Чем утеплить дом из керамзитобетонных блоков снаружи?
Керамзитобетон ложится в два ряда, что соответствует 40 см. Такой толщины мало, чтоб дом обладал теплоизоляционными свойствами. Без утеплителя жильцам придется интенсивно топить дом или терпеть неблагоприятные условия жизни. Чтоб решить эту проблему, используют утеплители. Они бывают из разного материала и устанавливают их разными способами. Потому перед тем, как приступать к данному этапу, стоит ознакомиться со всем разнообразием вариантов.
Насколько важно утепление?
Керамзитобетонные блоки обладают множеством достоинств, являются альтернативным решением, когда ищут материал бюджетный и прочный. Но у них есть свои недостатки – слабая теплоизоляция. С помощью утеплителей эта проблема решается, а также сокращаются затраты на отопление. Чтоб данная процедура возымела успех, нужно применять утеплитель не меньше 10 см. А также следить, чтоб между листами утеплителя не было швов и зазоров, если такие находятся, то стоит их запенить монтажной пеной.
Вернуться к оглавлениюКак проводится утепление
Блоки из керамзитобетона морозостойкие и влагоотталкивающие. На основе этого применяют различные варианты утепления. Но чтоб теплоизоляционный слой был установлен качественно и прослужил долгие годы, важно поверх него положить пароизоляцию. Так пароизоляционный впитывает влагу, сохраняя полностью свои свойства.
Вернуться к оглавлениюВозможные ситуации
Утеплить дом снаружи из керамзитобетона легко, зная два основных варианта по укладке керамзитобетонного блока. Важно изучить каждый, чтоб выбрать оптимальный для своего дома.
Вернуться к оглавлениюВнешняя облицовка фасада отсутствует
Отделка стен сайдингом.Это значит, что ничего кроме двух рядов керамзитобетонных блоков нет. Фасадные материалы снаружи полностью отсутствуют. При такой ситуации, облицовывая здание с помощью кирпича, есть возможность поместить между облицовкой и керамзитобетонном утеплитель.
Это эффективное теплоизоляционное мероприятие, но к нему прибегают достаточно редко. А все потому, что материал для облицовки всего дома будет стоить недешево. Ко всему прочему, затруднительно самому совершить такой объем работы по утеплению этим материалом. Из-за этого приходится прибегать к посторонней помощи, что тоже стоит дополнительных затрат.
Более бюджетные варианты утепления совершаются с помощью панелей. Например, вагонка, металлический или пластиковый сайдинг. Утеплителем в таких ситуациях часто выступает пенопласт. Этот материал кладут в два слоя при условии, что он толщиной в 5 см. Размещают панели на керамзитобетоне так, чтоб швы первого слоя не сходились со вторым. Далее кладут сайдинг, а под него кладут вертикальный профиль, который формирует каркас.
Помимо панелей из пенопласта, используют минеральную или базальтовую вату. Но такие материалы требуют защиты в виде пароизоляции. Также применяют приклеенный плитный теплоизолирующий слой, а после покрывают штукатуркой. Плитный утеплитель – пенопласт, пенополистирол или пеноплекс. Легко прикрепляются к керамзитобетону, а затем закрепляется дюбелями.
Вернуться к оглавлениюФасад с облицовочным кирпичом
Довольная частая ситуация при покупке недостроенного здания. В таком доме уже есть облицовка кирпичом, но между ним и керазитобетонном отсутствует утеплительный слой. Чтоб исправить ситуацию, обрабатывают стены пенополиуретаном. Совершается эта действие с помощью отверстий в стене, через которые подают смесь. Полиуретан в этих отверстиях расширяется и заполняет собой щели.
С таким утеплением керамзитобетонный дом защищен от влаги, грызунов, плесени. Единственный минус такой процедуры – цена. Помимо этого, нужны специалисты по закладе этого материала, что тоже влечет за собой дополнительные расходы.
Вернуться к оглавлениюЧем проводить утепление?
Утеплить дом из керамзитобетона можно различными материалами, наиболее эффективные и доступные:
- Минеральная вата. Она отличается высокими теплоизоляционными характеристиками и является бюджетным материалом. Обеспечивает защиту керамзитоблоков от влаги, сырости, перепада температуры. Укладывают в два слоя, между которыми кладут гидроизоляционный и ветрозащитный слой. Алюминиевая фольга обеспечивает пароизоляцию.
- Стекловата. Обеспечивает хорошую теплоизоляцию в доме. Это экологически чистый материал, которым утепляют как снаружи, так и изнутри дома . В первой ситуации утеплитель кладут между пенопластом и керамзитобетоном, а во второй – между стеной и гипсовой конструкцией. Штукатурка поверх утеплительных материалов усилит их свойства.
- Пенопласт. Бюджетный вариант, но он подвержен горючести и может испортиться из-за грызунов. Сверху пенопласта желательно класть армированную сетку, чтоб у птиц и мелких грызунов не было доступа к нему.
- Пеноплекс. Этот материал похож на пенопласт, но он не интересен грызунам, более прочен и хорошо отталкивает воду. Считается, что пеноплекс – лучший материал для утепления домов.
Утепление дома изнутри
Специалисты говорят, что утепление дома изнутри – не благоразумное решение. На стенах может возникнуть конденсат из-за смещения точки росы, помимо этого стены промерзают.
Поэтому для внутреннего утепления в домах применяют плотные материалы, которые обладают пароизоляцией. Защитить и утеплить стену изнутри поможет гипсовая или цементная штукатурка. Масса гипсового раствора меньше, а возможности сбережения тепла выше. Единственный минус – гипс плохо сцепляется с керамзитобетонными блоками. Чтоб устранить этот недостаток, нужно перед работой подготовить стену.
Цементная штукатурка идеально подходит для керамзитобетона, так как у них схожий состав. Такая штукатурка хорошо сцепляется со стеной и заделывает все существующие щели.
Чем и как утеплить стены из керамзитоблока
На чтение 6 мин Просмотров 1.7к. Опубликовано
Предисловие. Чаще всего при строительстве домов из керамзитоблока стены выполняют в 40 см, т.е. в два блока. Еще перед началом строительства многие себе задают вопрос – стоит ли утеплять стены из керамзитоблока? Второй вариант, когда уже дом построен и уходит много денег на отопление, то хозяева задаются вопросом – чем лучше утеплить дом из керамзитоблока? Мы разберем эти два варианта в этой статье и покажем видео урок, как утеплить стены из керамзитобетона самостоятельно.
Нужно ли утеплять стены из керамзитобетонного блока?
Чаще всего при строительстве загородного дома из керамзитоблока стены кладут в 40 см, т.е. в два блока. Еще перед началом строительства многие задают вопрос – стоит ли утеплять стены из керамзитобетонного блока? Второй вариант, когда уже дом построен и уходит много средств на отопление, то хозяева задаются уже вопросом – чем лучше утеплить дом из керамзитоблока,
Увы, но данные блоки, хоть и прочны, но это не самый теплый материал. Самое главное, что без утеплителя отапливать дом будет гораздо дороже. В этом случае утеплитель должен быть как минимум 10 см, например, самый недорогой вариант пенопласт с наружной стороны дома, но должно быть все герметично – швы между листами утплителя следует тщательно пенить монтажной пеной.
Чем и как утеплить дом из керамзитобетонных блоков снаружи
Сравнение теплопроводности стеновых материаловСовременный строительный материал в виде блоков из керамзитобетона отличается надежностью и долговечностью.
К дополнительным преимуществам относятся морозоустойчивость и водонепроницаемость. Именно за счет этих характеристик он и пользуется большим спросом у застройщиков.
Рассмотрим несколько вариантов утепления стен.
При любом варианте следует помнить, что утеплитель необходимо закрывать с внешней стороны пароизоляционной пленкой. Особенно это правило касается утеплителей, способных впитывать влагу из окружающей среды, при этом их теплопроводные характеристики увеличиваются, что нам совсем не на руку.
Характеристики керамзитобетонного блока
1. стены дома в 40 сантиметров без внешней кирпичной кладки
Утеплить дом снаружи можно облицовочной кладкой, укладывая между керамзитоблоком и кирпичом утеплитель. Это более затратный вариант утепления. Несмотря на эффективность, этот способ применяется не так часто. Проблема в дороговизне облицовочного материала и сложность строительных работ, а именно облицовочной кладки из кирпича. Не каждый сможет качественно ее выполнить, а работа каменщиков достаточно дорогая, поэтому рассмотрим следующий вариант, который можно сделать самому.
Дом из керамзитоблока утепление снаружиВторой способ подразумевает облицовку стен из керамзитоблока снаружи ПВХ панелями или сайдингом, под который кладется утеплитель. Как вариант, можно укладывать листы пенопласта в 5 сантиметров в два ряда, чтобы второй ряд перекрывал швы первого ряда (в шахматном порядке). Сайдинг крепится на предварительно установленные вертикальные направляющие на стенах. Также можно использовать и базальтовые, рулонные утеплители, защитив их пароизоляцией от влаги.
И еще один вариант утепления стен из керамзитоблоков снаружи своими руками – это облицовка дома плитным утеплителем (пенополистиролом или пеноплексом) с последующим нанесением декоративной штукатурки поверх утеплителя. Утеплитель на стены крепится на клеевой состав, и дополнительно крепиться на грибки. Поверх наклеивается сетка и шпатлюется декоративной штукатуркой. Этот вариант утепления можно сделать самому.
2. стены дома в 40 сантиметров с облицовочной кладкой
Такая проблема моет возникнуть, когда вы купили недостроенный дом из керамзитоблоков, где между стеной и облицовочной кладкой нет утеплителя, а только воздушная прослойка в 5 см. также, возможно вы сами построили такой дом, но заметили, что на отопление дома уходит больше средств, чем вы рассчитывали, или больше, чем у соседей. В таком случае потребуется подумать, чем утеплить фасад дома из керамзитобетонных блоков изнутри своими руками, а точнее между стеной и облицовочной кладкой..
Утепление дома с облицовочной кладкойЕсли вы купили недостроенный дом, где не положен утеплитель между керамзитоблоком и облицовочным кирпичом, то можно утеплить стену изнутри при помощи пенополиуретана, который заливается между стен в просверленные отверстия. Этот утеплитель, после заливки расширяется, наподобие монтажной пены, не образуя зазоров и трещин.
Кроме того, пенополиуретан не боится влаги и грызунов, а значит вашему дому не страшны шуршащие грызуны между стенами, утеплитель обеспечит сохранность тепла и защитит стены дома от сырости, влаги и плесени. Единственным минусом подобного утепления является его дороговизна, и что своими силами утеплить так стены не получится – необходимо специальное оборудование.
Все намного проще, если вы сами строите дом, тогда при возведении стен вам необходимо класть утеплитель между стенами. Но чем лучше утеплить дом в данном случае? – спросите вы. Чаще всего для этих целей используют минеральную вату, пенополистирол или пеноплекс. Рассмотрим подробнее эти виды утеплителей для теплоизоляции стен из керамзитоблока своими руками.
Утеплители для керамзитобетонного фасада дома
Утепление дома из керамзитоблока минеральной ватой
По мнению профессионалов, из всех вариантов утепление дома из керамзитоблоков лучше отдать предпочтение минеральной вате. Главное преимущество этого утеплителя – безопасность для здоровья за счет экологически чистых компонентов. Кроме того, материал не горит, отлично держит тепло. При утеплении минватой стен из керамзитоблок, утеплитель необходимо закрыть пароизоляцией, защитив его от намокания и влаги.
Утепление фасада дома из керамзитоблока пенопластом
При утеплении стен пенопластом следует помнить, что в нем могут завестись грызуны, кроме того, пенопласт впитывает влагу и пожаро опасен. Вентилируемый фасад должен в обязательном порядке закрываться решеткой, чтобы исключить вероятность попадания в утеплитель мелких животных и птиц. Дополнительное их преимущество пенополистирола – это невысокая себестоимость материала, простота в установке, легкий вес.
Утепление фасада дома из керамзитоблоков пеноплексом
Пеноплекс более современный материал, он более плотный и прочный, чем пенополистирол. Кроме того, пеноплекс не боится влаги, экологически безопасен и в нем не живут грызуны. Плиты имеют замки, которые сводят к минимуму образование щелей, он легок и легко монтируется. На наш взгляд, это лучший вариант для утепления стен дома, построенного из керамзитоблока.
Чем и как утеплить дома из керамзитобетонных блоков изнутри
Использовать утеплитель для внутренних стен дома – не лучшее решение. Поскольку в данном случае точка росы (место соединения холодного и теплого воздуха с образованием конденсата) будет находиться между утеплителем и стеной. Таким образом, стена из керамзитоблока будет полностью промерзать, чего не случится, если самостоятельно утеплять стену снаружи.
Сегодня строители советуют утеплять стены материалами в следующей последовательности – чем выше у материала теплоизоляционные свойства, тем он должен быть ближе к улице, т.е. более холодный материал должен находиться ближе к отапливаемому помещению. Для утепления стен из керамзитоблоков своими руками следует обойтись штукатуркой. Раствор для стен может быть гипсовым или цементным.
Гипсовая штукатурка легче и теплее. Прежде чем ее наносить на стены, поверхность обрабатывают бетонконтактом, увеличивающим адгезию. Цементно-песчаная штукатурка имеет такой же состав что и материал стены. Именно поэтому обеспечивается высокая адгезия. И цементная штукатурка, и гипсовый раствор обеспечивают стенам дома в равной степени эффективную теплоизоляцию изнутри. Они закрывают микропоры блоков, заделывают трещины и щели.
Выбираем утеплитель для керамзитоблока. Видео урок
Как утеплить дом из керамзитобетонных блоков снаружи: делаем по уму
Строение из керамзитоблока
Керамзитоблоки, появившись сравнительно недавно на строительном рынке, заняли свою нишу. Однако мегапопулярными они не стали.
