Стандартный размер блока AAC

Размер блока AAC в Индии: — в Индии, обычный размер блока AAC составляет 600 мм × 200 мм × 100 мм (24 ″ × 8 ″ × 4 ″) по отношению к их длине × высоте × толщине.Это стандартный, идеальный, лучший и нормальный размер блока AAC в Индии.

Размер блока AAC в мм

Размер блока AAC в мм : — Стандартный размер спецификации блока AAC составляет 600 мм в длину, 200 мм в высоту и 100 мм в ширину, представленный как 600 × 200 × 100 в мм по отношению к их длине × высоте × ширине.

Размер блока AAC в см

Размер блока AAC в см : — Стандартный размер спецификации блока AAC составляет 60 см в длину, 20 см в высоту и 10 см в ширину, представленный как 60 × 20 × 10 в см по отношению к их длине × высоте × ширине.

Размер блока AAC в дюймах

Размер блока AAC в дюймах : — Стандартный размер спецификации блока AAC составляет 24 дюйма в длину, 8 дюймов в высоту и 4 дюйма в ширину, представленных как 24 × 8 × 4 дюйма по отношению к их длине × высоте × ширине.

Размер блока AAC в футах

Размер блока AAC в футах : — Стандартный размер спецификации блока AAC составляет 2 фута в длину, 0,66 фута в высоту и 0,33 фута в ширину, представленных как 2 × 0.66 × 0,33 фута относительно их длины × высоты × ширины.

AAC Размер блока в кубических метрах

Размер блока AAC в кубических метрах : — Обычно размер блока AAC составляет 60 см в длину, 20 см в высоту и 10 см в толщину 0,012 кубического метра, для размера 600 × 200 × 125 мм получается 0,015 м3 для размера 600 × 200 × 150 мм — 0,018 м3, размер 600 × 200 × 175 мм — 0,021 м3, размер 600 × 200 × 200 мм — 0,024 м3, размер 600 × 200 × 225 мм — 0,027 м3 и размер 600 × Блоки AAC 200 × 250 мм дают 0.030 м.куб.

Цена блока AAC в Индии

Цена блока AAC в Индии: — он будет варьироваться от места к месту и в зависимости от размера, обычно цена блока AAC в Индии колеблется в пределах рупий. От 3200 до 3500 на кубический метр.

Другие размеры блока AAC в Индии

Форма блока AAC — прямоугольная, имеющая три измерения длины, высоты и ширины. Стандартный размер блока ACC в Индии в мм составляет 600 мм × 200 мм × 100 мм, используемый в строительной линии.Теперь различные размеры блока AAC следующие: длина × высота × ширина

.

● Размер 3 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 075 мм (24 ″ × 8 ″ × 3 ″)

● Размер 4 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 100 мм (24 ″ × 8 ″ × 4 ″)

● Размер 6-дюймового полного блока CMU или AAC составляет 600 мм × 200 мм × 150 мм (24 ″ × 8 ″ × 6 ″).

● Размер 8 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 200 мм (24 ″ × 8 ″ × 8 ″)

● Размер 10 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 250 мм (24 ″ × 8 ″ × 10 ″)

● Размер 12 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 300 мм (24 ″ × 8 ″ × 12 ″).

В строке построения также используется блок ACC другого размера, а не этот стандартный размер, но в этой статье упоминается только стандартный размер блоков ACC.

Разница между блоками Bricks и AAC

Также известен как

Кирпич красный, Камерный кирпич, Кирпич настольной формы, Кирпич глинобитный

Блоки AAC, Блоки из автоклавного газобетона

Композиция

Грунт, песок, известь или другие бетонные материалы.

M Песок, цемент и крупнозернистые заполнители.

Масса (кг)

3 дюйма = 3 — 3,5 кг

4 дюйма = 9 — 9,5 кг

6 дюймов = 4,5 — 5 кг

6 дюймов = 12,5 — 13 кг

8 дюймов = 14 — 14.5 кг

Преимущества

Отсутствие затрат на обслуживание, огнестойкость.

Высокая теплоизоляционная способность, экологически чистый.

Прочность

2,5 — 3 Н / мм2

Класс 1 = 4 Н / мм2

Класс 2 = 3 Н / мм2

Цвет

Красный

Серый

Грузоподъемность

Есть

Нет

№кирпича / блоков на квадратный метр

43 №

8 №

Цены на кирпич / блоки за квадратный метр

344 рупий

444 рупий

(средний показатель для 4-дюймовой толстой стены)

(PDF) Влияние размеров и формы образца на прочность на сжатие автоклавного газобетона

542 MAZUR ET AL.

РИСУНОК 1 Отбор керновых (цилиндрических) образцов с помощью сверлильного станка

Источник: Автор.

3 МЕТОДИКА И РЕЗУЛЬТАТЫ ИСПЫТАНИЙ

Образцы располагались соосно стыку плиты гидравлического пресса

. Поверхность валика была очищена. Нагрузка передавалась со скоростью

, при которой образец разрушался за период

не менее 1 мин с момента нагружения. В зависимости от размера образца

скорость нагружения составляла 2400 и 100 Н / с.Из-за размера испытуемых образцов

были использованы два типа испытательных машин с диапазоном измерения

100 кН и классом точности измерения 0,5 Н. Методика испытаний

направлена ​​на включение рекомендаций, содержащихся в стандарте PN-EN 772-

1: 2011E [5]. Прочность на сжатие fB определяли по образцу куба

размером 100 мм × 100 мм × 100 мм. Сводка результатов испытаний

для образцов керна и куба представлена ​​в таблицах 3 и 4.

Они содержат информацию о размерах образцов, их прочности, средней прочности

и коэффициенте вариации для каждой испытанной серии.

Помимо испытаний на прочность, кубовидные образцы были использованы для измерения плотности

в воздушно-сухих условиях. Результаты представлены в таблице 5. Внешний вид образцов Exem-

во время испытаний представлен на рисунке 3.

Оптическая измерительная система использовалась для мониторинга морфологии трещин

и процесса разрушения образцов разной гибкости.

Из-за кривизны боковых поверхностей цилиндрических образцов и ограниченного поля обзора плит машины для испытания на прочность

измерения проводились только на образцах прямоугольной формы. Принадлежности для машины для испытания на прочность

также исключили из испытаний самые тонкие мужские образцы —

. На рисунке 4 показаны выбранные образцы в момент растрескивания

, а на рисунках 5 и 6 показаны кубические образцы со стороной

150 мм × 150 мм × 150 мм при максимальной зарегистрированной силе.В приземистых стенках

с гибкостью h / b = 1 на верхних краях

образовались диагональные трещины, которые в момент разрушения образовали две усеченные пирамиды —

единиц (рис. 4). В тонких стенах с гибкостью h / d = 2 механизм отказа был несколько иным. Сначала образовалась вертикальная трещина

посередине основания, а затем вторичные диагональные трещины

образовались около углов образцов. Расположение трещин в образцах большего объема

на момент разрушения было аналогично приземистым образцам

(рис. 5).А в образцах меньшего объема (рис. 6) преобладала одиночная почти вертикальная трещина

.

4 КАЛИБРОВКА ЭМПИРИЧЕСКОЙ КРИВОЙ

Образцы нестандартных диаметров используются для определения прочности бетона на сжатие

. Полученный результат может быть преобразован в стандартную прочность [1], используя соотношение между средней прочностью на сжатие бетона (обычного и высокопрочного)

и формой и размерами образцов, выраженное как соотношение

кривая:

fc

fc, cube150

= 0.56 +0,697

V

152hd + h

d

, (1)

где Vis — объем образца, его высота образца и dis — наименьший размер стороны образца

.

Принимая во внимание тип связующего, механизм разрушения образца

, различия в прочности на сжатие и растяжение, AAC очень похож на

обычного бетона. Поэтому было принято решение адаптировать соотношение

[1] для определения прочности на сжатие AAC.Замена

прочности fc, cube150 стандартного образца с размерами

150 мм × 150 мм × 150 мм на прочность fB образцов AAC, и

замена отношения 152hd на объем стандартных образцов, отношение —

(1) может быть выражено как:

fc, i

fB

= b + a

V

100hd + h

d

, (2)

, где fB — прочность на сжатие стандартного образца. с размерами —

размерами 100 мм × 100 мм × 100 мм.

Для целей статистического анализа формулу

(2) проще выразить как:

y = b + a

x, (3)

где a и обнажить неизвестные кривые, y = fc, i

fB

— отношение прочности на сжатие

, определенной для образца любой формы, к прочности на сжатие

стандартного образца с размерами

100 мм × 100 мм × 100 мм, и x = V

100hd + h

dis the dimen-

безразмерный коэффициент, выражающий влияние объема образца и гибкости

.

Поиск параметров кривой [3], максимально приближенных к экспериментальным

ментальных точек (xi, yi), заключался в минимизации суммы

квадратов:

S (a, b) =

n

i = 1yi − yxirt2 =

n

i = 1yi − a

xi

+ b2

, (4 )

где y (xi) — значения координаты y, вычисленные из уравнения

для прямой линии для данных xi.Различия между точными значениями yi

,

и значениями, рассчитанными по уравнению для кривой, возводили в квадрат

, чтобы избежать их взаимного уменьшения в результате различий в символах

(метод наименьших квадратов).

Соотношение [4] описывает функцию двух переменных a и b.

Переменные, при которых S (a, b) было минимальным, были значимыми для приближения результатов теста

. Известно, что функция многих переменных имеет локальный минимум

в точке, где частные производные функции, в конце концов,

Глобальный прогноз рынка автоклавного газобетона (AAC) до 2025 года

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ (Стр.- 17)
1.1 ЦЕЛИ ИССЛЕДОВАНИЯ
1.2 ОПРЕДЕЛЕНИЕ РЫНКА
1.3 ОБЪЕМ РЫНКА
1.3.1 СЕГМЕНТАЦИЯ РЫНКА
1.3.2 ГОДА, УЧИТЫВАЕМЫЕ ДЛЯ ИССЛЕДОВАНИЯ
1.4 ВАЛЮТА
1.5 ЗАИНТЕРЕСОВАННЫЕ СТОРОНЫ

2 МЕТОДОЛОГИЯ ИССЛЕДОВАНИЯ (Страница № — 20)
2.1 ДАННЫЕ ИССЛЕДОВАНИЯ
2.1.1 ВТОРИЧНЫЕ ДАННЫЕ
2.1.1.1 Ключевые данные из вторичных источников
2.1.2 ПЕРВИЧНЫЕ ДАННЫЕ
2.1.2.1 Ключевые данные из первичных источников
2.1.2.2 Ключевые отраслевые идеи
2.2 ОЦЕНКА РАЗМЕРА РЫНКА
2.2.1 ПОДХОД СНИЗУ ВВЕРХ
2.2.2 ПОДХОД ВЕРХНИЙ
2.3 ТРИАНГУЛЯЦИЯ ДАННЫХ
2.4 ДОПУЩЕНИЯ
2.5 ОГРАНИЧЕНИЯ

3 КРАТКОЕ ОПИСАНИЕ (Страница № — 28)

4 PREMIUM INSIGHTS (Страница № — 32)
4.1 ПРИВЛЕКАТЕЛЬНЫЕ ВОЗМОЖНОСТИ НА РЫНКЕ AAC
4.2 РЫНОК AAC, ПО ЭЛЕМЕНТУ
4.3 РЫНОК AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ
4,4 РЫНОК AAC, ПО РЕГИОНАМ
4,5 РЫНОК AAC: РЫНОК AAC
4,6 РЫНОК AAC: ОСНОВНЫЕ СТРАНЫ

5 ОБЗОР РЫНКА (Страница № — 35)
5.1 ВВЕДЕНИЕ
5.2 ДИНАМИКА РЫНКА
5.2.1 ДРАЙВЕРЫ
5.2.1.1 Рост урбанизации и индустриализации и рост сектора инфраструктуры
5.2.1.2 Растущая потребность в легких строительных материалах
5 .2.1.3 Растущее предпочтение недорогих домов
5.2.1.4 Повышение внимания к зеленым и звукоизоляционным зданиям
5.2.2 ОГРАНИЧЕНИЯ
5.2.2.1 Затраты, связанные с AAC и недостаточной осведомленностью
5.2.3 ВОЗМОЖНОСТИ
5.2.3.1 Сосредоточение внимания на строительстве проекты, подверженные землетрясениям и другим стихийным бедствиям
5.2.3.2 Низкое проникновение на рынок предлагает значительные рыночные возможности
5.2.4 ПРОБЛЕМЫ
5.2.4.1 Взлом продуктов AAC
5.3 АНАЛИЗ ПЯТИ СИЛ ПОРТЕРОВ
5.3.1 УГРОЗА ЗАМЕСТИТЕЛЕЙ
5.3.2 ТОРГОВАЯ СИЛА ПОКУПАТЕЛЕЙ
5.3.3 УГРОЗА НОВЫХ ЗАПИСЕЙ 5 ИНТЕНСИВНОСТЬ КОНКУРЕНТОСПОСОБНОСТИ
5.4 ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ

6 РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА ПО ЭЛЕМЕНТАМ (Страница № 42)
6.1 ВВЕДЕНИЕ
6.2 БЛОКИ
6.2.1 БЛОКИ AAC СОДЕРЖИТ 60-85% ВОЗДУХА ПО ОБЪЕМУ
6.3 ЛУЧИ И ЛИНТЕЛИ
6.3.1 ЛИНТЕЛИ AAC ПОДХОДЯТ ДЛЯ ОБЕЗЗАГРУЗОЧНЫХ И НЕНАГРУЗОЧНЫХ ПОДШИПНИКОВ КЛАССНЫХ СТЕНОК
6.4 НАКЛАДКА ПАНЕЛИ
6.4. ОБЛИЦОВОЧНЫЕ ПАНЕЛИ AAC СНИЖАЮТ ПОТРЕБЛЕНИЕ ЭНЕРГИИ
6.5 ПАНЕЛИ КРЫШИ
6.5.1 ПАНЕЛИ КРЫШИ AAC УМЕНЬШАЮТ КОЛИЧЕСТВО ТЕПЛОВОЙ ПЕРЕДАЧИ
6.6 СТЕНОВЫЕ ПАНЕЛИ
6.6.1 СТЕНОВЫЕ ПАНЕЛИ AAC 906 ОБЕСПЕЧИВАЮТ УЛУЧШИТЕЛЬНУЮ ЗАЩИТУ АБСОЛЮТНОЙ СИСТЕМЫ 906.7 ЭЛЕМЕНТЫ ПОЛА
6.7.1 ИСПОЛЬЗОВАНИЕ НАПОЛЬНЫХ ЭЛЕМЕНТОВ AAC СНИЖАЕТ ШУМ МЕЖДУ ПОЛАМИ
6,8 ДРУГИЕ

7 РЫНОК АВТОКЛАВАННОГО ПЕТРОБЕТОНА ПО ОТРАСЛЯМ КОНЕЧНЫХ ОТРАСЛЕЙ (Страница № — 50)
7.1 ВВЕДЕНИЕ
7.2 ЖИЛЫЕ
7.2.1 AAC ПРЕДПОЧТИТЕЛЬНЫЙ МАТЕРИАЛ ДЛЯ ЖИЛЫХ ЖИЛЫХ ЗДАНИЙ
7.3 НЕЖИЛЫЕ ЖИЛЫЕ ЗДАНИЯ 906- 7.3. СБОРНЫЕ ПАНЕЛИ AAC ФОРМАТА ИСПОЛЬЗУЮТСЯ В СТРОИТЕЛЬСТВЕ КРУПНЫХ БИЗНЕСА

8 РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА, ПО РЕГИОНАМ (стр.- 55)
8.1 ВВЕДЕНИЕ
8.2 APAC
8.2.1 КИТАЙ
8.2.1.1 Высокий спрос на экологически чистый строительный материал для продвижения рынка AAC в Китае
8.2.2 ЯПОНИЯ
8.2.2.1 AAC широко используется из-за его легкости природа в сейсмоопасной Японии
8.2.3 ИНДИЯ
8.2.3.1 Недавно принятый зеленый строительный материал AAC, заменяющий обычные красные глиняные кирпичи в Индии
8.2.4 ЮЖНАЯ КОРЕЯ
8.2.4.1 Блоки AAC широко используются в Южной Корее для минимизации нагрузок на охлаждение и обогрев зданий
8.2.5 АВСТРАЛИЯ
8.2.5.1 Улучшение инвестиционного сценария в коммерческом строительстве будет стимулировать спрос на AAC
8.2.6 REST OF APAC
8.3 ЕВРОПА
8.3.1 ГЕРМАНИЯ
8.3.1.1 Германия стремится к 2050 году иметь почти климатически нейтральный фонд зданий
8.3.2 UK
8.3.2.1 Изменения в строительных нормах и решениях для улучшения тепловых и акустических характеристик, определяющих рынок
8.3.3 ОТДЫХ ЗАПАДНОЙ ЕВРОПЫ
8.3.4 СКАНДИНАВИЯ
8.3.4.1 AAC впервые был разработан в Скандинавии и теперь широко используется в зданиях
8.3.5 РОССИЯ
8.3.5.1 Спрос на AAC высокий в России, несмотря на общий спад в строительстве
8.3.6 ПОЛЬША
8.3.6.1 Рост жилищного строительства в Польше увеличивает спрос на строительный материал AAC
8.3.7 ОСТАЛЬНАЯ ЕВРОПА
8.4 СЕВЕРНАЯ АМЕРИКА
8.4.1 США
8.4.1.1 Спрос на AAC растет в часто затопляемых районах США из-за его способности поглощать влагу
8.4.2 КАНАДА
8.4.2.1 AAC теперь широко применяется в Канаде из-за его термостойкости
8.4.3 MEXICO
8.4.3.1 Быстро растущая инфраструктура привлекает ведущих производителей AAC в стране
8.5 БЛИЖНИЙ ВОСТОК и АФРИКА
8.5.1 ТУРЦИЯ
8.5.1.1 Блоки — наиболее широко используемые материалы AAC в Турции
8.5.2 UAE
8.5.2.1 AAC приняты и одобрено в ОАЭ для использования во многих престижных проектах
8.5.3 САУДОВСКАЯ АРАВИЯ
8.5.3.1 Несколько текущих и предстоящих инфраструктурных проектов для повышения спроса на материалы AAC
8.5.4 ЮЖНАЯ АФРИКА
8.5.4.1 Ожидается, что рост частных инвестиций в строительный сектор будет стимулировать рынок AAC
8.5.5 ОСТАЛЬНЫЙ БЛИЖНИЙ ВОСТОК И АФРИКА
8.6 ЮЖНАЯ АМЕРИКА
8.6.1 БРАЗИЛИЯ
8.6.1.1 Бразилия свидетельствует о растущем спросе на материалы AAC в развитии инфраструктуры
8.6.2 АРГЕНТИНА
8.6.2.1 Благоприятные перспективы строительства и строительства способствуют росту рынка кондиционеров
8.6.3 ОТДЫХ ЮЖНОЙ АМЕРИКИ

9 КОНКУРЕНТНЫЙ ЛАНДШАФТ (Страница № — 108)
9.1 ВВЕДЕНИЕ
9.2 КАРТА КОНКУРЕНТНОГО ЛИДЕРСТВА
9.2.1 ВИЗИОНАРНЫЕ ЛИДЕРЫ
9.2.2 ИННОВАТОРЫ
9.2.3 ДИНАМИЧЕСКИЕ ДИФФЕРЕНЦИОНАЛЬНЫЕ ДИФФЕРЕНЦИАТОРЫ.
9.4 ПРЕВОСХОДСТВО В СТРАТЕГИИ БИЗНЕСА
9.5 КОНКУРЕНТНЫЙ СЦЕНАРИЙ
9.5.1 ИНВЕСТИЦИИ И РАСШИРЕНИЕ
9.5.2 СЛИЯНИЕ И ПРИОБРЕТЕНИЕ