В этой статье мы постараемся обратить внимание на их положительные и отрицательные качества, использование при строительстве жилья и, что особенно важно, на то, чем и как утеплить дом из керамзитобетонных блоков снаружи для комфортного проживания.
Содержание статьи
Описание материала
Производятся блоки по технологии вибропрессования, и имеют следующие характеристики:
Наименование | Параметры |
Прочность | 25-150 кг/см2 |
Плотность | 900-1400 кг/м3 |
Теплопроводность | 0,15-0,45 Вт/мГрад |
Морозостойкость | 50-200 циклов заморозки и разморозки |
Усадка | 0 (% мм/м) |
Водопоглощение | 50% |
Так выглядят изделия
Блоки, в зависимости от прочности и плотности, бывают: теплоизоляционными, перегородочными, стеновыми и облицовочными.
На основании расчетов, рекомендованная толщина стен здания — 40-60 см. Это данные для проектирования строительства в центральном регионе Российской федерации, в том числе, для Московской и Ленинградской областей.
Строительный материал обладает многочисленными плюсами. Блоки:
Керамзитобетонные блоки:
- негорючи;
- долговечны;
- не подвержены климатическим колебаниям;
- имеют достаточно низкий коэффициент теплопроводности;
- экологичны;
- не гниют;
- не подвержены нашествиям грызунов;
- обладают высокой коррозионной стойкостью;
- удобны в работе, просты в обработке;
- являются хорошим звукоизолятором.
По сравнению с основными конкурентами, постройки из данных изделий являются более бюджетными, так как их цена ниже, чем у пено-и газобетонных аналогов. Весит стена в три раза меньше, чем кирпичная. Как результат, не понадобится мощного фундамента.
Производство этих блоков — дело несложное. Стандартный состав — керамзит, цемент, песок и вода. Смесь тщательно перемешивается, и с помощью вибростанка утрамбовывается в формы.
При выборе производителя, следует обратить особое внимание на технологию, применяемую для производства блоков. Так как, помимо основных компонентов (которые также должны быть определенных фракций и типов, как то: цемент марки не ниже М400, керамзит не крупнее 100 мм, мелкий песок), в смесь необходимо добавить компоненты, повышающие морозостойкость, пластичность, связывающую способность (смолы, лигносульфонат).
Просушка блоков длится не меньше месяца.
Производство изделий
В принципе, можно блоки изготовить и в домашних условиях, многие при этом добавляют стиральный порошок. Но качество этих изделий останется на совести производителей, так как только добротное оборудование может на выходе дать хорошее изделие, не имеющее лишних пустот.
Важно! Изделия выпускаются разной плотности. Обязательно следует учитывать это при покупке, особенно для несущих стен.
При строительстве следует принять во внимание, что керамзитоблок довольно хрупкий и работы по установке дюбелей проводить с повышенной аккуратностью. Блоков не дают усадки. Однако, не следует возводить дома свыше двух этажей.
Утепление строения
Часто возникает вопрос: нужно ли утеплять здание из керамзитоблока? Из-за своей пористой структуры, изделие обладает сравнительно низкой морозостойкостью. Поэтому, дома из таких блоков нуждаются в дополнительной теплоизоляции.
- К тому же, помимо создания в доме комфортного микроклимата, с помощью утепления создается дополнительная защита от воздействия внешней среды, в результате чего значительно возрастает долговечность постройки.
- В этой статье мы рассмотрим, как грамотно утеплить здание снаружи.
- Для утепления можно также использовать три вида теплоизоляции: минеральную вату, пенопласт и экструдированный пенополистирол (пеноплекс).
- Два последних материала специалисты не рекомендуют применять, исходя из следующих соображений. Пенопласт обладает плохой паронепроницаемостью. Пары, проникая сквозь поверхность, превращаются в конденсат и оказывают разрушительное действие. К тому же, он подвержен воздействиям грызунов.
- Пеноплекс из-за своей плотности не дает конструкции дышать и довольно дорог, однако не требует дополнительной гидроизоляции.
- Минеральная вата (как рулонная, так и маты) является лучшим вариантом для утепления. Она обладает многочисленными достоинствами: негорюча, не гниет, характеризуется хорошей звуко- и теплоизоляцией, не страдает от грызунов.
Утепление постройки правильнее производить снаружи, так как в этом случае точка росы будет находиться на поверхности здания и срок службы его увеличится.
ГОСТ 52953-2008 подразделяет минеральную вату на три вида:
- Шлаковая.
- Стекловата.
- Каменная (базальтовая).
Характеристики минеральной ваты:
Наименование | Шлаковая | Стекловата | Базальтовая |
Теплопроводность, Вт (м2*К) | 0,46-0,48 | 0,039-0,047 | 0,035-0,041 |
Рабочая температура, ᵒС | -60…+250 | -60…+450 | -180…+700 |
Гигроскопичность, | Высокая | Низкая | Отсутствует |
Теплоемкость, Дж/кг*К | 1000 | 1050 | 1050 |
Влагопоглощение, % от массы за 24 часа | <1.9 | <1.5 | <0.095 |
Структура волокон | Ломкие, колкие | Ломкие, колкие | Гладкие, не колкие |
Для утепления здания специалисты чаще всего советуют использовать каменную вату. Однако решить, чем утеплить дом снаружи, может только владелец постройки, ориентируясь на свои вкусовые предпочтения и финансовые возможности.
Виды утеплителя
Толщина используемого утеплителя определяется теплотехническим расчетом, где учитывается регион, толщина стен и их теплосопротивление. Рассмотрим подробно этапы монтажа минеральной ваты.
Наружную теплоизоляцию этим материалом можно выполнить двумя способами:
- Устройство «мокрого» фасада.
- Устройство вентилируемого фасада.
Оба метода сочетают проведение теплоизоляционных и отделочных работ. Краткая пошаговая инструкция: как утеплить дом из керамзитоблока с внешней стороны:
Принцип мокрого фасада, этапы проведения работ
В качестве утеплителя рекомендуется использовать минераловатные плиты ППЖ 160- ППЖ200:
- Установить леса. Обработать поверхность. Поверхность зачистить шкуркой, удалить пыль. Нанести слой грунтовки для обеспечения сцепления с утеплителем.
- Нанести на теплоизолирующее изделие и на поверхность стены разведенный в соответствии с инструкцией клей.
- Установку теплоизоляции советуют начинать снизу и закреплять по кругу. Следующий ряд утеплителя крепить в шахматном порядке.
- Через день, после того, как клей подсохнет, дополнительно зафиксировать вату дюбелями (для фиксации утеплителя обычно используют дюбель-анкеры с пластиковыми сердечниками).
- Провести армирование с помощью приклеивания стеклосетки. Ее необходимо крепить вертикально. Нанести клей и вдавить в него сетку. Тяжелые системы армируются с помощью сетки из оцинкованной проволоки.
- Нанести еще один слой клея, дождаться высыхания. Провести грунтование. После этого заштукатурить поверхность. Для повышения изоляционных свойств применяется штукатурка с добавлением перлита или пеностекла.
- Последний этап — покраска.
Как устроен мокрый фасад, наглядно видно на фото:
Устройство мокрого фасада
Данный метод является наиболее экономичным, и не приводит к значительному увеличению нагрузки.
Принцип вентилируемого фасада, этапы проведения работ
Итак:
- Установить леса.
- Зачистить поверхность, загрунтовать.
- Установить деревянную обрешетку. Ее шаг определяется размерами плит утеплителя. Крепление осуществляется с помощью винтовых анкеров. Также в качестве каркаса можно использовать металлические профили.
- С помощью клея закрепить между рейками утеплитель. Провести дополнительную фиксацию с помощью дюбелей. Также разрешается крепеж теплоизоляции непосредственно к каркасу.
Монтаж теплоизоляции
- Поверх теплоизоляционного изделия прикрепить к рейкам паропроницаемую мембрану для ветрозащиты и гидроизоляции.
- Утепление керамзитоблочного дома закончено, осталось прикрепить профили и провести монтаж облицовки (сайдинга, панелей и т.д.).
Теплоизоляция в этом случае производится минватой ПЖ80-ПЖ140.
Важно! Следует в обязательном порядке оставить небольшую воздушную прослойку между теплоизоляцией и облицовочным материалом.
Схема вентилируемого фасада
Существуют еще несколько вариантов утепления и отделки здания. Например, установить теплоизоляцию, и обложить дом кирпичом. Этот метод является достаточно дорогостоящим и трудозатратным.
Отделка с помощью облицовочного кирпича, с применением монолитного пенобетона
Стены при отделке кирпичом с применением пенопласта в качестве теплоизолирующего слоя
Уже отделанный кирпичом дом (в котором отсутствует теплоизоляция) можно утеплить с помощью пенополиуретановой смеси, подав ее через специально проделанные отверстия. Смесь заполнит внутреннее пространство и застынет. Однако такой метод не является бюджетным.
Если еще на стадии строительства здания известно, что монтаж теплоизоляции снаружи нежелателен, можно провести разделение несущего и утепляющего слоев стены с помощью пенополистирола. В этом случае, каждый ряд кладки обязательно следует армировать для связи разделенных слоев.
1 — утепляющая стена из керамзитовых блоков; 2 — несущая; 3 — кладочная сетка; 4 — пенополистирол
Керамзитоблоки так же могут использоваться как утепляющий материал
Для наглядности рекомендуется посмотреть видео в этой статье. Определить, какой вид теплоизоляции использовать, может только владелец постройки, ориентируясь на свои вкусовые предпочтения и финансовые возможности.
Приняв решение, как и чем утеплить постройку из керамзитобетонных блоков, остается закупить
материал. А все работы вполне реально выполнить своими руками, имея некоторые знания и необходимый инструмент. Качественно установленная теплоизоляция поможет оптимизировать расходы на отопление, обеспечит строению долговечность.
Утепление керамзибетонных стен: выбор материала и монтаж
Строительство дома из керамзитобетонных блоков
При строительстве дома, рано или поздно встает вопрос об утеплении стен. И мы начинаем задумываться о том, как правильно утеплить помещение, какой материал выбрать, с какой стороны стены лучше производить монтаж утеплителя. Всем хочется, чтобы дома было тепло и уютно зимой, и прохладно и комфортно летом.
В данной статье мы поговорим о том, как утеплить стены из керамзитобетонных блоков, рассмотрим основные материалы и методы утепления помещений, их плюсы и минусы.
Содержание статьи
Чем утеплять
Перед проведением работ по утеплению стен у многих возникает вопрос: чем утеплять керамзитобетонные блоки? Итак, давайте разбираться.
Совет! Перед тем, как приступить к утеплению стен из керамзитобетонных блоков, можно оштукатурить их с обеих сторон. Это способствует их дополнительной теплоизоляции и защите.
Вариант утепления керамзитобетонного дома
Минеральная вата
Утепление керамзитобетонных стен минватой является наиболее предпочтительной. Минеральную вату используют в качестве теплоизоляционного материала не только стен, но и полов, потолков, чердачных перекрытий, крыш и т.д.
Утепление стен минеральной ватой
Пример утепления дома из керамзитобетона минеральной ватой
Единственным недостатком минеральной ваты является боязнь воды. При намокании она теряет свои полезные свойства — а значит, при выборе ее в качестве утеплителя, ей требуется дополнительная внешняя защита.
Пенопласт
Пенопласт применяется в качестве утеплителя при строительстве жилых и нежилых зданий и сооружений. Он используется и для теплоизоляции наружных стен со стороны фасада, и для утепления помещения изнутри.
Пенопласт 100х100х5 см
Пенопласт представляет собой вспененные массы, между которыми расположен воздух. Благодаря этому, он отличается отличными тепло- и звукоизоляционными качествами, и, к тому же, имеет малый вес.
Он обладает как положительными, так и отрицательными качествами, которые необходимо учитывать при выборе пенопласта в качестве утеплителя.
Утепление пенопластом с отделкой кирпичом
При выборе пенопласта в качестве утеплителя керамзитобетонных блоков лучше проконсультироваться со специалистами о том какую его разновидность лучше выбрать, какой толщины, как правильно произвести монтаж.
Пеноплекс
В сравнении с пенопластом, пеноплэкс является более прочным и плотным материалом. Кроме того, он устойчив к воздействию влаги и является безопасным для здоровья. К тому же, он достаточно легок в монтаже, и может быть установлен своими руками.
Стена из керамзитобетонных блоков, утеплитель, облицовочный кирпич
Преимущества и недостатки утеплителей
Утеплитель | Минеральная вата | Пенопласт | Пеноплекс |
Преимущества |
|
|
|
Недостатки | Боязнь воды |
|
|
Методы утепления
По большому счету, существует только два, резко отличающихся друг от друга способа утепления помещений: наружная теплоизоляция и внутренняя.
Утепление фасада снаружи
Внешнее утепление стен является наиболее выгодным и надежным. В первую очередь, это связано с сохранением внутреннего пространства помещения. Во-вторых, внешнее утепление фасада дает зданию дополнительную защиту от внешних негативных природных факторов и механических повреждений.
- Материал для данного типа утепления должен быть прочным, иметь низкое водопоглощение и высокое теплосопротивление. Внешнее утепление наружных стен, идеально подходит для теплоизоляции частных домов и малоэтажек.
- Используя лицевой кирпич для внешней отделки дома из керамзитобетона, есть возможность утеплить здание в процессе возведения стен. То есть, по окончании строительства заниматься отделкой не придётся.
- Утеплитель закладывается под облицовочную кладку, между стеной и кирпичом. Однако, данный вид отделки является достаточно дорогим и сложным, к тому же требует привлечения дополнительных специалистов, а это не каждому по карману.
Утепление фасада при помощи облицовочной кладки
Поэтому, давайте рассмотрим более дешевые способы теплоизоляции и отделки стен из керамзитобетона. Наиболее оптимальным вариантом утепления, будет укладка плит из пенопласта толщиной 50 мм в 2 слоя с последующим креплением сайдинга.