10 ПРОФИЛИ КОМПАНИИ (Страница № — 114)
10.1 H + H INTERNATIONAL A / S
10.1.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.1.2 ПРЕДЛАГАЕМЫЕ ПРОДУКТЫ
10.1.3 SWOT-АНАЛИЗ
10.2 СОЗДАТЬ ПРОЕКТЫ PVT. LTD.
10.2.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.2.2 ПРЕДЛАГАЕМАЯ ПРОДУКЦИЯ
10.3 BILTECH BUILDING ELEMENTS LIMITED (BBEL)
10.3.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.3.2 ПРЕДЛАГАЕМАЯ ПРОДУКЦИЯ
10.3.3 ПОСЛЕДНИЕ РАЗРАБОТКИ
10.4 AERCON AAC
10.4.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.4.2 ПРЕДЛАГАЕМАЯ ПРОДУКЦИЯ
10.5 SOLBET SPLKA Z O.O.
10.5.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.5.2 ПРЕДЛАГАЕМЫЕ ПРОДУКТЫ
10.6 AKG GAZBETON
10.6.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.6.2 ПРЕДЛАГАЕМЫЕ ПРОДУКТЫ
10.6.3 SWOT-АНАЛИЗ
10.6.4 AKG GAZBESTONS ПРАВО НА ВЫИГРЫШ
10.7 ООО «УАЛ ИНДУСТРИЗ».
10.7.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.7.2 ПРЕДЛАГАЕМЫЕ ПРОДУКТЫ
10.7.3 SWOT-АНАЛИЗ
10.7.4 ПРАВО UALS НА ВЫИГРЫШ
10.8 JK LAKSHMI CEMENT LTD.
10.8.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.8.2 ПРЕДЛАГАЕМЫЕ ПРОДУКТЫ
10.8.3 SWOT-АНАЛИЗ
10.8.4 JK LAKSHMI ПРАВО НА ВЫИГРЫШ
10.9 QUINN BUILDING PRODUCTS
10.9.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.9.2 ПРЕДЛАГАЕМЫЕ ПРОДУКТЫ
10.9.3 SWOT-АНАЛИЗ
10.9.4 QUINNS ПРАВО НА ВЫИГРЫШ
10.10 CSR LIMITED
10.10.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.10.2 ПРЕДЛАГАЕМЫЕ ПРОДУКТЫ
10.10.3 ПОСЛЕДНИЕ РАЗВИТИЯ
10.10.4 SWOT-АНАЛИЗ
10.10.5 CSR LIMITED LIMITEDS ПРАВО НА ВЫИГРЫШ
10.11 XELLA INTERNATIONAL GMBH
10.11.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.11.2 ПРЕДЛАГАЕМЫЕ ПРОДУКТЫ
10.12 ULTRATECH CEMENT LTD.
10.12.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.12.2 ПРЕДЛАГАЕМАЯ ПРОДУКЦИЯ
10.13 BAUROC AS
10.13.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.13.2 ПРЕДЛАГАЕМАЯ ПРОДУКЦИЯ
10.14 WEHRHAHN GMBH
10.14.1 ОБЗОР ДЕЯТЕЛЬНОСТИ
10.14.2 ПРЕДЛАГАЕМАЯ ПРОДУКЦИЯ
MEP. ЗЕЛЕНЫЕ СТРОИТЕЛЬНЫЕ ИЗДЕЛИЯ
10,17 KIPAS AS
10,18 ACICO
10,19 BRICKWELL
10.20 SHANDONG TONGDE BUILDING MATERIALS CO., LTD.
10.21 PARIN BETON AMOOD COMPANY
10.22 EASTLAND BUILDING MATERIALS CO., LTD.
10.23 MASA GROUP
10.24 BROCO INDUSTRIES
10.25 ECO GREEN PRODUCTS PVT. LTD.

11 ПРИЛОЖЕНИЕ (стр. № — 134)
11.1 РУКОВОДСТВО ДЛЯ ОБСУЖДЕНИЯ
11.2 ПОРТАЛ ПОДПИСКИ НА РЫНКИ И РЫНКИ
11.3 ДОСТУПНЫЕ НАСТРОЙКИ
11.4 СООТВЕТСТВУЮЩИЕ ОТЧЕТЫ
11.5 СВЕДЕНИЯ ОБ АВТОРЕ


СПИСОК ТАБЛИЦ (153 ТАБЛИЦЫ)

ТАБЛИЦА 1 ОБЗОР РЫНКА AAC, 2020 г. 2025 год
ТАБЛИЦА 2 ОБЪЕМ РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН ДОЛЛАРОВ)
ТАБЛИЦА 3 РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТУ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 4 ОБЪЕМ РЫНКА БЛОКОВ AAC, ПО РЕГИОНАМ, 2018-2025 (МИЛЛИОН ДОЛЛАРОВ)
5 РАЗМЕР РЫНКА БЛОКОВ AAC, ПО РЕГИОНАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 6 РАЗМЕР РЫНКА ЛУЧЕЙ И ЛИНТЕЛЕЙ AAC, ПО РЕГИОНАМ, 2018-2025 (МЛН ДОЛЛ. США) МЕТРОВ)
ТАБЛИЦА 8 ОБЪЕМ РЫНКА ОБЛИЦОВОЧНЫХ ПАНЕЛЕЙ AAC, ПО РЕГИОНАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 9 РАЗМЕР РЫНКА ОБЛИЦОВОЧНЫХ ПАНЕЛЕЙ AAC, ПО РЕГИОНАМ, 2018-2025 (МЛН. КУБИЧЕСКИХ МЕТРОВ) (МЛН ДОЛЛ. США)
ТАБЛИЦА 11 ОБЪЕМ РЫНКА КРОВЕЛЬНЫХ ПАНЕЛЕЙ AAC, ПО РЕГИОНАМ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 12 ОБЪЕМ РЫНКА СТЕНОВЫХ ПАНЕЛЕЙ AAC, ПО РЕГИОНАМ, 2018-2025 (МЛН ДОЛЛ. , 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 14 НАПОЛЬНЫЕ ЭЛЕМЕНТЫ AAC M РАЗМЕР КОВШЕЙ, ПО РЕГИОНАМ, 2018-2025 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 15 РАЗМЕР РЫНКА НАПОЛЬНЫХ ЭЛЕМЕНТОВ AAC, ПО РЕГИОНАМ, 20182025 (МЛН. КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 16 РАЗМЕР РЫНКА ДРУГИХ ЭЛЕМЕНТОВ AAC, ПО РЕГИОНАМ, 2018-2025 (МЛН. ДОЛЛ. США)
ТАБЛИЦА ПРОЧИЕ РАЗМЕР РЫНКА AAC ELEMENT, ПО РЕГИОНАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 18 РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018-2025 (МЛН ДОЛЛ. США) )
ТАБЛИЦА 20 ОБЪЕМ РЫНКА AAC В ЖИЛОЙ СТРАНЕ, ПО РЕГИОНАМ, 2018-2025 (МИЛЛИОН ДОЛЛАРОВ США)
ТАБЛИЦА 21 РАЗМЕР РЫНКА AAC В ЖИЛОМ РЕГИОНЕ, ПО РЕГИОНАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 22 РАЗМЕР РЫНКА AAC В НЕЖИЛЬНЫХ, ПО РЕГИОНАМ 20182025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 23 РАЗМЕР РЫНКА AAC В НЕЖИЛЫХ РЕГИОНАХ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 24 РАЗМЕР РЫНКА AAC, ПО РЕГИОНАМ, 20182025 (МЛН ДОЛЛАРОВ)
ТАБЛИЦА 25 РАЗМЕР РЫНКА AAC, ПО РЕГИОНАМ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 26 Азиатско-Тихоокеанский регион: РАЗМЕР РЫНКА AAC, ПО СТРАНАМ , 20182025 (МЛН ДОЛЛАРОВ США)
ТАБЛИЦА 27 APAC: РАЗМЕР РЫНКА AAC, ПО СТРАНАМ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 28 APAC: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 (МИЛЛИОН USD)
ТАБЛИЦА 29 APAC: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 30 Азиатско-Тихоокеанский регион: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 31 APAC: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 32 КИТАЙ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 гг. (МЛН. Долл. США)
ТАБЛИЦА 33: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 гг. (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ) 20182025 (МЛН ДОЛЛАРОВ)
ТАБЛИЦА 35 КИТАЙ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 36 ЯПОНИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 20182025 (МИЛЛИОН ДОЛЛАРОВ)
ТАБЛИЦА 37 ЯПОНИЯ: РЫНОК AAC РАЗМЕР ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 38 ЯПОНИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 39 ЯПОНИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 40 ИНДИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛ. США) 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 42 ИНДИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 20182025 (МИЛЛИОН ДОЛЛАРОВ)
ТАБЛИЦА 43 ИНДИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 44 ЮЖНАЯ КОРЕЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 (МЛН. ДОЛЛ. 20182025 (МИЛЛИОН ДОЛЛАРОВ)
ТАБЛИЦА 47 ЮЖНАЯ КОРЕЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 48 АВСТРАЛИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 (МИЛЛИОН ДОЛЛАРОВ)
ТАБЛИЦА 49 АВСТРАЛИЯ РАЗМЕР РЫНКА ПО ЭЛЕМЕНТАМ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 50 АВСТРАЛИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ RY, 2018–2025 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 51 АВСТРАЛИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018–2025 гг. (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 52 Остаток Азиатско-Тихоокеанского региона: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 (МИЛЛИОН ДОЛЛАРОВ)
ТАБЛИЦА 53 ОСТАЛЬНАЯ ВЕРСИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 54 ОСТАВШИЕСЯ РЫНКА APAC: РАЗМЕР РЫНКА AAC, ПО КОНЕЧНЫМ ОТРАСЛЯМ, 2018–2025 гг. (МИЛЛИОН ДОЛЛАРОВ США) ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 56 ЕВРОПА: РАЗМЕР РЫНКА AAC, ПО СТРАНАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 57 ЕВРОПА: РАЗМЕР РЫНКА AAC, ПО СТРАНАМ, 2018-2025 (ТАБЛИЦА В МИЛЛИОНАХ КУБИЧЕСКИХ МЕТРОВ)
ЕВРОПА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 гг. (МЛН долл. США)
ТАБЛИЦА 59 ЕВРОПА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 гг. (МИЛЛИОНОВ КУБИЧЕСКИХ МЕТРОВ) МЛН.)
ТАБЛИЦА 61 ЕВРОПА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 62 ГЕРМАНИЯ: AAC РАЗМЕР РЫНКА, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛАРОВ)
ТАБЛИЦА 63 ГЕРМАНИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 64 ГЕРМАНИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МЛН ДОЛЛАРОВ)
ТАБЛИЦА 65 ГЕРМАНИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 66 ВЕЛИКОБРИТАНИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 67 Великобритания: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 68 ВЕЛИКОБРИТАНИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 69 Великобритания: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 70 ОТДЫХ ЗАПАДНОЙ ЕВРОПЫ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН. ДОЛЛ. ОТРАСЛИ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018-2025 (МЛН. ДОЛЛ. 025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 74 СКАНДИНАВИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 75 СКАНДИНАВИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН. ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МЛН ДОЛЛАРОВ)
ТАБЛИЦА 77 СКАНДИНАВИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 78 РОССИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН ДОЛЛАРОВ) 906 ТАБЛИЦА 79 РОССИЯ: ОБЪЕМ РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 80 РОССИЯ: РАЗМЕР РЫНКА AAC, ПО КОНЕЧНЫМ ОТРАСЛЯМ, 2018-2025 (МЛН ДОЛЛАРОВ)
ТАБЛИЦА 81 РОССИЯ: РАЗМЕР РЫНКА AAC, ПОКАЗАТЕЛИ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ ПРОМЫШЛЕННОСТЬ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 82 ПОЛЬША: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 83 ПОЛЬША: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН. РАЗМЕР ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 20182025 (МЛН. ДОЛЛ. США)
ТАБЛИЦА 85 ПОЛЬША: РАЗМЕР РЫНКА AAC, ПО E ИНДУСТРИЯ ND-USE, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 86 ОСТАВШИЕСЯ КУБИЧЕСКИХ МЕТРОВ В ЕВРОПЕ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 87 Остаток Европы: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН.
ТАБЛИЦА 88 ОСТАЛЬНАЯ ЕВРОПА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МЛН ДОЛЛ. : РАЗМЕР РЫНКА AAC, ПО СТРАНАМ, 2018–2025 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 91 СЕВЕРНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, ПО СТРАНАМ, 2018–2025 (МЛН. КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 92 СЕВЕРНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, МЛН.
ТАБЛИЦА 93 СЕВЕРНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 (МЛН. КУБИЧЕСКИХ МЕТРОВ) ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018 2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 96 США: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018 2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 97 США: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТУ, 2018 2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 98 США: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 20182025 (МИЛЛИОН ДОЛЛАРОВ)
ТАБЛИЦА 99 США: РЫНОК AAC РАЗМЕР ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 100 КАНАДА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 101 КАНАДА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН. ТАБЛИЦА 102 КАНАДА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018–2025 гг. (МЛН долл. США)
ТАБЛИЦА 103 КАНАДА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018–2025 гг. (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ELEMENT, 20182025 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 105 МЕКСИКА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 106 МЕКСИКА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018–2025 (МЛН. РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 108 БЛИЖНИЙ ВОСТОК И АФРИКА: РАЗМЕР РЫНКА AAC, ПО СТРАНА, 20182025 (МЛН ДОЛЛАРОВ)
ТАБЛИЦА 109 БЛИЖНИЙ ВОСТОК И АФРИКА: РАЗМЕР РЫНКА AAC, ПО СТРАНАМ, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ) 111 БЛИЖНИЙ ВОСТОК И АФРИКА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 112 БЛИЖНИЙ ВОСТОК И АФРИКА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН ДОЛЛАРОВ)
ТАБЛИЦА 113 БЛИЖНИЙ ВОСТОК И АФРИКА РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 114 ТУРЦИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛАРОВ)
ТАБЛИЦА 115 ТУРЦИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 гг. )
ТАБЛИЦА 116 ТУРЦИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018–2025 гг. (МЛН долл. США)
ТАБЛИЦА 117 ТУРЦИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018–2025 гг. (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 118 ОАЭ: РАЗМЕР РЫНКА AAC , ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 119 ОАЭ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН. В КУБИЧЕСКИХ МЕТРАХ)
ТАБЛИЦА 120 ОАЭ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МЛН. ДОЛЛ. : РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 123 САУДОВСКАЯ АРАВИЯ: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ) МЛН ДОЛЛАРОВ)
ТАБЛИЦА 125 САУДОВСКАЯ АРАВИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 126 ЮЖНАЯ АФРИКА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 (МИЛЛИОН ДОЛЛАРОВ США)
ТАБЛИЦА 127 ЮЖНАЯ АФРИКА РАЗМЕР РЫНКА, ПО ЭЛЕМЕНТАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 128 ЮЖНАЯ АФРИКА: РАЗМЕР РЫНКА AAC, ПО КОНЕЧНЫМ ОТРАСЛЯМ, 2018-2025 (МИЛЛИОН ДОЛЛАРОВ США) (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 130 ОСТАЛЬНЫЙ БЛИЖНИЙ ВОСТОК И АФРИКА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 гг. (Долл. США МЛН.)
ТАБЛИЦА 131 ОСТАЛЬНЫЙ ВОСТОК И АФРИКА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 гг. (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 132 Остаточный Восток и Африка: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018–2025 гг. (МЛН долл. США)
ТАБЛИЦА 133 ОСТАЛЬНЫЙ БЛИЖНИЙ ВОСТОК И АФРИКА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 134 ЮЖНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, ПО СТРАНАМ, 2018-2025 (МИЛЛИОН ДОЛЛ. РАЗМЕР РЫНКА AAC, ПО СТРАНАМ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 136 ЮЖНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 138 ЮЖНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 139 ЮЖНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МЛН. РАЗМЕР ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 141 БРАЗИЛИЯ: РАЗМЕР РЫНКА AAC, ПО EL EMENT, 20182025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 142 БРАЗИЛИЯ: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 20182025 (МЛН ДОЛЛ. США)
ТАБЛИЦА 143 БРАЗИЛИЯ: РАЗМЕР РЫНКА AAC, ПОКАЗАТЕЛИ КОНЕЧНЫХ ОТРАСЛЕЙ, 20182025 (МИЛЛИОНОВ)
ТАБЛИЦА 144 АРГЕНТИНА: ОБЪЕМ РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 гг. (МЛН ДОЛЛ. США)
ТАБЛИЦА 145 АРГЕНТИНА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 гг. (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 146 АРГЕНТИНА: РАЗМЕР РЫНКА AAC, К КОНЕЧНОМУ ИСПОЛЬЗОВАНИЮ 201825 (МЛН ДОЛЛ. США)
ТАБЛИЦА 147 АРГЕНТИНА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018-2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 148 Остаток Южной Америки: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018-2025 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 14 ЮЖНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, ПО ЭЛЕМЕНТАМ, 2018–2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 150 ОСТАЛЬНАЯ АМЕРИКА: РАЗМЕР РЫНКА AAC, ПО ОТРАСЛЯМ КОНЕЧНОГО ИСПОЛЬЗОВАНИЯ, 2018–2025 (МИЛЛИОН ДОЛЛАРОВ) , ПО ОТРАСЛЯМ КОНЕЧНОГО ПОЛЬЗОВАНИЯ, 2018 2025 (МИЛЛИОН КУБИЧЕСКИХ МЕТРОВ)
ТАБЛИЦА 152 ИНВЕСТИЦИИ И РАСШИРЕНИЕ ON, 2017-2019
ТАБЛИЦА 153 СЛИЯНИЕ И ПРИОБРЕТЕНИЕ, 2017-2019


СПИСОК ФИГУР (39 ФИГУР)