Обратите внимание! Утеплитель должен укладываться таким образом, чтобы второй слой теплоизоляции перекрывал швы первого слоя!
Также можно выбрать в качестве наружной облицовки керамзитобетонных блоков декоративную штукатурку. В качестве утеплителя в данной ситуации выступает плитный утеплитель.
Он крепится к стене при помощи специального клея и дополнительно фиксируется дюбелями. Затем, поверх теплоизоляционного слоя наклеивается малярная сетка, и наносится штукатурка.
Утепление и оштукатуривание керамзитобетонной стены
Утепление с облицовочной кладкой
В случае, когда дом из керамзитобетона уже обшит, и вы вдруг, по причине значительных затрат на отопление в зимний период, решили утеплить стены — что же делать? В данной ситуации вам подойдет утепление стен из керамзитобетонных блоков изнутри при помощи пенополиуретана. Он закачивается в специально просверленные отверстия в стене и, расширяясь, создает сплошной слой.
Можно так же использовать для кладки стен теплоблоки. Они состоят из трёх слоёв: несущего, утепляющего из пенополистирола, и лицевого. Лицевой слой может быть предназначен под последующую отделку, либо быть офактуренным декоративным бетоном.
Утепление стен изнутри
Внутреннее утепление стен из керамзитобетона имеет ряд недостатков, таких как:
- Потеря площади помещения из-за монтажа теплоизоляционной конструкции.
- Сокращение срока службы стен здания по причине их промерзания в зимнее время года, и как следствие быстрейшее их разрушение.
- Возможность образования конденсата, а значит появление грибка и плесени.
- Часто возникают проблемы с регулированием влажности воздуха.
Но всем хочется жить в тепле и уюте. И, если наружное утепление стен не возможно, то приходиться устраивать внутреннюю теплоизоляцию и закрывать глаза на некоторые ее недостатки.
Утепление стен изнутри
Однако, керамзитобетонные блоки с утеплением внутри помещения, имеют и свои положительные стороны, а именно:
- Работы можно производить в любое время года, и не важно, дождь на улице, палящее солнце или снег.
- Работы можно произвести самостоятельно, так как нет необходимости в лестницах, строительных лесах или альпинистском снаряжении.
Утепление подвального помещения
Утепление стен изнутри, по мнению многих специалистов, является неправильным и не оправданным, единственным исключением является теплоизоляция подвального помещения. А вот утепление полов (при расположении квартиры на первом этаже) и потолков (если вы живете на последнем этаже) внутри помещения вполне приемлемо.
Виды утеплителя
В качестве материала для теплоизоляции стен, как наружного, так и внутреннего, применяются различные утеплители: пенополистирол, минеральная или каменная вата, пробковые панели и т.д. Однако наибольшей популярностью для утепления стен из керамзитобетона пользуются пенопласт и минеральная вата.
Выполнение работ
Перед тем как приступить к утеплению своего помещения, перед вами встает вопрос: делать это самому или же обратиться в специализированную фирму.
Отделка дома из керамзитобетона пенопластом, и последующее оштукатуривание
И, если вы решили утеплять керамзитобетонные стены самостоятельно, то обязательно посмотрите видео в этой статье, где весь процесс утепления керамзитобетона расписан пошагово. Так же нелишним будет детальное изучение фото, размещенных в данной статье.
Дом из керамзитобетонных блоков с утеплением и отделкой
Однако, задумайтесь и о том, что обратившись в строительно-монтажную организацию, вы сэкономите как время, так и свои нервы. К тому же, грамотные специалисты объяснят вам, почему для строительства стоит выбрать именно керамзитобетонные блоки, чем утеплять их в случае выбора, помогут вам выбрать утеплитель, рассчитать его толщину и необходимое количество, а так же выбрать способ монтажа.
Как утеплить дом из керамзитобетонных блоков ⋆ Прорабофф.рф
Технология возведения стен из керамзитобетона обычно предполагает укладку в два блока. В итоге толщина стен не превышает 40 см. Этого совершенно недостаточно, чтобы обеспечить качественную теплоизоляцию. Поэтому владельцам приходится много средств тратить на отопление жилища или терпеть в нем не самые оптимальные условия зимой.
Зачем проводить теплоизоляцию дома из керамзитобетона
Нельзя отрицать, что керамзитобетонные блоки обладают многими преимуществами. Одним из наиболее серьезных является прочность. Керамзитобетон позволяет возвести надежные и долговечные постройки, при этом не затрачивая слишком много средств. Но в отношении теплоизоляционных характеристик этот материал проявляет себя не лучшим образом.
Есть уложить дополнительную теплоизоляцию, можно заметно сэкономить на отоплении и сократить толщину стен. Желательно, чтобы для утепления использовались материалы толщиной не меньше 10 см. Наиболее простой метод – закрепить со стороны фасада обыкновенный пенопласт. Но важно проверить, чтобы между листовыми материалами не оставались швы.
Как проводится утепление дома из керамзитобетона
Наряду с таким преимуществом, как прочность, керамзитобетонные блоки также показывают морозоустойчивость и способность отталкивать воду. За счет этого можно использовать разные варианты создания теплоизоляционного слоя. Но чтобы утепление и все-таки получилось качественным и долговечным, при любом способе его создания теплоизоляционный материал необходимо с внешней стороны защищать пароизоляцией. Особенно важно, чтобы пароизоляционными материалами покрывались утеплители, способные интенсивно впитывать влагу. При наличии достойной пароизоляции опасность уменьшения их теплоизоляционных характеристик отпадет.
Какие ситуации возможны
Есть два варианта устройства керамзитобетонной кладки, которые серьезно влияют на теплоизоляционные мероприятия. Стоит их рассмотреть, чтобы можно было выбрать наиболее удачный метод утепления дома из керамзитобетонных блоков.
1. Внешняя облицовка фасада отсутствует
Речь идет о ситуации, когда имеют дело всего лишь со стеной из керамзитобетонных блоков толщиной 40 см. С внешней стороны нет никаких облицовочных материалов. В таком случае можно повысить теплоизоляционные возможности стен, если уложить облицовку из кирпича. Тогда между керамзитобетонными стенами и кирпичной кладкой получится поместить утеплитель.
Хотя эффективность подобного подхода утепления весьма велика, все-таки к нему прибегают нечасто. В первую очередь это объясняется высокой стоимостью облицовочных материалов. Кирпичную кладку возвести самостоятельно не получится, а это принуждает владельцев к совершению дополнительных затрат. Поэтому чаще обращаются к другому способу теплоизоляции керамзитобетонных стен, лишенных внешней облицовки.
В качестве хорошего варианта можно назвать укладку утеплителя с последующим монтажом облицовочных панелей. В роли последних могут выступать вагонка, пластиковый или металлический сайдинг и так далее. В роли утеплителя вполне подойдет пенопласт. Но укладывать его нужно в два слоя, если толщина каждого составляет 5 см. Располагают пенопласт так, чтобы швы у второго слоя не совпадали со швами первого слоя.
Когда теплоизоляция будет уложена, устанавливается сайдинг. Под него должны быть уложены вертикальные направляющие профили, формирующие каркас. помимо пенопласта, в качестве теплоизоляционного материала могут быть использованы минеральная вата и другие базальтовые утеплители. Но подобный теплоизоляционный слой нужно защищать пароизоляцией.
И есть еще один метод утепления, который можно реализовать в данном случае. Он состоит в том, что приклеенный плитный утеплитель покрывается декоративной штукатуркой. Под плитным утеплителем понимают пенопласт, пенополистирол или пеноплекс. Их несложно приклеить к поверхности, затем закрепив дюбелями в виде грибков.
2. Фасад дополнительно обложен облицовочным кирпичом
Чаще всего с такой ситуацией сталкиваются покупатели недостроенных домов. В этом случае стены из керамзитобетона дополнительно обложены кирпичом. Но в прослойке между материалами нет никакого утеплителя. Тогда можно попробовать выполнить обработку стен пенополиуретаном. Процедура начинается с выполнения отверстий в стене. Через них подается полиуретановая смесь, которая затем расширяется и заполняет все щели.
Использование пенополиуретана связано с большим числом преимуществ. Такой материал не боится грызунов, справляется с воздействием влаги, не может быть поражен плесенью. Сложность только в том, что материал подобного рода стоит дорого. Его закладка должна поручаться профессионалам, у которых есть специальное оборудование. Это также вынуждает совершать дополнительные траты.
Чем проводить утепление дома из керамзитобетона
Если владелец выбрал метод выполнения теплоизоляции, ему потребуется подобрать подходящий утеплитель. Керамзитобетонный дом может быть защищен от холода самыми разными теплоизоляционными материалами. Наиболее удачными считаются такие.
1. Минеральная вата
Самый серьезный плюс минеральной ваты – экологическая чистота. При утеплении дома из керамзитобетона с внешней стороны такой материал особенно хорошо подойдет. Он способен противодействовать распространению огня, препятствует теплопотерям. Самое главное, чтобы в процессе теплоизоляционных работ минеральная вата покрывалась еще и пароизоляцией.
2. Пенопласт при утеплении фасада
Основным преимуществом пенопласта в качестве теплоизоляционного материала можно назвать его дешевизну. Но зато этот утеплитель может гореть и зачастую портится насекомыми. В случае использования пенопласта обязательно нужно закрывать теплоизоляционный слой армированной сеткой. Тогда до утеплителя не доберутся птицы, мелкие животные и прочие вредители.
3. Пеноплекс как материал для утепления
В некоторой степени пеноплекс схож с пенопластом. Но он отличается большей прочностью, хорошо справляется с влагой, не интересен для насекомых, монтировать пеноплекс очень легко. Между соседними плитами такого материала не остаются значительные щели. Специалисты считают, что именно пеноплекс лучше всего использовать для утепления фасада дома из керамзитобетона.
Внутреннее утепление постройки из керамзитоблоков
Специалисты-строители сходятся во мнении, что утеплять керамзитобетонный дом изнутри – не очень правильное решение. Основной причиной думать именно так следует назвать возникновение опасности появления конденсата на стенах постройки. Происходит это из-за смещения точки росы. Также очевидная проблема состоит в том, что керамзитобетонные стены станут промерзать.
Из этого следует, что для внутреннего утепления лучше использовать какой-либо плотный материал, обладающий большой пароизоляция. Чтобы изнутри обеспечить утепление и защиту стен из керамзитобетона, профессионалы советуют воспользоваться обыкновенной штукатуркой. Подойдет как гипсовый, так и цементный раствор. Но разницы между этими материалами все-таки есть.
1. Гипсовая штукатурка. Ее масса меньше, а теплоизоляционные возможности выше. Но очевидным недостатком следует считать низкую адгезию гипсовой штукатурки и керамзитобетона. Поэтому владельцу придется сначала тщательно подготовить поверхность.
2. Цементно-песчаная штукатурка. Хорошо подходит для утепления стен из керамзитоблоков, поскольку обладает точно таким же составом, что и этот материал. Кроме того, цементно-песчаная штукатурка настолько хорошо ложится, что она заделывает все присутствующие в стенах щели.
Используя наиболее удачную технологию утепления дома из керамзитобетонных блоков, владелец обязательно получит отличный результат. Ему только стоит помнить, что качественное утепление предполагает внимательный подход. Выбрав неподходящий материал или неправильным образом его уложив, хозяин рискует ухудшить общее состояние дома и уменьшить его эксплуатационный период.
Выбор утеплителя для керамзитоблока видео
Утепление стен из керамзитобетонных блоков своими руками
Использование керамзитоблоков в строительстве получает все большую популярность, благодаря тому, что такой материал отличается очень хорошими качествами.
Блоки из керамзитобетона – современный и надежный материал, поэтому дома из него строятся все чаще.
Дом нуждается в дополнительном утеплении, даже если кладка блоков произведена в два ряда.
Тем не менее, не смотря на все положительные характеристики керамзитоблоков, при строительстве дома не стоит забывать об утеплении. Дом нуждается в дополнительном утеплении, даже если была произведена кладка блоков в 2 ряда. Особенно это актуально для тех регионов России, где погода по большей части стоит холодная.
Для того чтобы утеплить стены своими руками, понадобятся такие инструменты:
- угольник;
- строительный уровень;
- слесарный молоток;
- рулетка;
- ручная пила;
- валик;
- мастерок.
Особенности утепления стен снаружи
Утепление стен дома является актуальной задачей: если этой процедурой пренебречь, в доме в появятся трещины, и даже высокое качество керамзитоблоков этому не помешает.
Утеплять дом не надо, если толщина его стен больше 70 см.
Это обстоятельство повлияет на низкую сопротивляемость проникновению воздуха в дом, функции теплоизоляции тоже не будут действовать на необходимом уровне. Качество постройки может быть самым высоким, но если утепление стен не будет осуществлено должным образом, то в доме всегда будет холодно. Основная проблема при утеплении стен, возведенных из керамзитобетонных блоков, заключается в возможности частичного обрушения. В этом плане очень многое зависит от технологии и типа утепления. Первым делом необходимо проверить, насколько устойчивы стены, нужно произвести расчеты предполагаемого фасада, необходимой нагрузки. Специалисты рекомендуют продумать предварительно толщину слоя утеплителя.
Чересчур налегать на утепление стен из керамзитобетонных блоков не рекомендуется по той причине, что теплопроводность такого материала в 3 раза меньше, чем у стен из кирпича. В том случае, если толщина стен больше 70 см, то смысла установки систем утепления нет.
Надо отметить, что проблема сохранения тепла в доме является очень актуальной не только для тех домов, которые построены из керамзитобетонных блоков, она присуща зданию, построенному из самых разных строительных материалов. Утепление стен дома из керамзитобетонных блоков может быть осуществлено несколькими способами.