РИСУНОК 1 РЫНОК AAC: ИССЛЕДОВАТЕЛЬСКИЙ ДИЗАЙН
РИСУНОК 2 ОЦЕНКА РАЗМЕРА РЫНКА: РЫНОК AAC
РИСУНОК 3 РЫНОК AAC, ПО РЕГИОНАМ
РИСУНОК 4 РЫНОК AAC, ПО ЭЛЕМЕНТУ
РИСУНОК 5 ОЦЕНКА РАЗМЕРА РЫНКА: ПОДХОД ПРОМЫШЛЕННОГО НАПРАВЛЕНИЯ, КОНЕЧНЫЙ ПОДХОД
РИСУНОК 6 ОЦЕНКА РАЗМЕРА РЫНКА: ПОДХОД НА ПЕРВЫЙ ПОДХОД
РИСУНОК 7 БЛОКИ, КОТОРЫЕ БУДУТ САМЫЕ БЫСТРОРАСТУЩИЕ ЭЛЕМЕНТЫ В ОБЩЕМ РЫНКЕ AAC
РИСУНОК 8 ЖИЛЫЙ СЕГМЕНТ, ПРЕДПОЧИТАЮЩИЙСЯ ДЛЯ ИНВЕСТИРОВАНИЯ В СЛЕДУЮЩИХ ПЯТИ ЛЕТ
РИСУНОК
РЫНОК
РИСУНОК 10 РАЗВИВАЮЩИЕСЯ ЭКОНОМИКИ, ПРЕДЛАГАЮЩИЕ ВОЗМОЖНОСТИ РАЗВИТИЯ РОСТА ДЛЯ ИГРОКОВ РЫНКА
РИСУНОК 11 БЛОКИ — САМЫЙ КРУПНЕЙШИЙ И БЫСТРОРАСТУЩИЙ СЕГМЕНТ
РИС. РАЗВИВАЙТЕСЬ БЫСТРЕЕ, ЧЕМ В РАЗВИТЫХ СТРАНАХ
РИСУНОК 14 КИТАЙ БУДЕТ ЛИДЕРОВАТЬ НА РЫНКЕ AAC
РИСУНОК 15 ИНДИЯ ДОСТАВЛЯЕТ САМЫЙ ВЫСОКИЙ РОСТ НА РЫНКЕ
РИСУНОК 16 ДРАЙВЕРЫ, ВИЭ ПОЕЗДА, ВОЗМОЖНОСТИ И ВЫЗОВЫ НА РЫНКЕ AAC
РИСУНОК 17 РЫНОК AAC: АНАЛИЗ PORTERS FIVE FORCES
РИСУНОК 18 БЛОКИ БУДУТ НАИБОЛЕЕ ДЕЙСТВУЮЩИМ СЕГМЕНТОМ РЫНКА AAC В 2020 ГОДУ
РИСУНОК 19 ЖИЛЫЙ СЕКТОР, ПОКАЗАННЫЙ КОНЕЧНЫМ ИСПОЛЬЗОВАНИЕМ В 2020 ГОДУ
РИСУНОК 20 ИНДИЯ БУДЕТ САМЫМ БЫСТРОРАСТУЩИМ РЫНОКОМ AAC
РИСУНОК 21 APAC: ОБЗОР РЫНКА AAC
РИСУНОК 22 СЕГМЕНТНЫЕ СЧЕТА БЛОКИРОВКИ ДЛЯ КРУПНЕЙШЕЙ РЫНКА В ЕВРОПЕ
РИСУНОК 23 СЕВЕРНАЯ АМЕРИКА: РЫНОК AAC 906 ОТНОСИТЕЛЬНО BEPSHOT КРУПНЕЙШИЙ РЫНОК AAC НА БЛИЖНЕМ ВОСТОКЕ И АФРИКЕ
РИСУНОК 25 БЫСТРАЯ ИНДУСТРИАЛИЗАЦИЯ ДЛЯ ДВИЖЕНИЯ РЫНКА AAC
РИСУНОК 26 РАСШИРЕНИЕ И ПРИОБРЕТЕНИЕ БЫЛИ КЛЮЧЕВОЙ СТРАТЕГИЕЙ РОСТА, ПРИНЯТОЙ МЕЖДУ 2017 И 2019 ГОДАМИ ПРОИЗВОДСТВЕННЫХ СТРАТЕГИЙ
РИСУНОК 27 РЫНОК AAC, 2019: КОНКУРЕНЦИЯ АНАЛИЗ ПОРТФЕЛЯ ЛУЧШИХ ИГРОКОВ НА ГЛОБАЛЬНОМ РЫНКЕ АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC)
РИСУНОК 29 ПРЕВОСХОДСТВО СТРАТЕГИИ БИЗНЕСА ЛУЧШИХ ИГРОКОВ В МИРЕ РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC)
РИСУНОК 30 H + H INTERNATIONAL A / S: ОБЗОР КОМПАНИИ
РИСУНОК 31 H + H INTERNATIONAL A / S: SWOT-АНАЛИЗ
РИСУНОК 32 AKG GAZBESTON: SWOT-АНАЛИЗ
РИСУНОК 33 UAL INDUSTRIES LTD.: SWOT-АНАЛИЗ
РИСУНОК 34 JK LAKSHMI CEMENT LTD .: ОБЗОР КОМПАНИИ
РИСУНОК 35 JK LAKSHMI CEMENT: SWOT-АНАЛИЗ
РИСУНОК 36 ПРОДУКТЫ QUINN BUILDING: SWOT-АНАЛИЗ
РИСУНОК 37 CSR LTD. РИСУНОК 39 ООО «УЛЬТРАТЕХ ЦЕМЕНТ»: ОБЗОР КОМПАНИИ

кирпичей в блоки — изменение парадигмы строительства: The Tribune India

[email protected]

Джагвир Гоял.

Появление множества новых материалов внесло значительные изменения в концепцию жилых домов в Индии. Архитекторы предлагают новые проекты. Самый основной строительный материал, кирпич, тоже претерпел изменения.

Сейчас, когда растет осведомленность о строительстве сейсмостойких домов, люди, строящие дома на больших участках, отдают предпочтение каркасным конструкциям RCC. Для таких структурных каркасов блоки AAC предпочтительнее кирпичей для поднятия стен.

AAC — это краткая форма автоклавного газобетона. Блоки из автоклавного газобетона, производимые в Индии в течение последних трех десятилетий, не нашли широкого применения в жилищном секторе на индивидуальном уровне. Но теперь даже люди используют их всякий раз, когда выбирают каркасную конструкцию RCC для своего дома.

Размер блоков AAC

Блоки

AAC намного больше по размеру, чем обычные блоки. Нормальная длина этих блоков составляет 600 мм, что составляет около 2 футов, хотя они также производятся длиной 400 мм и 300 мм.Ширина составляет 200 мм, то есть 8 дюймов. Также производятся блоки AAC толщиной 4, 6 и 10 дюймов. Высота блоков AAC составляет от 75 мм до 300 мм, то есть от 3 дюймов до 1 фута. Таким образом производятся блоки всех размеров, и можно выбрать блоки размеров в соответствии с требованиями объекта. Обычно используемые размеры блоков AAC: 16 дюймов x 8 дюймов x 8 дюймов, 16 дюймов x 8 дюймов x 6 дюймов и 16 дюймов x 8 дюймов x 4 дюйма.

Блоки цельные и пустотелые

Могут изготавливаться и используются как цельные, так и полые блоки AAC.Полые блоки имеют полые прорези в корпусе, что делает их еще легче и устойчивее к теплу и звуку из-за воздушной полости. Однако они требуют более осторожного обращения на месте, и нужно быть осторожным при прорезании чеканки в них, чтобы скрыть любые световоды в них. Твердые блоки AAC используются чаще, поскольку пользователи считают их более безопасными, чем полые блоки.

Преимущества перед кирпичом

Самым большим преимуществом использования блоков AAC вместо кирпича в стенах является их теплоизоляционные свойства.Газобетон из-за низкой теплопроводности пропускает меньше тепла, чем обычный бетон. Значение R блоков AAC проверяется перед их выбором. Значение R является мерой термического сопротивления материалов. Чем выше значение R, тем больше термическое сопротивление блоков. Это приводит к более прохладным домам и меньшей нагрузке на кондиционирование воздуха. Еще одним преимуществом блоков AAC является их малый вес, что снижает нагрузку на фундамент, что приводит к экономичному проектированию фундамента за счет снижения статической нагрузки. Большой размер блоков также приводит к меньшему количеству швов и меньшему расходу раствора при кладке блоков AAC.Их обработка поверхности намного лучше, чем у кирпича, есть экономия и на штукатурных работах. Сейсмостойкая конструкция требует, чтобы здание было легким. Этой цели также служат блоки AAC.

Звукоизоляция

Блоки

AAC обеспечивают хорошую звукоизоляцию. Они оцениваются на основе класса передачи звука (STC). Можно посмотреть значение STC блоков AAC, если звукоизоляция является особым требованием. Рейтинг STC рассчитывается путем усреднения звуков 16 различных частот, измеренных в децибелах, остановленных блоками.Блоки AAC могут обеспечивать STC от 40 и выше.

Выцветание

Еще одно важное преимущество использования блоков AAC в стенах — устранение проблемы высолов на стенах. Выцветание, широко известное как проблема «шора», настолько распространено в кирпичных стенах, что люди часто просят альтернативу кирпичу, поскольку проблема выцветания постоянно повторяется.

Ниже DPC

Следует избегать использования блоков AAC в фундаментах и ​​ниже уровня DPC. В каркасных конструкциях ПКК закладываются фундаменты ПКК и на них возводятся колонны ПКК.Балки цоколя укладываются на уровне цоколя и над ними возводится кладка из блоков AAC. Сами фундаменты из колонн рассчитаны на то, чтобы выдерживать нагрузку на здание, и кладка из блоков AAC между колоннами под балкой цоколя уровня DPC не требуется.

Меры предосторожности при использовании

При использовании блоков AAC в стеновых панелях каркасных конструкций RCC, кладку блоков AAC следует отложить как можно дольше после завершения каркаса колонн-балок. Этот шаг позволит бетонной конструкции претерпеть изменения, если таковые имеются, из-за структурных перемещений и первоначальной осадки земли под фундаментом колонн, а также поможет избежать любых трещин в стенах блоков AAC.В окнах на уровне подоконника должна быть предусмотрена соединительная балка с номинальным усилением. Аналогичным образом должны быть предусмотрены вертикальные стойки RCC с обеих сторон оконных рам. Перемычка всегда будет в верхней части окна. Армирование в соединительной балке может быть простым 8-миллиметровым стержнем. Вертикальные стойки также помогут в обеспечении надлежащего крепления оконных рам.

Прутки из мягкой стали

Везде, где в перегородках предусмотрена кладка из блоков AAC, она усиливается с помощью подходящих стержней из мягкой стали или торцевой стали через равные промежутки по горизонтали.Иногда также предусмотрены полосы через вертикальные интервалы. Прутки из мягкой стали диаметром 6 мм обычно используются и устанавливаются на каждом третьем этапе кладки блоков AAC.

Коэффициент затрат

Если сравнивать только стоимость кирпичей и блоков AAC, блоки AAC оказываются дороже. Однако, если сравнить стоимость кладки, кладка из блоков AAC оказывается дешевле кирпичной. Один кубический метр кирпича содержит 450 кирпичей, которые стоят около 1800 рупий. В зависимости от размера используемых блоков AAC можно определить количество блоков на кубический метр.В среднем 1 кубический метр блоков стоит 3000 рупий. В кладке экономится стоимость раствора, используемого в стыках, за счет меньшего количества стыков в кладке блоков AAC. Кроме того, сокращаются затраты на рабочую силу, так как блоки больше по размеру, чем кирпичи, но их легко обрабатывать из-за их небольшого веса. Большая экономия достигается при штукатурных работах, так как поверхность бетонных блоков намного более гладкая, чем у кирпичной кладки, и требуется меньшая толщина штукатурки.

(Автор — HOD и главный инженер отдела гражданского строительства в Пенджабском PSU)


Автоклавный газобетон

Под автоклавным бетоном мы подразумеваем бетон, отвержденный паром в автоклаве.Под газобетоном мы подразумеваем бетон, облегченный методом аэрации. При использовании метода аэрации в бетоне химически образуется газ в результате химической реакции или в него вводится воздух, когда цементно-песчаная смесь все еще находится в виде суспензии. В бетоне образуются миллионы крошечных ячеек с воздухом или газом. После автоклавирования, которое проводится в течение периода от 15 до 18 часов при определенном давлении и высоких температурах, произведенные блоки из газобетона могут иметь свой вес до 500 кг на кубический метр, в то время как вес обычного бетона находится в диапазоне 2000 кг на кубический метр.Газобетон также известен как ячеистый бетон.

Грузоподъемность

Блоки

AAC могут использоваться как в несущих стенах, так и в ненесущих стенах или перегородках. Максимально они используются в конструкциях с RCC-каркасом, где эти блоки заполняют пространства стеновых панелей между колонной и балочной сетью. Когда эти блоки используются в несущих стенах, толщина стены не должна быть меньше 200 мм, хотя для внутренних несущих стен иногда также используются стены и блоки толщиной 150 мм.Однако для наружных стен толщина стены и блока должна составлять 200 мм или более.

Экспериментальное исследование характеристик пор и расчет фрактальной размерности поровой структуры ячеистого бетонного блока

Важно контролировать и прогнозировать макроскопические свойства с помощью параметров структуры пор материалов на основе цемента. Микроскопическая пористая структура бетона имеет множество характеристик, таких как размеры и беспорядочное распределение. Для описания пористой структуры бетона необходимо использовать теорию фракталов.Чтобы установить взаимосвязь между характеристиками пористой структуры ячеистого бетона и пористостью, коэффициентом формы, площадью поверхности пор, средним диаметром пор и средним диаметром, фрактальная размерность пористой структуры использовалась для оценки характеристик пористой структуры ячеистого бетона. . Рентгеновские компьютерные томографические (КТ) изображения пористой структуры газобетона были получены с помощью рентгеновского трехмерного микроскопа серии XTh420. Характеристики пористости газобетонного блока изучались согласно Image-Pro Plus (IPP).На основе исследования методов измерения фрактальной размерности предложенная программа MATLAB автоматически определила фрактальную размерность изображений пористой структуры газобетонного блока. Результаты исследования показали, что мелкие поры (20 мкм м ~ 60 мкм м) газобетонного блока составляют большой процент по сравнению с большими порами (60 мкм м ~ 400 мкм м или более) Судя по распределению диаметров пор, структура пор газобетонного блока имеет очевидные фрактальные особенности, а фрактальная размерность изображений поровой структуры газобетонного блока, по расчетам, находится в диапазоне 1.775–1.805. Фрактальная размерность пор сильно коррелирует с фрактальными характеристиками пор газобетонных блоков. Фрактальная размерность поровой структуры линейно увеличивается с пористостью, коэффициентом формы и площадью поверхности пор. Фрактальная размерность поровой структуры уменьшается с увеличением среднего размера пор и среднего диаметра. Таким образом, фрактальная размерность поровой структуры, которая рассчитывается программой MATLAB на основе теории фракталов, может быть принята в качестве интегративного оценочного индекса для оценки характеристики поровой структуры газобетонного блока.

1. Введение

Благодаря постоянному продвижению политики энергосбережения и сокращения выбросов, газобетонные блоки широко используются в строительстве благодаря их низкой плотности, теплоизоляционным свойствам, звукоизоляционным свойствам, антисейсмическим свойствам и простоте обработки. . Признано, что эти макроскопические свойства газобетонных блоков зависят от его пористой структуры [1–3]. Газобетон — это разновидность материалов на цементной основе. Внутренняя пористая структура газобетонных блоков имеет сложную форму, большое количество и сложную связь пор.Кроме того, поры и микротрещины в цементном бетоне могут вызвать разрушение конструкций. Следовательно, необходим действующий метод, чтобы эффективно охарактеризовать сложность и неравномерность пористой структуры газобетонных блоков. В последние годы были найдены хорошие методы улучшения характеристик цементных бетонов. Многие исследователи уделяют этому исследованию много энергии и добились хороших результатов. Одним из важных методов является то, что добавление кремнистой летучей золы в цементные бетоны может изменять микроскопическую структуру пор и макроскопические свойства [4, 5].С целью изучения пористой структуры газобетонного блока в исследование была введена теория фракталов. Многие исследования [6–11] показали, что пористая структура бетона имеет явную фрактальность. Анализ микроскопической структуры пор имеет большое значение для изучения ее макроскопических свойств [12] и создания трехмерной численной модели конкретной структуры [13].

В настоящее время параметры поровой структуры сложно охарактеризовать количественно обычными методами из-за сложности и неоднородности структуры пор.Исследования [14–17] показали, что изображения структуры пор были обработаны с помощью Image-Pro Plus (IPP), и с его помощью можно было легко получить параметры структуры пор по сравнению с порозиметрией с проникновением ртути (MIP). Параметры структуры пор пористого бетона в основном включают пористость, коэффициент формы, площадь поверхности пор, средний размер пор и средний диаметр. Многие исследования показали, что пористость и площадь поверхности пор важны для прочности бетона на сжатие, а средний размер пор и средний диаметр являются факторами распределения диаметра пор.Фактор формы пористой структуры влияет на формирование внутренних каналов пор в бетоне. Таким образом, необходимо изучить параметры пористой структуры, чтобы скорректировать макроскопические свойства газобетона.

С дальнейшим развитием исследований пористой структуры все больше и больше теорий и методов вводятся в исследование пористой структуры пористых материалов. В 1960-х годах французский математик Мандельброт [18] предложил фрактальный метод решения проблемы длины британской береговой линии и предоставил эффективные средства для изучения взаимосвязи между микроструктурой и макроскопическими свойствами пористых материалов.Многочисленные исследования [8, 19] показали, что внутренняя пористая структура бетона имеет сильные фрактальные характеристики. Хаммад и Исса [20] и Гуо и др. [21] изучили трещины на поверхности излома бетона и обнаружили, что трещины обладают значительными фрактальными характеристиками. Чем больше фрактальная размерность, тем выше трещиностойкость поверхности излома. Двумя уникальными особенностями изображений фрактальных объектов являются самоподобие и масштабная инвариантность [22, 23]. Одна из наиболее важных особенностей — самоподобие, что означает, что каждая часть фрактальных объектов геометрически подобна целому.Расчет фрактальной размерности — один из основных факторов, влияющих на практическое применение теории фракталов. Были предложены различные типы методов вычисления фрактальной размерности, такие как метод коврового покрытия [24], метод измерения подсчета ящиков [25], метод дифференциальной размерности с подсчетом ящиков [26], метод размерности Хаусдорфа [27], метод размерности емкости, Метод размерности броуновского движения [28] и метод спектральных чисел. Этими методами рассчитываются фрактальные размерности поверхности поры, объема поры и оси поры.Среди этих методов расчета фрактальной размерности метод размерности ящика является наиболее распространенным методом анализа фрактальной размерности бетона. В конкретном процессе подачи заявки необходимо проанализировать физическое количество объекта исследования. Рассчитанная фрактальная размерность имеет практическое и исследовательское значение. Peng et al. В [29–31] изучались методы расчета фрактальной размерности двумерных и трехмерных цифровых изображений и расчета фрактальной размерности пор горных пород.Ян и Шао [32] реализовали расчет фрактальной размерности двумерных цифровых изображений с помощью программы MATLAB. Jin et al. В [33] получены зависимости между фрактальной размерностью поровой поверхности и характеристическими параметрами пор цементного раствора на основе метода МИП и фрактальной модели. Параметры пористой структуры бетона отражают сложность пористой структуры.

Пористая структура газобетонного блока не будет повреждена и полностью сохранится рентгеновской компьютерной томографией (КТ).КТ-изображения срезов блоков из газобетона содержат много информации о структуре пор по сравнению с данными, измеренными с помощью метода MIP. Таким образом, MATLAB используется для обработки изображений срезов пористой структуры газобетонных блоков в данном исследовании. Программа Fraclab была введена для расчета фрактальной размерности изображений поровой структуры. Вычисленное программой значение сравнивается с теоретическим значением по фрактальной размерности фрактальных изображений. Взаимосвязь между фрактальной размерностью поровой структуры и характеристическими параметрами пор изучается на основе программного расчета в данном исследовании, который используется для установления взаимосвязей между характеристическими параметрами пор и макроскопическими свойствами газобетонных блоков.

2. Экспериментальная
2.1. Материалы

Газобетонные блоки были предоставлены Zhejiang Hangshi Building Materials Company. В таблице 1 приведены рабочие параметры газобетонного блока.


Материалы Объемная плотность в сухом состоянии (кг · м −3 ) Средняя прочность на сжатие (МПа) Прочность на последующее замерзание (МПа) · Теплопроводность (Вт) (м · К) −1

Газобетонный блок 619 5.2 3,4 0,153

Образцы блоков из газобетона были разрезаны на кубики размером 50 мм × 50 мм × 50 мм с помощью режущего аппарата для рентгеновской компьютерной томографии (КТ). без видимых следов пилы на поверхности образца. В процессе резки необходимо контролировать стабильность полотна режущей пилы, чтобы обеспечить плоскостность режущей плоскости и избежать повреждения структуры пор.