Паронепроницаемая изоляция из фольги делается только с внешней стороны строения.
Одним из методов утепления стен дома из керамзитобетонных блоков является облицовка кирпичом. Такой способ утепления стен очень популярен и отличается большой эффективностью, но есть и один недостаток – достаточно высокая цена.
Утепление стен дома может быть осуществлено посредством использования слоев минеральной ваты, между слоями при этом должна быть проложена гидро- и ветроизоляция. Утепление стен таким методом отлично подходит для тех российских регионов, где климат особенно холодный. Такой способ утепления создает внутри здания комфортную и уютную обстановку. Для того чтобы было еще теплее, можно поставить дополнительную паронепроницаемую изоляцию, которая делается из фольги.
Вернуться к оглавлению
Утепление минеральной ватой снаружи
Технология утепления стен дома минеральной ватой следующая:
- Сначала необходимо подготовить фасад должным образом. Для этого подготавливается основание несущей стены из керамзитобетонных блоков, очень важно удалить масло и пыль с поверхности.
- Теперь нужно закрепить утеплитель, а после этого следует приступать к приклеиванию минеральной ваты. На маты нужно нанести специальный клей, и прикрепить их к фасаду. Для того чтобы они надежно держались, необходимо их прикрепить дюбелями.
- Следующий этап – армирование минеральной ваты. Такой процесс необходимо осуществить для того, чтобы была укреплена конструкция и был защищен материал. Кроме того, это поможет уменьшить линейное расширение фасада. Сначала наносится первый слой клея для армирования ваты на маты утеплителя. Затем в клей нужно утопить армирующую сетку.
Вернуться к оглавлению
Утепление пенопластом
Используйте только специальный клей.
Вместо минеральной ваты в качестве утеплителя стен дома из керамзитобетонных блоков можно использовать такой материал, как пенопласт. Этот вариант является менее экологичным, однако он обходится довольно недорого.
Утепление стен в доме из керамзитоблоков осуществляется по следующей технологии:
- Стена должна быть тщательно очищена от тех веществ, которые способствуют ухудшению адгезии, к ним следует отнести пыль или масляную жидкость. После того как такая процедура завершена, нужно определить качество поверхности и ее отклонения. Следующий этап – грунтовка. Нужно учитывать, что, если поверхность пористая, ее нужно грунтовать 2-мя слоями.
- Следующий этап – закрепление плит. На заранее подготовленное основание нужно наклеить пенопласт. Для того чтобы это сделать, необходимо использовать специальный клей, его нужно нанести на плиту. Такие приклеенные плиты нужно закрепить специальными дюбелями, между плитами утеплителя остаются щели, их заполняют монтажной пеной.
- Завершающий этап такого процесса – армирование. На пенопласт следует нанести клей для армирования. Это делается 2-мя способами. Есть двухслойное нанесение: когда нанесен первый слой клея на него нужно вдавить армирующую сетку, а после этого сделать второй слой. Клей наносится зубчатым шпателем, распределяется смесь шпателем с зазубринами. После такого нанесения сетку будет легче утопить в клей.
- Если в качестве утеплителя используется пенопласт, то следует выбирать такой тип, который обладает паронепроцаемостью. Еще нужно учитывать то обстоятельство, что в пенопласте нередко селятся мыши. Для того чтобы этого избежать, пенопласт можно забетонировать. Если стены утеплили минеральной ватой, то мыши там никогда не сделают нор, никакая другая живность тоже не будет серьезным поводом для беспокойства. Тем не менее очень важно при использовании и того, и другого материала сделать так, чтобы внутрь вентилируемого фасада не смогли забраться птицы, в противном случае весь теплоизоляционный материал будет поклеван. Если в качестве утепляющего материала по каким-то причинам нет возможности использовать пенопласт, то нужно применить пенополистирол. Это тоже вид пенопласта, но он отличается более высокими качествами и теплоизоляцией.
Утепление стен из блоков такими материалами, как пенопласт и минеральная вата, является одним из самых распространенных. Эти материалы обладают небольшим весом, просто устанавливаются, стоят недорого, а функции по утеплению стен дома выполняются отлично.
Надо отметить, что утеплять дом рекомендуется снаружи. Дело в том, что если утеплить дом изнутри, то точка образования водяных паров оказывается между слоем утеплителя и материалом стен. Это способствует образованию конденсата, что приводит к серьезному повреждению керамзитоблоков. В связи с этим утепление стен снаружи имеет преимущества, а изнутри их нужно хорошо оштукатурить, тогда возможность потери тепла через щели в кладке отсутствует.
Таким образом, ничего сложного в этом процессе нет. Если подойти к делу основательно, со всей старательностью и внимательностью, можно не сомневаться в том, что результат будет отличный.
Утепление керамзитобетонных стен: варианты утеплителей
Керамзитобетонные блоки не получили широкого распространения в строительстве, однако заняли в нем свое место. Возведение дома из таких материалов не заканчивается на укладке кровли. Для поддержания нормального микроклимата в помещениях требуется правильное утепление керамзитобетонных стен. Для этого используют разные материалы, отличающиеся эксплуатационными характеристиками.
Керамзитобетонные стены требуется правильно утеплить.
Керамзитобетонные блоки и их назначение
Материал изготавливается из цемента, воды, песка и керамзита, играющего роль наполнителя. Реже в состав включаются другие компоненты, например гравий, шунгизит. Четких пропорций при смешивании ингредиентов не соблюдают, учитывают только рекомендованные соотношения.
Их изменение по-разному влияет на свойства блоков. В зависимости от эксплуатационных характеристик (прочности, теплопроводности), изделия используются для строительства несущих конструкций или перегородок, утепления готовых стен.
Основные разновидности
Блоки в первую очередь классифицируют по несущей способности:
Наибольшая прочность свойственна конструкционным видам. Материал применяется при строительстве несущих элементов дома.
Теплоизоляционные варианты предназначены для утепления жилых строений. Блоки хорошо удерживают тепло, обладают минимальной плотностью.
Конструкционно-теплоизоляционные разновидности используются при строительстве малоэтажных зданий. Плотность материалов варьируется от 500 до 900 кг/м³.
Указанные типы различаются не только теплопроводностью или плотностью, но и массой. Блок марки D500 весит 12 кг, D900 — 17 кг.
Керамзитобетонные блоки классифицируют по несущей способности.
По назначению изделия бывают:
Перегородочными и стеновыми. Применяются при создании несущих или вспомогательных конструкций.
Вентиляционными. Блоки снабжены технологическими отверстиями для подводки коммуникационных линий.
Фундаментными. Используются при закладке оснований домов. Изделия стандартных габаритов характеризуются максимальными прочностью, плотностью.
Керамзитобетонные блоки могут иметь разную структуру.
В соответствии с этой характеристикой выделяют такие типы:
прочные, тяжелые полнотелые блоки;
пустотелые изделия, отличающиеся малыми весом и прочностью (форма, количество, размеры пустот бывают различными).
Обязательно ли утеплять керамзитобетонные стены
Специалисты советуют укладывать теплоизолятор на наружные поверхности дома всегда. Это препятствует появлению конденсата, со временем разрушающего здание из керамзитобетона. При строительстве хозяйственных построек этап утепления можно пропускать. Некоторые заменяют укладку теплоизоляции монтажом теплого пола.
Температура воздуха в помещении повышается, однако подверженность блоков воздействию негативных факторов сохраняется.
Как лучше — снаружи или внутри
Наиболее правильным считается утепление фасада. Так не уменьшается полезная площадь дома. Кроме того, внутренняя теплоизоляция способствует повышению влажности, что приводит к гниению мебели и иных деревянных элементов. Между стеной и утеплителем скапливается конденсат, постепенно разрушающий материалы. Если возможность утепления фасада отсутствует, теплоизолятор укладывают изнутри. При этом требуется организация качественной вентиляции.
Наиболее правильно утеплять дом снаружи.
Что влияет на толщину утеплителя
При выборе этого параметра учитывают свойства самого теплоизолятора. Точку росы смещают к поверхности фасада (она не должна оставаться в утеплителе). Также учитывают особенности местности, эксплуатационные характеристики блоков, толщину кладки.
Как сделать теплотехнический расчет
Вычисления выполняют 2 способами: вручную или с помощью программ-калькуляторов. Самостоятельный расчет у человека, не имеющего специального образования, вызывает затруднения. Лучше всего использовать специальную программу, например «Теремок».
Она функционирует в 2 режимах:
подсчета толщины утеплителя;
проверки теплопроводности при выбранном размере материала.
Теплотехнический расчет можно выполнить вручную.
Для работы с программой вводят такие исходные данные:
теплопроводность блоков;
эксплуатационные характеристики утеплителя;
ширину блоков.
Варианты утеплителей
Рекомендуется укладывать слои стенового пирога в нужной последовательности. Чем выше паропроницаемость материала, тем ближе он должен находиться к помещению.
Минеральной ватой
Главными преимуществами этого материала являются экологическая чистота и пожаробезопасность. Однако при использовании каменной ваты требуется укладка пароизоляционного слоя.
Минеральная вата является экологически чистой.
Пенопластом
При утеплении фасада этим материалом нужно помнить, что плиты требуют защиты от механического воздействия штукатуркой или сайдингом. Пенопласт характеризуется низкой стоимостью и простотой установки. Плиты фиксируют на поверхности клеем и дюбель-гвоздями.
Пеноплексом
Экструдированный пенополистирол — прочный и плотный утеплитель, нечувствительный к повышенной влажности. Он хорошо подходит для установки на нижние части фасада. Пенополистирол рекомендуется использовать только для наружной теплоизоляции: при нагреве он выделяет токсичные вещества — стиролы.
Пеноплекс — прочный и плотный утеплитель.
Пенополиуретаном
Материал представляет собой пластмассу, наполненную пузырьками воздуха. Он поставляется в виде пены, наносимой методом распыления, или плит. Пенополиуретан хорошо сцепляется с любыми поверхностями, однако он выделяет вредные вещества при нагреве, чувствителен к воздействию ультрафиолетовых лучей. Перед установкой нужно тщательно подготавливать стены.
Керамзитом
Утеплитель представляет собой пористые гранулы, производимые из обожженной глины. Насыпной материал применяют для теплоизоляции кровли и полов. Стены им утепляют только по колодезной технологии. В этом случае на этапе строительства создают полости, в которые засыпают гранулы.
Керамзит представляет собой пористые гранулы.
Способы утепления и пошаговая инструкция
Теплоизоляционный слой укладывают как снаружи, так и внутри дома. Реже используют колодезный способ, при котором материал засыпают между 2 слоями кладки. Специалисты рекомендуют утеплять здание с обеих сторон.
Внутреннее утепление имеет следующие недостатки:
уменьшение полезного пространства;
подверженность фасада воздействию атмосферных факторов;
образование конденсата между стеной и утеплителем.
Наружное утепление дома
По типу используемых материалов и технологии их укладки выделяют такие внешние методы теплоизоляции, как:
«мокрый» фасад;
колодезное утепление;
вентилируемый фасад.
Сначала укладывают теплоизоляционный слой.
Мокрый способ утепления
В этом случае используют минеральную вату, пеноплекс или пенопласт.
Работы выполняют так:
Выравнивают стены, заделывая впадины, выступы и межблочные швы.
При наличии выраженных дефектов наносят на поверхности слой штукатурки. В остальных случаях ограничиваются грунтованием.
Наносят на поверхность теплоизоляционных плит клей. Прикладывают материал к стене. После затвердевания раствора фиксируют плиты дюбелями.
Наносят штукатурку, устанавливают армирующую сетку.
Облицовывают стены, используя фасадные смеси. При необходимости после высыхания штукатурки поверхности окрашивают.
При мокром способе утепления на стены наносят слой штукатурки.
Сухой способ утепления
Такой вариант требует установки обрешетки, использования гидроизоляционных мембран.
Утепление выполняют так:
Закрывают межблочные швы цементно-песчаным раствором. Удаляют остатки кладочной смеси.
Укладывают пароизоляционную мембрану.
Сооружают каркас из деревянных брусьев или металлических профилей с учетом параметров теплоизоляционных плит.
Закрепляют на обрешетке гидроизоляционную мембрану. На этом этапе используют рейки толщиной 2 см. Они образуют вентиляционный зазор.
Облицовывают фасад выбранным способом.
Сухой способ утепления требует установки обрешетки.
Колодезное
Способ может применяться только на этапе строительства дома из керамзитоблоков. Утепляющие гранулы невозможно засыпать, если стены уже возведены.
Керамзит должен оставаться внутри конструкции.
Советы и рекомендации
При утеплении дома из керамзитовых блоков учитывают, что:
Подход к работе должен быть комплексным. Не стоит забывать о теплоизоляции кровли и фундамента. Работы можно выполнять поэтапно.
Основные теплоизоляционные материалы должны находиться снаружи. При необходимости можно устанавливать дополнительные компоненты изнутри.
Без утепления можно оставлять дом из керамзитных блоков со стенами толщиной не менее 60 см.
https://youtube.com/watch?v=9mNLoHlZIl4
Неправильное выполнение работ влечет временные и финансовые потери, поэтому при возникновении затруднений нужно обращаться к специалистам.
Как утеплить сарай: Полное руководство
Зачем утеплять сарай? Вы когда-нибудь заходили в свой сарай летом, и там было как 100 градусов? У вас зимой сосульки свисают со стропил после работы в них 5 минут? У меня есть.
Разве не было бы неплохо превратить этот старый сарай в дополнительную спальню или убежище? Как насчет мужской пещеры или мастерской? Эти крошечные домики тоже выглядят хорошо. Я смотрел на свой с теми же мыслями.
Имея информацию, некоторую планировку и изоляцию, можно сделать любой сарай более комфортным.Это все открытая конструкция гвоздика; все, что вам нужно сделать, это добавить теплоизоляцию в стены и потолок. Пол может быть сложнее, но даже его можно утеплить.