2.2. КТ-изображения образца

КТ-изображения образца газобетонного блока были протестированы с использованием рентгеновского трехмерного микроскопа серии XTh420 в лаборатории компьютерной томографии Университета Чжэцзян. На рис. 1 показан рентгеновский трехмерный микроскоп серии XTh420 и изображение среза пористой структуры образца. В таблице 2 приведены рабочие параметры оборудования. Расстояние среза газобетонного блока в исследовании составляет 0,04 мм.



Параметры устройства Максимальное напряжение (кВ) Максимальный ток ( μ A) Максимальная мощность (Вт) Фильтр (Cu) (мм) Разрешение ( мкм м) Глубина погружения образца (см)

Размер параметра 320 1000 320 1∼4 5∼ 125058

Испытательные этапы следующие: (1) образец помещается на держатель образца рентгеновского трехмерного микроскопа серии XTh420; (2) испытательный прибор подает напряжение и включает рентгеновское излучение; (3) запускается программное обеспечение для испытаний, вводится основная информация об образце, и образец поворачивается на 360 градусов; (4) тестовая программа рассчитывает цифровую матрицу изображений; (5) Выводятся КТ-изображения образца в оттенках серого.Наконец, было получено 1205 КТ-изображений газобетонных блоков. В статье анализируются параметры характеристик пор по данным Image-Pro Plus (IPP) и взаимосвязь фрактальной размерности пор и характеристик структуры пор на основе компьютерных томографов образца блока из пенобетона.

3. Методы
3.1. Характеристики структуры пор Аналитический метод

Как видно из рисунка 1 (b), форма пор блока газобетона является сложной, а количество пор велико.Стандартными статистическими методами трудно охарактеризовать структуру пор. Для решения этой проблемы с помощью программы IPP было проведено исследование компьютерных томографов структур пористого блока газобетона. Он может получить следующие характерные параметры структуры пор: характеризующую пористость, коэффициент формы поры, площадь поверхности пор и средний диаметр. Конкретные шаги и методы обработки изображений здесь специально не описываются. Вы можете обратиться к соответствующей литературе [34–36] для дальнейшего исследования.На рисунке 2 показан процесс обработки изображений IPP.


3.2. Фрактальная модель, основанная на методе размерности ящика

Метод измерения размерности ящика [37, 38] является одним из классических методов расчета фрактальной размерности изображений. Сначала изображение преобразуется в двоичную форму, и преобразованное в двоичное изображение изображение помещается на плоскость. Квадратное изображение со стороной r используется для покрытия всего изображения. В случае постоянного изменения размера квадратной сетки r подсчитывается количество N ( r ) квадратных сеток, покрывающих интересующее изображение, соответствующее каждому размеру r .Если соотношение между размером ячейки r и количеством ящиков N ( r ) соответствует следующей формуле: где c — константа, а D — количество ящиков. В процессе подачи заявки можно измерить и рассчитать ряд данных, соответствующих [ r , N ( r )]. Для подбора формулы используется метод наименьших квадратов:

Можно получить размер изображения D = b при подсчете квадратов.

3.2.1. Вычисление фрактальной размерности на основе MATLAB

Фрактальная размерность изображений поровой структуры блока из пенобетона была рассчитана с использованием программы MATLAB на основе метода измерения прямоугольника. Исходное изображение должно быть предварительно обработано MATLAB, чтобы улучшить качество изображения. Предварительно обработанное изображение преобразуется в двоичную цифровую матрицу. Мы можем использовать цифровую матрицу преобразованного двоичного изображения, когда исследуемая интересующая часть в двоичном изображении является белой.Если изображенная исследуемая часть бинаризованного изображения после обработки изображения является черной, нам нужна преобразованная в бинаризованная цифровая матрица после того, как изображение инвертировано. На рисунке 3 показаны результаты обработки бинаризации изображения кривой Коха с помощью MATLAB.


Программа Fraclab вызывается в командной строке MATLAB, и программа автоматически вычисляет инвертированное двоичное изображение. Программа автоматически определяет максимальный и минимальный размер коробки и количество коробок.Размер прямоугольника — это значение фрактальной размерности D = 1,2356 изображения кривой Коха, вычисленное программой.

3.2.2. Программа проверки расчетов

В таблице 3 показано сравнение результатов расчета. Из таблицы 3 видно, что рассчитанное относительное отклонение для фрактального изображения составляет максимум 3,05%, а минимальное отклонение составляет 0,49%. Относительное отклонение программы для фрактальной размерности треугольника Шерпинского и квадрата Шерпинского равно 1.22% и 0,998%. Относительное отклонение фрактальной размерности, рассчитанной для кривой Коха, составляет 2,01%. Причина отклонения может заключаться в том, что детальное изображение угла кривой Коха недостаточно четкое. Численное отклонение поля изображения, вычисленное MATLAB, составляет менее 4%. Таким образом, его можно использовать для расчета и анализа фактической фрактальной размерности изображения.


Регулируемое фрактальное изображение Размер изображения Теоретический расчет фрактальной размерности Программа MATLAB расчет фрактальной размерности Относительная погрешность (%)
610835 2 1.939 3,05
328663 1 1.0211 2.11
214 219 1.2618 1.2365
0,491
219 274 1,585 1,5656 1,22
244 244 1,8928 1,9117 0.998

4. Результаты экспериментов и обсуждение
4.1. Характеристики пористой структуры

Чтобы полностью изучить характеристики пористой структуры образца газобетонного блока, для анализа были взяты пять изображений срезов пористой структуры в верхней, средней и нижней частях образца. Данные по параметрам измерения структуры пор, рассчитанные на основе IPP, были статистически проанализированы следующим образом.Таблицы 4–6 соответственно соответствуют параметрам, характеризующим пористую структуру верхней, средней и нижней частей образца газобетонного блока. Взяв в качестве примера таблицу 4, можно увидеть, что коэффициент формы пор в газобетонном блоке составляет 2,91, а диаметр Ферета равен 67,23. Общий процент площади пор 62%. По стереологическому принципу за характеристическую пористость газобетонного блока можно принять 62%. По статистике характерных параметров пористой структуры в верхней, средней и нижней частях газобетонного блока результаты показывают, что пористость газобетонного блока составляет 64.33% по данным IPP. Видно, что неправильная форма структуры пор внутри газобетонного блока занимает большой процент, что в основном обусловлено режимом газообразования в процессе производства газобетонного блока. Эти параметры могут обеспечивать эталонные индексы для контроля структуры пор, соотношения сырья и контроля качества пористых материалов.


Образец Коэффициент формы На площадь (объект./ всего) Feret (среднее)

1 # верхняя 3,33 0,60 45,97
2 # верхняя 2.71000000 0,61 3 # верхний 1,74 0,69 35,81
4 # верхний 1,89 0,63 137,65
5 # верх 4,87 0,596
Среднее значение 2,91 0,62 67,23


Площадь образца всего) Feret (среднее)

1 # средний 4,95 0,57 75,69
2 # средний 3.23 0,64 55,99
3 # средний 3,35 0,64 65,37
4 # средний 3,47 0,64
0,70 39,15
Среднее значение 3,38 0,64 60,74

(объект/ всего)
Feret (среднее)

1 # нижнее 2,01 0,70 43,41
2 # нижнее 2,04000 0,69 3 # нижний 4,51 0,64 93,53
4 # нижний 4,49 0,64 93,27
5 # нижний 2,53 0.68 55,91
Среднее значение 3,12 0,67 65,45

4.2. Распределение диаметра пор

Распределение диаметра пор может описывать форму распределения размеров внутренней пористой структуры газобетонного блока. В ходе исследования для анализа были взяты пять изображений срезов пористой структуры в верхней, средней и нижней частях образца. Данные о распределении диаметров пор определяли по 15 срезам изображений структуры поры КТ.Все изображения срезов структуры пор взяты из одного сканируемого образца. Выборка выборки соответствует исследованиям литературы [34]. Гистограмма распределения среднего диаметра строится для представления диаграммы распределения диаметра пор газобетонного блока на основе пятнадцати изображений срезов структуры пор. Рисунки 4–6 показывают распределение пор по размерам в верхней, средней и нижней частях газобетонного блока и имеют аналогичные тенденции. Поры (20 мкм мкм ~ 60 мкм мкм) называются макроскопическими капиллярными порами.Из диаграммы распределения пор по размеру трех частей видно, что на мелкие поры (20 мкм мкм ~ 60 мкм мкм) газобетонного блока приходится большая процентная доля по сравнению с большими порами (60 мкм). м∼400 мкм м и более). Макроскопические капиллярные поры обычны во внутренней части газобетонного блока.




4.3. Фрактальная размерность изображений структуры пор

Значения фрактальной размерности изображений структуры поры 1205 были рассчитаны и подсчитаны с помощью программы MATLAB.Фрактальная размерность изображений пористой структуры блока из газобетона составляет от 1,775 до 1,805, а средняя фрактальная размерность составляет 1,789.

На рисунке 7 показано, что фрактальная размерность изображений поровой структуры уменьшается с увеличением глубины среза. Фрактальная размерность исходного изображения пористой структуры больше, чем на следующих изображениях. Это связано с неровной поверхностью резания из-за пилы из твердого сплава. Фрактальная размерность изображений срезов пористой структуры распределена по двум полосам.Необходимо найти и изучить взаимосвязь между параметрами структуры поры и фрактальной размерностью поры. Мы ожидаем использовать фрактальную размерность пор для эффективной оценки сложности и неравномерности структуры пор газобетонных блоков.


Для обработки было выбрано 25 КТ-изображений (по одному на каждые 50 листов) и получены соответствующие параметры структуры пор. Фрактальная размерность изображений структуры пор, рассчитанная с помощью программы MATLAB, и характеристические параметры структуры пор, рассчитанные с помощью IPP, показаны в таблице 7.Соотношения между фрактальной размерностью и характеристическими параметрами показаны на рисунках 8–12.