Я начал искать, что есть в наличии и что мне нужно. Вы тоже об этом думали? Вот что я нашла про , как утеплить сарай и сделать его более комфортным.
# 1 Что следует учитывать перед утеплением сараяПонимание основ теплопередачи
Важно понимать, что тепло перемещается из горячего помещения в холодное.Он пытается выровнять температуру в обоих помещениях. Так что летом в сарае становится жарко снаружи, а зимой — от холода.
Источник: BPI- Проводимость: — это движение тепла через твердые объекты. Так сарай теряет или получает тепло через стены и потолок. Стены и стойки создают постоянную магистраль теплопередачи внутрь и наружу.
- Конвекция: — это движение тепла через воздух или воду вокруг вас.Тепло в стенах и потолке перемещается по зданию за счет движения воздуха. Трещины и отверстия в ваших стенах и потолке также увеличивают это движение.
- Излучение: — это тепловые волны, излучаемые видимым и невидимым образом от одного объекта к другому. Солнце через окно, огонь в комнате, сидение на камне, согреваемое солнцем, которое затем согревает вас, — вот примеры теплового излучения. Сядьте на холодный стул, и ваше тело его согреет. Он будет оставаться теплым после того, как вы выйдете из него, пока не сравняется с температурой окружающего воздуха.
Где вы живете — ваши климатические требования
Ключевыми факторами являются разница между внутренней и внешней температурой. Разница температур между замораживанием и нормальной температурой в доме обычно больше, чем летняя наружная температура и комфортная температура внутри.
Если вы живете в очень холодном или очень жарком климате, вам понадобится больше изоляции для стен и потолка.
Планирование обогрева или охлаждения здания
Важно спланировать, как вы будете обогревать и / или охлаждать свое здание.Гораздо проще проложить провода, трубы и воздуховоды до того, как будет заделана изоляция и стены не заделаны.
Новая установка или существующая
Возможно, в вашем здании уже есть какая-то изоляция. Вы можете оставить его и добавить еще один слой или удалить его и начать все заново. Если вы добавляете дополнительную изоляцию, это обычно добавляет это значение R к существующей изоляции.
Коэффициент R некоторых изоляционных материалов зависит от влажности, возраста и сжатия. Грызуны и клопы тоже любят вить гнезда в утеплителе.В зависимости от того, как он выглядит и от легкости доступа, вы можете оставить его или удалить.
# 2 Что такое R-фактор изоляции?R-value — это термин, который часто используют в сфере строительства и ремонта, в статьях и средствах массовой информации. Но что это значит? Я много читал, разговаривал с профессионалами отрасли и даже с парочкой инженеров, и мне кажется, я понял это.
- Значение R говорит нам, насколько хорошо материал предотвращает кондуктивный поток воздуха или теплопередачу.Это сопротивление теплопередаче материала, умноженное на его толщину. Чем выше значение R, тем лучше сопротивление теплопередаче.
Например: если кусок материала толщиной 1 дюйм предотвращает теплопередачу в 3,5 раза лучше по сравнению с отсутствием барьера, тогда 4 дюйма этого материала будут иметь значение R 14, а 6 дюймов будут R-21. . Таким образом, материал с R 38 будет в 38 раз лучше предотвращать теплопередачу, чем, скажем, стена с гвоздями, обшитая фанерой, без изоляции.
- Проще говоря, что сложно, R-значение — это сопротивление (R) материала теплопередаче посредством теплопроводности и конвекции. Он относится к толщине изоляционного материала и его теплопроводности в зависимости от его толщины. Он отражает стандарты лабораторных испытаний, а не фактическое применение в строительстве.
- Изоляция замедляет поток тепла изнутри наружу (сохраняя внутреннее тепло) или снаружи внутрь (сохраняя внутреннее охлаждение).Чем толще изоляция, тем больше сопротивление или коэффициент сопротивления тепловому движению… обычно.
- Рекомендуемые R-значения зависят от климата, в котором вы живете. Вы Строительный кодекс или местный инспектор могут сказать вам минимальные значения, необходимые для вашего района. Если вы изолируете, потому что на улице жарко (Гавайи или летом используйте навес), вам не потребуется столько, сколько вы живете в холодной зоне (Аляска и северные штаты или большая часть Канады).
- Насыпной / выдувной
Состоит из частиц целлюлозы, стекловолокна или каменной ваты. Обычно выдувается или сбрасывается в готовые полости стен, чердачные перекрытия или труднодоступные места.Со временем оседает, поэтому при вертикальном нанесении может образовывать холодные пятна. R-значение имеет тенденцию к увеличению при сжатии. При использовании надевайте маску и защитные очки.
- Батуты и рулоны / одеяло
Прямоугольники или рулоны из стекловолокна, каменной ваты, пластика или натуральных волокон для размещения между стандартным расстоянием между стойками и балками. Ватины и рулоны отлично подходят для отделки стен, полов и потолков. Значение R имеет тенденцию к уменьшению при сжатии. При использовании надевайте маску и защитные очки.
- Пенопласт или жесткая плита
Предварительно сформированные из полимеров (полистирол, полиизоцианурат, полиуретан), они имеют лучшую изоляционную способность по толщине, чем большинство других материалов. Они отлично подходят для отделки внутренних и внешних стен, потолков и полов. Значение R увеличивается с толщиной.
- Светоотражающий
Изготовлен из различных материалов, по крайней мере, с одной отражающей поверхностью из фольги. Отлично подходит для незавершенного строительства.Отражающая поверхность помогает предотвратить теплопередачу (теплопередачу) и эффективно снижает потери тепла вниз. Значение R зависит от приложения.
Наиболее часто используемый и, вероятно, самый дешевый изоляционный материал. Слабо скрученный пластиковый материал, армированный крошечными стекловолокнами. Некоторые производители используют от 30% до 70% переработанного материала. Батареи изготавливаются для установки между шпильками 2 × 4 или 2 × 6 с центрами 16 или 24 дюйма.Значение R уменьшается при намокании или сжатии.
Товаров не найдено. R-стоимость:- Стекловолокно (войлок): R-значение составляет 2,9 — 3,8 на дюйм толщины
- Стекловолокно со свободным заполнением: значение R составляет 2,2 — 4,3 на дюйм толщины
Где использовать:
- Незаконченные стены
- Полы и потолки
Стоимость:
- Батты и одеяла 0,64–1,19 долл. США за кв. Фут.
- Стекловолокно со свободным заполнением 30 центов за кубический фут.
Плюсы | Минусы |
|
|
Чтобы узнать цену на изоляцию стен 2 × 4 на Amazon, продуктов не найдено.
Минеральная ватаОн похож на стекловолокно, но сделан из базальтовой породы или шлака доменных печей. Он также содержит переработанные материалы. Он огнестойкий и даже сохраняет свой показатель R во влажном состоянии. Батареи изготавливаются для установки между шпильками 2 × 4 или 2 × 6 с центрами 16 или 24 дюйма.
R-стоимость:
- Войлок из минеральной ваты: значение R составляет 2,8 — 4,2 на дюйм толщины
- Потеря минеральной ваты: значение R составляет 2,8 — 4,0 на дюйм толщины
Где использовать:
- Незаконченные стены
- Полы и потолки
Стоимость:
- Батты и одеяла 0,51–1,80 долл. США за кв. Фут.
- Стекловолокно со свободным заполнением 40 центов за кубический фут.
Плюсы | Минусы |
|
|
Чтобы узнать текущую цену теплоакустической звукоизоляции из минеральной ваты на Amazon, нажмите здесь
Целлюлоза
Заполнение пространства выдувной целлюлозой. Источник: ryochijiiwaЭто продукт из переработанной бумаги, который распыляется в существующие или новые полости стен или чердак и не требует влагозащитного барьера.Его плотность снижает воздушный поток и теплоотдачу.
Борат или сульфат аммония добавляются для уменьшения воспламеняемости и уничтожения насекомых. Не допускается оседание и создание холодных пятен в стенах.
R-стоимость:
- Сыпучая целлюлоза R-значение: от 3,1 до 3,8 на дюйм толщины
Где использовать:
- Выдува на чердак
- Выдувание в полости стен
Стоимость :
- Стекловолокно с сыпучим наполнением 0 долл. США.62 — 1,46 доллара за кубический фут.
Плюсы | Минусы |
|
|
Чтобы узнать цену на изоляцию для выдувания целлюлозы на Amazon, нажмите здесь
Пенополиуретан
Утепление стены аэрозольной пеной.Источник: dunktanktechnicianЭто легкая напыляемая пена, образующаяся при смешивании и реакции двух химических веществ, полиольной смолы и изоцианата нефти. Они расширяются в 30-60 раз от своего первоначального объема.
Изоляция из аэрозольной пены отлично подходит для бетонных и каркасных стен, а также для труднодоступных мест или участков необычной формы. Он также доступен в формате плиты в виде жесткого пенополиуретана (полиизоциануратная плита или плита ISO), которую можно использовать в качестве внешней или внутренней изоляции.
R-стоимость:
- Пенополиуретан: 3.6 — 8,0 на дюйм толщины
- Полиуретановая плита: 5,5 — 6,5 на дюйм толщины
Где использовать:
- Распылитель на стены и потолок
- Распылитель вокруг оконных и дверных проемов
- Отлично подходит для ползаний и полов
- Доску можно использовать на внешних стенах или поверх стропил потолка, уменьшая тепловой мост между стойками и стропилами.
Стоимость:
- Пенополиуретан 2 $.05 — 3,20 доллара США за кв. Фут
- Полиуретановая плита 0,36–0,75 долл. США за кв. Фут.
Плюсы | Минусы |
|
|
Чтобы узнать текущую цену на комплект для изоляции из вспененного материала с закрытыми ячейками на Amazon, нажмите здесь
Полистирол — изоляция из пенопласта
Термопластическая пена, водонепроницаемая, а также обладающая хорошей тепло- и звукоизоляцией. Поставляется в виде EPS (расширенный) и XEPS (экструдированный). XEPS (XPS) также известен как пенополистирол. EPS изготавливается из шариков, расширенных в форме, а XPS (или XEPS) — это процесс, который создает закрытые ячейки посредством непрерывной экструзии.
R-стоимость:
- Доска EPS (бортик): 3,2 — 4,4 на дюйм толщины
- XEPS (XPS) Board (blueboard): 3,8 — 5,5 на дюйм толщины
Где использовать:
- Фундаменты — внутренние и внешние
- Под бетонным полом
- Стены и потолки
- Крыши
Стоимость:
- Доска EPS (картон) 0,85–1,15 долл. США за кв. Фут
- XEPS (XPS) Board (blueboard) 0 руб.98 — 1,91 доллара за кв. Фут
Плюсы | Минусы |
|
|
Излучающие барьеры и системы светоотражающей изоляции
Излучающие и светоотражающие барьеры обычно устанавливаются на чердаках, как барьерные покрытия на наружных стенах или как занавески для окон.Он имеет отражающий слой из алюминиевой фольги или отражающего пластика.
Вместо того, чтобы просто замедлять движение тепла, как другие теплоизоляционные материалы, он отражает тепловую энергию, исходящую от солнца через крышу или стены обратно из дома, сохраняя в доме прохладу. Они более эффективны в жарком климате или летом для охлаждения дома.
Поставляется в различных форматах, как двусторонних, так и односторонних; предварительно наносится на пенопласт, изоляционный войлок, пластиковые или картонные панели, рулоны пластиковых листов и в виде пузырчатых листов.Панели из жесткого пенопласта с отражающей поверхностью поглощают часть тепла, но также и отражают его. Они наносятся на наружные стены и не требуют пароизоляции.
R-стоимость:
- Полиизоциануратная фольга с покрытием: 5,6 — 8,0 на дюйм толщины
- Излучающие и отражающие барьеры отражают тепло, поэтому не имеют значения R
- В сочетании с изоляцией может значительно улучшить R-значения
Где использовать:
- Чердак
- Наружные стены
- Шторы
Стоимость:
- Излучающие и отражающие барьеры $ 0.13 — 0,47 доллара за квадратный фут
- Светоотражающая изоляция 1,73–3,13 долл. США за квадратный фут
Плюсы | Минусы |
|
|
Чтобы узнать цену на изоляцию для скрепок Reflectix ST16025 на Amazon, нажмите здесь
# 4 Проверка герметичностиВоздухонепроницаемость означает неконтролируемое движение воздуха, поступающего извне в сарай через щели и отверстия, а также воздуха, выходящего из сарая таким же образом.Движение воздуха приносит холодный воздух зимой и горячий воздух летом. Это влияет на качество воздуха и влажность в навесе.
В большинстве сараев есть утечки воздуха; некоторые действительно видны. И, конечно же, их оставили намеренно, чтобы пропустить бензин и химический запах. Однако теперь, когда мы думаем о других вариантах использования этого сарая, пришло время сделать его более герметичным.
В солнечный день войдите в сарай, закройте все окна и обратите внимание, куда проникает свет.Это очевидные места для запечатывания.
Чем герметичнее я сделаю свой сарай, тем комфортнее будет зимой и летом; и дешевле нагревать или охлаждать. Некоторые щели и отверстия я закрою перед изоляцией, другие закрою изоляцией.
Для качества воздуха в помещении необходим свежий воздух, поэтому мне также придется учитывать требования к вентиляции.
Проведение энергоаудита, когда вы видите свет через щели и торцы, нелогично и стоит денег, которые можно использовать для ремонта сарая.
# 5 Контроль влажностиMoisture Control — это план, который вы разрабатываете, чтобы предотвратить повреждение вашего сарая влагой. Это улучшит качество воздуха и сэкономит на отоплении и охлаждении.
Это также поможет уменьшить рост плесени. Важно также учитывать климат, в котором вы живете; одни более влажные, чем другие.