0007000700784700000000 99570007914

Серийный номер изображения среза Фрактальная размерность пор Площадь поверхности пор (мм 2 ) Средний диаметр (мм) Фактор формы Пористость Средний размер пор (мм)

TOP001 1.8013 576,43 0,0979 2,7408 72,00 0,0720
TOP051 1,7909 630,31 0,119000070007 0,1189 2,0649 66,32 0,1067
TOP151 1,7882 305,77 0,1315 2.0131 64,41 0,1307
TOP201 1,7875 325,77 0,1373 1,8923 62,63 0,1330 00070007000700070007 0,0860
TOP301 1,7983 591,38 0,1122 2,5251 71,41 0,0931
TOP351 127,96 0,1687 1,7471 59,08 0,1813
TOP401 1.7828 115,99 0,168400070007000800080008 0,1746 1,6972 57,80 0,1897
TOP501 1,7836 101,35 0,1845 1.6799 57,39 0.2017
TOP551 1.7955 673,84 0,1369 2,2237 67,32 0,1306 00070009 0,2139
TOP651 1,7968 673,20 0,1398 2,1855 67,19 0,1330
TOP7017933 689,55 0,1406 2,1390 66,25 0,1345
TOP751 1.7822 77,28 0,195800070007 0.2004 1.6857 56.97 0.2238
TOP851 1.7929 668,68 0,1417 2.2726 67.60 0.1373
TOP901 1.7798 154.53 0.1894 1.7849 58.44 0.2095 000 9957000 9957000 9957000 99570009 0,2156
TOP1001 1,7925 591,57 0,1229 2,6484 71,50 0,1078
TOP1051 1 .0008 235,43 0,1769 1,9227 61,80 0,1912
TOP1101 1,7905 314,21 0,1643 2,0033 63,68 0,1744
TOP1151 1,7940 665,94 0,1561 2,2238 67,46 0,1561
TOP1201 1,7938 257,03 0.1834 2,1431 65,25 0,1995






4.3.1. Взаимосвязь между фрактальной размерностью пор и пористостью

Пористость газобетонного блока является одним из фатальных макроскопических показателей эффективности. Макроскопические характеристики газобетонного блока зависят от пористости, например, проницаемости, теплоизоляции и звукоизоляции.Таким образом, изучение пористости газобетонных блоков способствует дальнейшему развитию исследований его макроскопических характеристик. Рисунок 8 показывает, что фрактальная размерность поры линейно увеличивается с пористостью. Как видно из рисунка 8, существует хорошая корреляция между пористостью и фрактальной размерностью пор, а коэффициент регрессии R 2 0,8359 указывает на сильную корреляцию между фрактальной размерностью пор и пористостью. Пористость увеличивается с увеличением фрактальной размерности поровой структуры.Фрактальная размерность представляет собой сложность изображений структуры пор [33]. Это указывает на то, что пространственная занятость поровой структуры увеличивается с увеличением пористости. И множество структур пор, которые перекрываются и пересекаются, приводят к более сложным формам структуры пор. Результаты согласуются с взглядами Yu et al. [39] и Xie et al. [40]. Из наших результатов можно отметить, что метод расчета фрактальной размерности полезен. Результаты предыдущих работ показали, что пористость является основным фактором, влияющим на проницаемость и теплоизоляционные свойства газобетонных блоков.Чтобы соответствовать требованиям к теплоизоляционным свойствам газобетонных блоков, многие компании исследуют новый состав смеси из газобетонных блоков, который держится в секрете от внешнего мира. Обычная пористость газобетонных блоков, которую предлагали многие компании, составляет 65% ∼85%. Из приведенного выше анализа фрактальная размерность пор сильно коррелирует с пористостью. Следовательно, пористость газобетонного блока можно косвенно оценить по фрактальной размерности изображений структуры пор.Для эффективного прогнозирования проницаемости газобетонного блока следует использовать фрактальную размерность пор.

4.3.2. Взаимосвязь между фрактальной размерностью пор и фактором формы

Фактор формы также является одним из важных параметров характеристики структуры пор. Это важный показатель, позволяющий определить, близка ли форма поровой структуры к кругу. Форма структуры пор играет важную роль в формировании внутренних каналов пор пористых материалов.Он предусматривает, что коэффициент формы сферы равен 1, и чем больше значение, соответствующее коэффициенту формы, тем выше степень отклонения от сферы. На рисунке 9 показано, что коэффициент линейной корреляции R 2 между фрактальной размерностью и коэффициентом формы достигает 0,8054. По мере увеличения фрактальной размерности поровой структуры фактор формы поровой структуры также увеличивается. Это указывает на то, что форма структуры поры больше отклоняется от круглой формы, что аналогично соотношению между фрактальной размерностью поры и пористостью, приведенным в разделе 4.4.1. Результаты предыдущих работ показали, что коэффициент формы имеет тенденцию к уменьшению с увеличением плотности бетона [41]. По принципу, чем больше плотность, тем больше круговая структура пор газобетонного блока. Следовательно, фрактальную размерность пор можно использовать для характеристики степени отклонения структуры поры от круглой формы. То есть фрактальная размерность пор имеет тенденцию к уменьшению с увеличением плотности газобетонного блока. Таким образом, фрактальная размерность пор позволяет оценить плотность газобетонного блока.Наконец, его можно использовать в качестве эталона для последующего определения формы поперечного сечения трехмерного порового канала газобетонного блока и установления порового канала газобетонного блока.

4.3.3. Взаимосвязь между фрактальной размерностью пор и площадью поверхности пор

Многие исследования показали, что площадь поверхности пор связана со степенью гидратации пенобетона. По мере увеличения площади поверхности пор увеличивается и степень гидратации газобетона.Степень гидратации газобетона также связана с прочностью бетона на сжатие. Это показывает, что прочность бетона быстро увеличивается на ранней стадии и медленно на более поздней стадии. То есть прочность на сжатие линейно увеличивается с площадью поверхности пор. На рисунке 10 показано, что коэффициент линейного уравнения R 2 между фрактальной размерностью поры и площадью поверхности поры достигает 0,7241. Это указывает на то, что фрактальная размерность поры хорошо коррелирует с площадью поверхности поры.В случае одинаковой пористости, чем меньше площадь поверхности пор, тем меньше количество пор с малым диаметром пор и тем меньше шероховатость поверхности пор. Шероховатость и распределение пор по размерам на поверхности пор можно оценить по фрактальной размерности пор. Прочность на сжатие линейно увеличивается с фрактальной размерностью пор в сочетании с приведенным выше анализом. Наконец, прочность на сжатие газобетонного блока можно оценить по фрактальной размерности пор.

4.3.4. Взаимосвязь между фрактальным размером поры и средним размером пор и средним диаметром

Средний размер пор и средний диаметр — это параметры, которые характеризуют средний размер поровой структуры и обычно применяются к распределению пор по размерам. На средний диаметр пор газобетонного блока влияет множество факторов, в том числе сырье, технологические параметры и условия твердения. Из таблицы 7 можно найти интересный феномен, заключающийся в том, что размер среднего диаметра пор является прерывистым.Причина в том, что изображения структуры пор содержат макроскопические поры, и макроскопические поры будут появляться и исчезать непрерывно с увеличением глубины среза. Таким образом, необходимо установить взаимосвязь фрактальной размерности поры и среднего диаметра поры. Таким образом, необходимо исследование взаимосвязи параметров структуры пор и фрактальной размерности пор. На рисунках 11 и 12 показано, что коэффициент корреляции линейного уравнения R 2 между фрактальной размерностью поры и средним размером поры и средним диаметром равен 0.6426 и 0,6155. Средний размер пор и средний диаметр демонстрируют ту же тенденцию изменения с увеличением фрактальной размерности. Другими словами, средний размер пор и средний диаметр демонстрируют очевидную тенденцию к уменьшению с увеличением фрактальной размерности. Этот вывод согласуется с результатами, опубликованными в литературе Jin et al. [33]. Из наших результатов можно отметить, что метод расчета фрактальной размерности полезен. Согласно теории фракталов, чем больше фрактальная размерность поры, тем меньше средний размер отверстия и тем сложнее пространственное распределение пор в газобетонном блоке.Это указывает на то, что количество мелких отверстий увеличивается. В случае одинаковой пористости газобетонного блока, чем больше средний диаметр пор и средний диаметр, тем меньше количество отверстий и тем толще стенка пор соответствующей структуры пор. Результаты показывают, что фрактальная размерность пор может описывать распределение пор по размерам, а также открывает путь для последующего изучения взаимосвязи между фрактальной размерностью и капиллярным давлением воды.

5. Выводы

В данной работе исследованы параметры структуры пор на основе IPP и представлен метод расчета фрактальной размерности согласно MATLAB. Исследованы взаимосвязи между фрактальной размерностью поровой структуры и параметрами поровой структуры. Основываясь на экспериментальных результатах этого исследования, можно сделать следующие выводы: (1) Небольшие поры (20 мкм м ~ 60 мкм мкм) газобетонного блока составляют большой процент по сравнению с большими порами ( 60 мкм м∼400 мкм м или более) от распределения диаметров пор.(2) Фрактальная размерность пор газобетонного блока составляет от 1,775 до 1,805. (3) Фрактальная размерность пор газобетонного блока сильно коррелирует с пористостью и фактором формы пор. (4) Фрактальная размерность пор газобетонного блока хорошо коррелирует с площадью поверхности пор. Размер фрактальной размерности пор может эффективно характеризовать шероховатость и распределение пор по размерам на поверхности пор. (5) Корреляция между фрактальной размерностью пор газобетонного блока и средним диаметром пор и средним диаметром является общей.Фрактальную размерность пор можно использовать в качестве показателя для оценки среднего размера пор и распределения их диаметров. Когда фрактальная размерность пор больше, средний размер пор меньше, а когда пористость больше, структура пор ухудшается.

Доступность данных

Данные, использованные для подтверждения результатов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Выражение признательности

Это исследование финансировалось Чжэцзянским проектом фундаментальных исследований общественного благосостояния (LGF8E080016) и Китайской ассоциацией инженерных строительных стандартов.