Наружный воздух — обычная причина появления влаги в конструкции, но плохая вентиляция также препятствует выходу влаги.В теплом воздухе содержится больше влаги, чем в холодном, поэтому при охлаждении образуется конденсат на более прохладных поверхностях.
Неправильный контроль влажности может привести к намоканию изоляции, каркаса и стеновых панелей, что может привести к росту плесени и гниению древесины.
Вся необработанная древесина должна быть сухой, чтобы влага не попадала в сарай. Распыление из влажной древесины способствует увлажнению сарая. Это медленнее, чем движение воздуха, но вода движется внутрь к сушильным материалам за счет капиллярного действия.
Убедитесь, что свесы крыши и края надежно защищены от влаги. Вы не хотите, чтобы под черепицей скапливалась талая вода или дождь.
Также важно защищать землю от дождя и таяния снега подальше от вашего сарая. Отведите землю под уклоном от фундамента и используйте карнизы и водосточные трубы, чтобы отвести сток.
Цель состоит в том, чтобы предотвратить попадание влаги в ваш сарай и обеспечить надлежащую вентиляцию, чтобы все внутри оставалось сухим. Это оболочка, защищающая фундамент, стены и крышу от влаги.В противном случае внутренняя часть может выглядеть сухой, но изоляция влажная, а структура дерева гниет и покрывается плесенью.
# 6 ПароизоляцияПароизоляция отлично подходит для предотвращения диффузии (движения) влаги через стены в стеновую доску и внутрь сарая. Но это не предотвращает попадание влаги из-за утечек воздуха или капиллярного действия, которое приводит к попаданию влаги в конструкцию стены и изоляцию. Это одна из частей вашего плана по контролю влажности.
Обычный пароизоляционный слой, или, точнее, замедлитель диффузии пара, представляет собой полиуретан толщиной 6 мил, который имеет рейтинг проницаемости 0,1 или менее (класс I). Он прикрепляется скобами к каркасным стенам и потолку после установки утеплителя и перед установкой стеновых панелей или гипсокартона.
Все швы перекрыть лапкой и все швы и разрезы заклеить лентой. Полиэтилен толщиной 20 мил отлично подходит для ползания, поскольку он устойчив к разрывам и проколам и менее проницаем для влаги.
Если материал имеет рейтинг проницаемости от 0.1 и 1.0 (II класс), он полупроницаемый. Фанера, пенополистирольные панели EPS или XEPS (XPS) и 30-фунтовая гудронная бумага являются примерами полупроницаемых материалов.
Материалы с рейтингом проницаемости от 1,0 до 10 (класс III) легче пропускают влагу. Домашняя пленка, 15-фунтовая гудронированная бумага, глиняные и бетонные кирпичи или блоки, необработанные пиломатериалы, гипсокартон и изоляция относятся к Классу III.
Важно помнить, что все части сарая нуждаются в пароизоляции в вашем плане контроля влажности.
Чтобы узнать текущую цену на пластиковую пленку TRM Manufacturing 610B, 6 мил, 10 футов x 100 футов на Amazon, нажмите здесь
Проверьте, требуются ли разрешения.
- Электрооборудование
Спланируйте свои электрические потребности, чтобы определить количество цепей и объем необходимых услуг. Определите, где вы хотите установить электрическую панель, розетки, переключатели и лампы.Бак для горячей воды, система вентиляции, водяной насос и приборы также влияют на расположение емкостей. Перед установкой изоляции проложите все провода и установите розетки и световые короба.
- Сантехника
Если вы планируете строительство туалета, вам понадобится септическая установка и разрешение. Раковина может сливаться в сухой колодец или резервуар для бытовой воды. Питьевая вода может поступать из существующего источника или из многоразового резервуара. Учтите эти решения на этапе планирования. Имейте в виду, что для резервуара с горячей водой также потребуется электричество.В не отделанные стены проще установить сантехнику, водостоки и вентиляционные трубы.
- Вентиляция
Правильная система вентиляции улучшает качество воздуха и помогает контролировать влажность внутри конструкции. В большинстве незавершенных сараев используются вентиляционные отверстия в щиколотке и метод замещения трещин и зазоров. Если вы планируете герметизировать стены и сделать сарай герметичным, то установите соответствующую систему вентиляции; особенно если сарай будет жилым или спальным. Проложить воздуховоды для воздухообмена проще, если стены будут открытыми.
- Воздушные каналы
Воздушные каналы — это воздуховоды, которые обеспечивают регулируемое движение воздуха внутри конструкции. Каналы не должны располагаться в наружных стенах или неизолированных помещениях, поскольку внешнее тепло и холод могут нагреть или охладить движущийся в них воздух, а также вызвать конденсацию и рост плесени.
Изоляция пола сарая поможет создать тепловой барьер между внутренним и внешним воздушным пространством.Доступ к нижней стороне пола, однако, влияет на доступные варианты его изоляции.
У меня есть друг, который поднял свой недостроенный сарай, чтобы можно было утеплить пол, а затем опустил его обратно. Бюджет, способности и опыт также влияют на возможный выбор.
Большинство одноэтажных перекрытий представляют собой открытые балки с фанерным полом. Балки перекрытий обычно варьируются от 2 дюймов на 4 дюйма до 2 дюймов на 10 дюймов; хотя я видел 2 «x3» и 2 «x12». Планируется заполнить пространство между балками утеплителем для создания теплового барьера.
Помните, обнаженный край балки, обращенный к земле, действует как тепловой мост для передачи тепла в изолированное жилое пространство. Единственный способ предотвратить или уменьшить это — сделать изоляцию и поперек балок.
Опции дооснащения
Размеры балок перекрытия влияют на ваши варианты, как и расстояние между балками. Если это 2 «x4» или 2 «x6», то можно использовать стандартные ваты. Убедитесь, что ватина заполняет пространство, но не слишком сильно сжата.
Вы не хотите, чтобы ватина провисала, так как это создает воздушный зазор между полом и изоляцией и снижает R-Value до 0.Минеральная вата более жесткая, чем стекловолокно, и меньше прогибается.
Накройте балки полистиролом с отражающей поверхностью, обращенной вверх к полу. Прибейте его к балкам кровельными гвоздями шириной 2 дюйма и используйте клей. Переход по балкам создает тепловой разрыв в тепловом мосту.
Если балки имеют размер 2 x 8 дюймов или 2 x 10 дюймов (или больше), разрежьте жесткий полистирол на полосу, чтобы она плотно прилегала к балкам. Используйте клей, чтобы удерживать его на месте, а затем повторите шаги, как с балками 2 «x4» или 2 «x6».
Пена— более дорогой вариант, она прилипает к балкам и нижней стороне пола и предотвращает утечку воздуха. Если лаги полностью обрызганы, значит, термический мост сломан.
Если вы планируете нанять кого-нибудь для утепления пола, лучше заплатить за него. Материал дороже, но времени меньше, поэтому практически выравнивается.
Другой вариант — уложить поверх пола жесткий утеплитель и накрыть его фанерой или OSB. Убедитесь, что швы нового пола не совпадают со швами старого пола.
Убедитесь, что под дверцами есть свободное пространство. Этот вариант может быть выполнен сам по себе или в дополнение к утеплению нижних балок.
Новое строительство
Новую конструкцию легче изолировать, и она требует меньшего количества ползаний под навесом, но в ней используется аналогичный процесс. Убедитесь, что промежутки между балками изолированы, а тепловой мост сломан.
# 9 Как утеплить стены сараяПри утеплении стен сарая следует учитывать множество факторов.Как сделать их герметичными, влагозащищенными, пароизоляционными, электропроводкой и сантехникой, и нужно ли утеплять внутри или снаружи или и то, и другое? Большая часть процесса похожа, будь то модернизация или новое строительство.
Трещины и щели в стенах должны быть по возможности устранены конопаткой или другим барьерным материалом. Слой распыляемой пены на внутренней стороне стен размером 2 x 4 или 2 x 6 дюймов и фронтальных концов сделает их воздухонепроницаемыми, а после отверждения создаст пароизоляцию.
дюйм распыляемой пены на R6 обеспечит R18 толщиной 3 дюйма.Распыляемая пена также герметизирует и изолирует провода, электрические коробки, воздуховоды и трубы.
Использование минеральной ваты или стекловолокна между стойками дешевле, чем распыляемая пена, но необходимо обрезать провода, электрические коробки, трубы и воздуховоды. Разрежьте войлок, чтобы он проходил по проводам, трубам и прочим вещам за электрическими коробками и вокруг них.
Batts также требует, чтобы к стойкам поверх изоляции был прикреплен пароизоляционный слой толщиной 6 мил. Если стены не герметичны, они могут повредить влагу.
Основное различие между модернизацией и новым строительством — это влагобарьер. Гидроизоляционный барьер защищает всю конструкцию, а не только жилое пространство внутри.
Новый строительный барьер для влаги будет представлять собой панель ISO или пенополистирол, наложенную со светоотражающим барьером или на него, а затем наложенный поверх него защищающий от атмосферных воздействий сайдинг. Многие конверсии сброса пропускают этот шаг.
Однако модернизация будет аналогична новой конструкции, но будет применяться поверх существующего материала стен.Влагобарьер — это разница между успехом и комфортом, а работа наполовину сделана.
# 10 Как утеплить односкатную крышуКак вы изолируете пространство на крыше, зависит от того, как вы хотите использовать пространство на крыше. Двускатная крыша могла иметь утепленный чердак или дополнительное полезное пространство.
Крыша в стиле собора или амбара имеет открытые стропила, образующие потолок и позволяющие увеличить пространство на чердаке. У каждого типа крыши есть свои проблемы с изоляцией.
Крыша подобна шляпе; он сохраняет все, что находится под ним, в тепле. В регионах с холодным климатом в течение года R38 является минимальным, а рекомендуется R50.
Минимальный рейтинг R38 для крыши требует творческого планирования при проектировании крыши нового навеса с минимальной конструкцией крыши 2 x 6 дюймов. Еще больше нужно продумать, чтобы переоборудовать сарай с помощью фермы 2 x 4 дюйма или стропильной конструкции.
Для стекловолокнас R3,8 на дюйм потребуется 10 дюймов для достижения минимальных требований.Целлюлоза и минеральная вата будут примерно такими же, как стекловолокно, а изоляция из распыляемой пены с рейтингом R6 на дюйм будет иметь толщину около 6,5 дюймов и будет дорогой.
Вентиляция — ключевая часть обогрева и охлаждения вашего сарая. Изоляция противостоит передаче (потере) тепла. Вентиляция отводит холодный или горячий воздух от изолированного пространства чердака, предотвращая накопление влаги.
Если вы заполните имеющееся вентиляционное пространство изоляцией, чтобы получить R38, вам потребуется установить другую вентиляционную систему.
Во многих конструкциях двускатных крыш перекрытия являются частью системы вентиляции. Воздух поступает туда и выходит через конек или форточку.
Перегородки могут быть установлены между стропилами, где они сидят на стенах, для поддержания потока воздуха через потолок. Однако попадание R38 на край стены маловероятно и создает потенциальное «холодное пятно».
Решение для двускатной крыши
Двускатная крыша часто имеет плоский потолок. Если вы не планируете использовать чердак под жилую площадь, решение проще.
Использование перегородок для поддержания воздушного потока через потолок означает потенциальное холодное пятно, но основная область может быть изолирована до R38 с помощью войлока или целлюлозной изоляции.
Прикрепите пароизоляцию толщиной 6 мил к потолку, если стропила. Прикрепите материал потолка, чтобы изоляция не провалилась.
Заполните пространство между стропилами, плотно прилегая к перегородкам, и затем уложите еще один слой войлока поперек стропил. Это даст 10+ дюймов изоляции и сломает тепловой мост.
Кровля в стиле собора или амбара
Крыша собора или амбара требует надлежащей вентиляции, а изоляция не должна касаться открытой стальной кровли. Никакое решение не является простым или бесплатным.
Лучшее решение, с которым я столкнулся, было в коттедже Рино 5 лет назад. 20 футов. х 30 футов. мансардная крыша с открытым черновым распилом или настоящий брус размером 2 x 4 дюйма с горизонтальным подрамником 4 фута. с пика.
Решение привлекло инженера из-за размера проекта, но будет работать для любой односкатной крыши; даже двускатная крыша с жилым чердаком.
Чтобы получить R38, прикрепите 2 дюйма x 6 дюймов к нижней стороне каждого существующего стропила. Предварительно просверлите стропила во избежание раскола. Используйте вешалки или гроссбух, чтобы поддержать концы у стен.
Теперь достаточно места для установки стерилизатора, войлока или жесткой изоляции — или их комбинации. Вентиляция немного более креативна. Удалите черепицу или сталь, сохраните сталь, если она в хорошем состоянии.
Покройте обшивку 30-фунтовой битумной бумагой или кровельной мембраной. Прикрепите 2 x 2 дюйма с шагом 12 дюймов к крыше параллельно стропилам.Накройте фанерой или OSB, оставив вентиляционное отверстие конька.
Открытые концы кануна выходят за пределы существующей крыши и позволяют воздуху циркулировать через вентиляционное отверстие конька, обеспечивая вентиляцию вашей крыши. Накройте потолком или экраном, чтобы не допустить попадания насекомых.
№11 Окна и двериОкна и двери — обычно самые большие дыры в сарае. В большинстве сараев нет изолированных дверей или тепловых окон. Также они редко бывают герметичными.
Трещины и щели вокруг оконных и дверных рам должны быть заделаны.Используйте водонепроницаемую герметизацию для небольших отверстий и баллончик с пеной для больших трещин. Если они большие, набейте изнутри изоляцией из стекловолокна, а снаружи распылите пену.
Если вы планируете использовать складское помещение в качестве жилого помещения, убедитесь, что одно окно достаточно велико, чтобы через него мог выйти человек; проверьте свой местный строительный кодекс.
Рассмотрите возможность замены фанерных дверей на изолированные стальные двери. На фанерные двери тоже можно приклеить жесткий утеплитель. Убедитесь, что у вас есть хорошая уплотнительная лента, чтобы закрыть двери и окна.
Рассмотрите возможность создания штормового окна, которое помещается поверх существующего окна, чтобы создать дополнительный барьер. Обычно они дешевле, чем замена окна.
Если вы хотите, чтобы изолировал свой металлический сарай , ознакомьтесь с моей недавней статьей для получения более подробной информации.
ЗаключениеНадеюсь, статья оказалась для вас информативной. Нужно учесть много информации. Чем больше вы планируете и готовитесь перед тем, как начать, тем более герметичным будет ваш сарай.Тихое уединение или дополнительная спальня для родственников тоже может быть большим воодушевлением.
Ваши комментарии приветствуются. Если вы знаете кого-то, кто думает об утеплении сарая, поделитесь с ним, если вам это понравилось.
Евгений был энтузиастом DIY большую часть своей жизни и любит проявлять творческий подход, вдохновляя на творчество других. Он страстно увлекается благоустройством, ремонтом и обработкой дерева.
ICF Homes: Изолированная бетонная форма (ICF)
Обычный ICF
Традиционные фундаменты из каменной кладки хорошо поддерживают структуру над ними, но у них также есть некоторые серьезные ограничения.Во-первых, они являются большим источником потери тепла в доме. Каменный фундамент — это почти бесконечный радиатор, который поглотит любое количество энергии, которое вы на него направите. Затем, если дренаж вокруг фундамента неправильный, вода может попасть в дом.
Итак, в Meadowlark Builders мы фанаты фундаментов из изолированной бетонной опалубки (ICF). ICF обычно состоят из формованного пенополистирола (EPS), который складывается вместе, как Lego, для создания форм, в которые затем заливается бетон.Когда эти формы заполняются бетоном ICF, получается удобная и сухая кирпичная стена. Это изображение блока EPS ICF:
Однако, в отличие от традиционной неизолированной каменной стены, эта стена имеет коэффициент изоляции R-25. Напротив, у традиционной каменной стены показатель R-1 такой же, как у одинарного стекла. Вот как выглядит R-1 рядом с R-25 на тепловизионном изображении:
Вы можете ясно видеть, что кирпичная стена передает много тепловой энергии, в то время как дом ICF сохраняет тепло намного лучше.
Но зачем останавливаться на фундаменте? Из ICF можно сделать прочные и плотные внешние стены. Фактически, отели средней этажности, особенно в районах, подверженных ураганам, построены из ICF. Для жилого дома стены ICF энергоэффективны, бесшумны внутри и чрезвычайно долговечны. Насколько прочный? Посмотрите на эти изображения различных бедствий:
Это снимок района, через который прошел торнадо F-4. Каркасные дома превратились в мусор на ландшафте, а строящийся дом ICF готов к продолжению строительства.
Наконец, это фотография автомобиля, врезавшегося в дом ICF на скорости 85 миль в час. Автомобиль полностью исчерпан, а дом ICF нуждается в небольшом ремонте лепнины. Не пытайтесь сделать это с деревянным каркасом!
ОднакоICF не лишены экологических проблем. Во-первых, для производства бетона требуется много энергии, в основном потому, что 15 процентов бетона состоит из портландцемента. Этот материал в основном представляет собой смесь горных пород и минералов, например, известняка, глины, сланца или песка, которые измельчаются в порошок и нагреваются в печи примерно до 1450 градусов по Цельсию.
Однако в последнее время летучая зола стала хорошей заменой портландцементу в бетоне. Летучая зола — это остаток от сжигания угля, который раньше выбрасывался в атмосферу неэффективными угольными электростанциями. Попадая в естественные системы, летучая зола разрушительна для дикой природы и водных путей, но она также имеет свойства, похожие на цемент. Теперь, благодаря более эффективному сжиганию угля, то, что раньше поднималось в дымоход, может заменить до 30 процентов портландцемента, используемого в бетоне. Фактически, около 40 процентов летучей золы производится в США.С. перерабатывается в бетон.
И, наконец, полистироловая оболочка ICF. Полистирол является побочным продуктом нефти, и есть веские экологические причины избегать использования этих продуктов. Домики для тюков соломы являются одной из альтернатив, как и Durisol ICF.
Итак, хотя производство и установка ICF дороги, они создают плотные, энергоэффективные дома, которые служат действительно долгое время. Сколько? Вот несколько бетонных стен, построенных римлянами:
Короче говоря, здание, которое существует веками или тысячелетиями, вероятно, экономит гораздо больше энергии за время своей жизни, чем энергия, которая ушла на его строительство.
Дурисол ICF
Цементные волокна ICF были разработаны в Европе после Второй мировой войны. Этот тип ICF представляет собой блок портландцемента, пропитанный другими материалами — пиломатериалами после Второй мировой войны или минеральной ватой, несжимаемой и устойчивой к гниению изоляцией.
Durisol — одна из марок цементно-волокнистых блоков. Это натуральный продукт, с которым легко работать. Блоки Durisol также гигроскопичны, что означает, что они поглощают лишнюю влагу и медленно ее выделяют, обеспечивая более равномерное содержание влаги в воздухе.Но самое приятное то, что блоки смещают бетон внутрь здания. Это важно, поскольку позволяет зданию использовать большую тепловую массу бетона.
У большинства ICF бетон находится посередине. Они создают отличную структуру, но оболочка из полистирола затем высвобождает столько же накопленной энергии как наружу, так и внутрь. Это создает хороший буфер против колебаний внутренней температуры, но не улавливает внутреннюю энергию конструкции.
Смещая бетон внутрь, блоки Durisol накапливают больше энергии, используемой для обогрева дома. В сочетании с окнами с низким энергопотреблением, выходящими на юг, дом нагревается солнцем в течение дня, а избыточная энергия накапливается в бетонных блоках, увеличивая солнечный эффект на много часов. Это концепция пассивного дома, который отапливается почти исключительно за счет солнечной энергии.
Meadowlark Builders разработал специальную технику для максимального повышения эффективности блоков Durisol.Обернув дом утеплителем из пенополистирола, мы обеспечиваем термическую изоляцию от внешних элементов. Затем мы устанавливаем сайдинг с системой вентиляции, которая называется Rain Screen. Этот метод создает очень плотную внешнюю стену со значением изоляции R-34; он смещает бетон внутрь и обеспечивает отличный буфер для температуры и влажности внутреннего воздуха. Даже если электричество отключится, только солнце может поддерживать в доме достаточно комфортную зиму и естественную прохладу летом.Плоскость дренажа за сайдингом и крышей также помогает охлаждать здание.
Мы построили Дом Феникса, используя этот метод, и хотя мы строили его зимой, температура внутри помещения могла подниматься до 63 градусов в холодные февральские дни Мичигана.
Несмотря на то, что блоки Durisol имеют много преимуществ, система стоит дорого, а срок окупаемости превышает 20 лет. Однако с южной ориентацией дом можно отапливать и охлаждать с очень небольшими затратами энергии или обслуживания.Фундамент Durisol ICF следует рассматривать как долгосрочную инвестицию как в охрану окружающей среды, так и в прочную, энергоэффективную структуру.
ГЛОССАРИЙ ТЕРМИНОВ БЕТОННОЙ КЛАДКИ
ГЛОССАРИЙ ПО ТЕРМИНАМ ДЛЯ БЕТОННОЙ КЛАДКИ
Блок «А»: Пустотелая кладка с одним концом, закрытым поперечной перемычкой, а противоположным концом — открытым или без торцевой поперечной перемычки. (См. «Блок с открытым концом».)
Поглощение: Разница в количестве воды, содержащейся в бетонной кладке, в условиях насыщения и при сушке, выраженная в весе воды на кубический фут бетона.[4]
Ускоритель: Жидкая или порошковая добавка, добавляемая к вяжущей пасте для ускорения гидратации и ускорения развития прочности. Примером материала ускорителя является нитрит кальция.
Клейкий анкер: Анкерное устройство, которое помещается в предварительно просверленное отверстие и фиксируется химическим составом.
Добавка: Вещество, отличное от предписанных материалов из воды, заполнителя и вяжущих материалов, добавленное в бетон, строительный раствор или раствор для улучшения одного или нескольких химических или физических свойств.[3]
Заполнитель: Инертный гранулированный или порошкообразный материал, такой как природный песок, технологический песок, гравий, щебень, шлак, мелкие частицы и легкий заполнитель, который при связывании цементной матрицей образует бетон, раствор или строительный раствор. [3]
Воздухововлечение: Способность материала или процесса образовывать систему равномерно распределенных микроскопических пузырьков воздуха в цементной пасте для повышения удобоукладываемости или долговечности получаемого продукта.Некоторые примеси действуют как воздухововлекающие агенты.
Анкер: Металлический стержень, стяжка, болт или ремень, используемый для крепления кладки к другим элементам. Может заливаться, приклеиваться, расширяться или крепиться к каменной кладке. [1]
Угол: Секция из конструкционной стали с двумя опорами, соединенными под углом 90 градусов друг к другу. Используется в качестве перемычки для поддержки кирпичной кладки над проемами, такими как двери или окна, вместо каменной арки или усиленной каменной перемычки. Также используется как полка для вертикальной поддержки облицовки каменной кладкой.Иногда его называют разгрузочным углом.
Арка: Вертикально изогнутый сжимаемый элемент конструкции, охватывающий отверстия или углубления. Также может быть построена плоская, используя специальные формы кладки или специально размещенные блоки.
Площадь, поперечное сечение брутто: Площадь, ограниченная наружными размерами кладки в рассматриваемой плоскости. Сюда входит общая площадь секции, перпендикулярной направлению нагрузки, включая области внутри ячеек и пустоты.[1]
Площадь, нетто-поперечное сечение: Площадь каменных блоков, раствора и раствора, пересекаемых рассматриваемой плоскостью, на основе наружных размеров и без учета площади всех пустот, таких как незаращенные ядра, открытые пространства или любые другие участки, лишенные кладки. [1]
Осевая нагрузка: Нагрузка, действующая на стену или другой элемент конструкции и действующая параллельно оси элемента. Осевые нагрузки обычно действуют в вертикальном направлении, но могут быть иными в зависимости от типа и ориентации элемента.
Основа: Стена или поверхность, к которой крепится шпон. Материал основы может быть бетоном, каменной кладкой, стальным или деревянным каркасом. [1]
Балка: Конструктивный элемент, обычно горизонтальный, сконструированный таким образом, чтобы в первую очередь противостоять изгибу.
Полированный блок: (См. «Шлифованный торцевой блок»)
Площадь засыпки: Площадь поверхности кирпичной кладки, которая контактирует с раствором в плоскости стыка раствора.
Цемент для доменного шлака: Цемент с добавкой доменного шлака.
Смешанный цемент: Портландцемент или портландцемент с воздухововлекающими добавками, смешанный путем смешивания с такими материалами, как доменный шлак или пуццолан, которые обычно представляют собой летучую золу. Может использоваться как альтернатива портландцементу в растворах.
Блок: Сплошной или полый блок размером больше, чем блоки размером с кирпич. (См. Также «Бетонный блок, бетонный блок, каменный блок»)
Блок-машина: Оборудование, используемое для формования, уплотнения и уплотнения форм при производстве бетонных блоков.
Связь: (1) Расположение единиц для обеспечения прочности, устойчивости или уникального визуального эффекта, создаваемого укладкой единиц по заданной схеме. См. Ссылку 6 для иллюстраций и описаний типичных рисунков кладки. (2) Физический адгезив или механическое соединение между каменными блоками, раствором, цементным раствором и арматурой. (3) Для соединения плит или кирпичной кладки.
Связующая балка: (1) Заливанный раствор или ряды каменных блоков, армированных продольными стержнями и предназначенных для восприятия продольных изгибающих и растягивающих усилий, которые могут возникать в кирпичной стене.(2) Горизонтальный залитый цементным раствором элемент в каменной кладке, в который заделана арматура.
Блок связующей балки: Пустотелый блок с вдавленными перемычками или с «выбиваемыми» перемычками (которые удаляются перед укладкой) для размещения горизонтального армирования и раствора.
Разрыватель адгезии: Материал, используемый для предотвращения склеивания между двумя поверхностями.
Bond, работающий: Размещение блоков кладки таким образом, чтобы стыки головок в последовательных рядах были смещены по горизонтали, по крайней мере, на четверть длины блока.[1] Центрирование шарниров головки над блоком ниже, называемое центральным или половинным соединением, является наиболее распространенной формой скользящего соединения. Горизонтальное смещение между шарнирами головки в последовательных рядах на одну треть и четверть единицы длины называется третьей связкой и четвертью связки соответственно.
Связка, стопка: Для структурного проектирования Требования Строительного кодекса для каменных конструкций рассматривают всю кладку, не уложенную непрерывным соединением, как штабельную связь. [1] В общем случае, укладка штабелей обычно относится к кладке, уложенной таким образом, чтобы стыки головок в последовательных рядах были выровнены по вертикали.Также называется отвесом, прямым стеком, домкратом, домкратом и шахматной доской.
Прочность сцепления: Сопротивление отделению раствора от каменных блоков и раствора и раствора от арматурной стали и других материалов, с которыми он контактирует.
Кирпич: Сплошная или пустотная кладка из бетона, глины или камня.
Консоль: Элемент конструктивно поддерживается только на одном конце посредством фиксированного соединения.Противоположный конец не имеет структурной опоры.
Блок крышки: Сплошная плита, используемая в качестве блока колпачка. Может содержать гребни, скосы или откосы для облегчения дренажа. (См. Также «Копинг-блок».)
Полость: Постоянное воздушное пространство между слоями кладки или между кладкой и ее подпорной системой. Обычно толщина более 2 дюймов (51 мм). (См. «Воротник».)
Ячейка: Полое пространство в бетонной кладке, образованное лицевыми панелями и перемычками.Также называется ядром.
Цементный материал: Общий термин для любого неорганического материала, включая цемент, пуццолановые или другие мелкодисперсные минеральные добавки или другие химически активные добавки, или смесь таких материалов, которая затвердевает и развивает прочность за счет химической реакции с водой. В основном цементирующими материалами считаются: портландцемент, гидравлические цементы, известковая замазка, гашеная известь, пуццоланы и измельченный гранулированный доменный шлак. [3]
Отверстие для прочистки / промывки: Отверстие достаточного размера и с достаточным расстоянием, чтобы можно было удалить мусор со дна пространства для раствора.Обычно располагается в первом ряду кладки. [2]
Строительство в холодную погоду: Процедуры, используемые для строительства кладки, когда температура окружающего воздуха или температура кладки ниже 40 ° F (4,4 ° C).
Манжета: Вертикальное продольное пространство между слоями кладки или между слоями кладки и опорной конструкцией, иногда заполненное строительным раствором или цементным раствором. Обычно толщина менее 2 дюймов (51 мм). [1] (См. Также «Полость».)
Цвет (пигмент): Совместимая, стойкая к окраске, химически стабильная добавка, придающая цементной матрице ее окраску.
Колонна: (1) В конструкциях — относительно длинный и тонкий структурный элемент сжатия, такой как стойка, стойка или распорка. Обычно вертикальная колонна поддерживает нагрузки, действующие в основном в направлении ее продольной оси. (2) Для целей проектирования изолированный вертикальный элемент, горизонтальный размер которого, измеренный под прямым углом к толщине, не превышает его толщины в 3 раза, а высота более чем в 4 раза больше толщины. [1]
Комбинированное действие: Передача напряжения между компонентами элемента, спроектированного таким образом, что при сопротивлении нагрузкам комбинированные компоненты действуют вместе как единый элемент.[1]
Прочность на сжатие: Максимальная сжимающая нагрузка, которую будет выдерживать образец, деленная на чистую площадь поперечного сечения образца.
Прочность кирпичной кладки на сжатие: Максимальная сила сжатия, выдерживаемая на единицу чистой площади поперечного сечения кладки, определяется испытанием призм кладки или как функция отдельных блоков кладки, раствора и раствора в соответствии с пп. 2. [2] (См. Также «Расчетная прочность кладки на сжатие».)
Бетон: Композитный материал, который состоит из водореактивной вяжущей среды, воды и заполнителя (обычно комбинации мелкого заполнителя и крупного заполнителя) с добавками или без них.В портландцементном бетоне вяжущее вещество представляет собой смесь портландцемента, воды и может содержать примеси.
Бетонный блок: Пустотелый или сплошной бетонный блок. Больше по размеру, чем бетонный кирпич.
Бетонный кирпич: Пустотелый или сплошной бетонный блок меньше по размеру, чем бетонный блок.
Бетонный блок: Пустотелый или сплошной блок, изготовленный с использованием низкочастотной вибрации высокой амплитуды для уплотнения бетона жесткой или чрезвычайно сухой консистенции.
Соединитель: Механическое устройство для скрепления двух или более частей, частей или элементов вместе; Включает анкеры, стенные анкеры и крепеж. Может быть как структурным, так и неструктурным. [1]
Соединитель, стяжка: Металлическое приспособление, используемое для соединения слоев кирпичной кладки в многослойной стене или для прикрепления облицовки кладки к ее основе. [1] (См. Также «Якорь».)
Контрольный шов: Непрерывный несвязанный шов в каменной кладке, который формируется, распиливается или обрабатывается в каменной конструкции для регулирования местоположения и количества трещин и разделений, возникающих в результате изменения размеров различных частей конструкции, тем самым предотвращая развитие высоких напряжений. .
Колпачок: Материалы или элементы кладки, используемые для формирования отделки верха стены, опоры, дымохода или пилястры для защиты кладки внизу от проникновения воды.
Опорный блок: Сплошной бетонный блок, предназначенный для использования в качестве верхнего готового слоя при возведении стен.
Corbel: Проекция последовательных рядов с лицевой стороны кладки. [1]
Ядро: (см. «Ячейка»)
Коррозионно-стойкий: Материал, обработанный или покрытый для замедления коррозионного воздействия.Примером может служить сталь, оцинкованная после изготовления.
Курс: Горизонтальный слой кирпичной кладки в стене или, что гораздо реже, изогнутый над аркой.
Контроль трещин: Методы, используемые для контроля степени, размера и местоположения трещин в кирпичной кладке, включая арматурную сталь, контрольные швы и стабильность размеров кладочных материалов.
Cull: Каменная кладка, которая не соответствует стандартам или спецификациям и поэтому была отклонена.
Отверждение: (1) Поддержание надлежащих условий влажности и температуры во время начального схватывания для развития необходимой прочности и уменьшения усадки изделий, содержащих портландцемент. (2) Начальный период времени, в течение которого цементные материалы набирают прочность.
Гидроизоляция: Обработка кирпичной кладки для замедления прохождения или поглощения воды или водяного пара путем нанесения подходящего покрытия или мембраны на открытые поверхности или с помощью подходящей добавки или обработанного цемента.
Контроль влажности: Непроницаемый горизонтальный слой для предотвращения вертикального проникновения воды в стену или другой элемент кладки. Влажная проверка состоит либо из слоя твердой кладки, металла или тонкого слоя асфальтового или битумного материала. Как правило, его устанавливают рядом с грунтом, чтобы предотвратить миграцию влаги вверх за счет капиллярного действия.
Мембрана: Система крыши или пола, предназначенная для передачи боковых сил на стены или другие элементы сопротивления поперечной нагрузке.[1]
Фактический размер: Измеренный размер бетонной кладочной единицы или сборки.
Размер, номинал: Указанный размер плюс припуск на строительные швы, обычно ⅜ дюйма (9,5 мм). Номинальные размеры обычно указываются целыми числами. Сначала указывается ширина (толщина), затем высота, а затем длина. [1]
Размер, указанный: Размеры, указанные для изготовления или конструкции узла, соединения или элемента.Если не указано иное, все расчеты основаны на указанных размерах. Фактические размеры могут отличаться от указанных в допустимых отклонениях. [1]
Дюбель: Металлический арматурный стержень, используемый для соединения кирпичной кладки или бетона.
Drip: Канавка или прорезь, вырезанная под и немного позади передней кромки выступающего элемента или элемента, такого как подоконник, перемычка или колпак, для стекания дождевой воды и предотвращения ее попадания в стену.
Усадка при высыхании: Изменение линейного размера бетонной стены или блока из-за высыхания.
Сухая стопка: Кладка кладка без раствора.
Эксцентриситет: Расстояние между равнодействующей приложенной нагрузки и центральной осью элемента кладки под нагрузкой.
Эффективная высота: Чистая высота связанного элемента между боковыми опорами и используется для расчета коэффициента гибкости элемента.[1]
Эффективная толщина: Предполагаемая толщина элемента, используемая для расчета коэффициента гибкости.
Выцветание: Отложение или корка растворимых солей (обычно белого цвета), которые могут образовываться на поверхности камня, кирпича, бетона или раствора, когда влага проходит через материалы кладки и испаряется на поверхности. В новом строительстве, иногда называемом новостройкой, цветут. Как только структура высыхает, налет обычно исчезает или удаляется водой.
Эквивалентная толщина: Толщина твердого тела, до которой полый элемент будет уменьшен, если материал в модуле будет переделан в элемент с такими же размерами поверхности (высота и длина), но без пустот. Эквивалентная толщина 100% твердого блока равна фактической толщине. Используется в основном для определения показателей огнестойкости кладки.
Расширительный анкер: Анкерное устройство (на основе фрикционного захвата), в котором расширяемое гнездо расширяется, вызывая клин, когда в него затягивается болт.
Лицевая сторона: (1) Поверхность стены или кирпичной кладки. (2) Поверхность объекта, предназначенная для обнажения в готовой кирпичной кладке.
Лицевая оболочка: Наружная стена пустотелого кирпичного блока. [5]
Засыпка облицовочного раствора: Пустотелая кладочная конструкция, при которой раствор наносится только на горизонтальную поверхность лицевых панелей модуля и стыки головок на глубину, равную толщине лицевой оболочки. На поперечные перемычки агрегата раствор не наносится.(См. Также «Засыпка сплошным раствором.»)
Облицовка: Любой материал, составляющий часть стены и используемый в качестве отделочной поверхности.
Крепеж: Устройство, используемое для крепления компонентов к кирпичной кладке, как правило, неструктурного характера.
Огнестойкость: Рейтинг, присвоенный стенам, обозначающий продолжительность времени, в течение которого стена выступает в качестве барьера для прохождения пламени, горячих газов и тепла, когда подвергается стандартному испытанию на огонь и струю из шланга. Для кладки огнестойкость чаще всего определяется на основе эквивалентной толщины кладки и типа заполнителя.
Оклад: Тонкий непроницаемый материал, помещаемый в швы раствора и через воздушные пространства в кладке для предотвращения проникновения воды и облегчения дренажа воды.
Летучая зола: Мелкодисперсный остаток, образующийся в результате сгорания измельченного или порошкообразного угля.
Опора: Конструктивный элемент, передающий нагрузки непосредственно на почву.
Стойкость к замораживанию-оттаиванию: Способность противостоять повреждениям от циклического замораживания и оттаивания влаги в материалах и возникающих в результате расширения и сжатия.
Полная засыпка раствором: Кладка, при которой раствор наносится на всю горизонтальную поверхность кирпичной кладки и стыки головок на глубину, равную толщине лицевой оболочки. (См. Также «Засыпка из облицовочного раствора».)
Кладка стеклопакета: Кладка состоит из стеклопакетов, скрепленных раствором. [1]
Глазурованный блок: Бетонный блок с постоянной гладкой облицовкой из смолистой плитки, нанесенной в процессе производства.Также называется блоком с предисловием.
Блок шлифованной поверхности: Блок бетонной кладки, поверхность которого отшлифована до гладкой поверхности, обнажая внутреннюю матрицу и заполнитель блока. Также называется полированным или отточенным блоком.
Затирка: (1) Пластичная смесь вяжущих материалов, заполнителей, воды с добавками или без них, первоначально полученная до консистенции заливки без разделения компонентов во время укладки. [3] (2) Затвердевший эквивалент таких смесей.
Затирка, предварительное напряжение: Вяжущая смесь, используемая для герметизации скрепленных предварительно напряженных арматур. [2]
Затирка, самоуплотняющаяся: Очень жидкая и стабильная затирка, используемая при затирке с высоким и низким подъемом, не требующая уплотнения или обратного уплотнения.
Подъем раствора: Приращение высоты раствора в пределах всей заливки раствора. Заливка раствора состоит из одного или нескольких подъемов раствора. [2]
Заливка раствора: Общая высота кладки, которая должна быть залит перед возведением дополнительной кладки.Заливка раствора состоит из одного или нескольких подъемов раствора. [2]
Кладка с цементным раствором: (1) Кладка из полых блоков, в которых полые ячейки заполнены раствором, или многослойная конструкция, в которой пространство между слоями плотно заполнено раствором. (2) Кладка из сплошных блоков, в которой внутренние швы и пустоты заполняются раствором.
Затирка, высокий подъем: Техника затирки кладки в лифтах на всю высоту стены.
Заливка швов, низкий подъем: Метод затирки швов при возведении стены, обычно для строительных лесов или скрепления балки по высоте, но не более 4–6 футов (1219–1829 мм), в зависимости от ограничений кода.
Блок «H»: Пустотелый кирпич без поперечных перемычек на обоих концах, образующих «H» в поперечном сечении. Используется при армированной кладке. (См. Также «Блок с открытым концом».)
Заголовок: Блок кладки, соединяющий два или более смежных слоя кладки.Также называется связкой. [1]
Высота стены: (1) Расстояние по вертикали от фундаментной стены или другой подобной промежуточной опоры до верха стены. (2) Расстояние по вертикали между промежуточными опорами.
Отношение высоты к толщине: Высота кирпичной стены, деленная на ее номинальную толщину. Толщина стенок полости принимается как общая толщина за вычетом ширины полости.
Заливка швов с высоким подъемом: (см. «Заливка швов с высоким подъемом.”)
Пустотелый кирпич: Блок, чистая площадь поперечного сечения которого в любой плоскости, параллельной опорной поверхности, составляет менее 75% от общей площади поперечного сечения, измеренной в той же плоскости. [4]
Хонингованный блок: (См. «Шлифованный торцевой блок»)
Строительство в жаркую погоду: Процедуры, используемые для возведения кладки, когда температура окружающего воздуха превышает 100 ° F (37,8 ° C) или температура превышает 90 ° F (32,2 ° C) при скорости ветра более 8 миль в час (13 км / ч) .
Осмотр: Наблюдения для проверки того, что кладка соответствует требованиям действующих стандартов проектирования и контрактной документации.
Блок косяка: Блок, специально сформированный для косяка окон или дверей, обычно с вертикальной прорезью для установки оконных рам и т. Д. Также называется блоком створки.
Соединение: Поверхность, на которой два элемента соединяются или соприкасаются. Если они скреплены строительным раствором, то объем, заполненный строительным раствором, является стыком.
Армирование швов: Проволока стальная в стыках раствора (поверх лицевых панелей в пустотелой кладке). Узлы усиления многопроволочного соединения имеют поперечные проволоки, приваренные между продольными проволоками через равные промежутки времени.
Круг: (1) Расстояние, на котором две планки перекрывают друг друга при формировании стыка. (2) Расстояние, на которое одна кладка простирается над другой.
Соединение внахлест: Соединение между арматурной сталью, образованное перекрытием концов арматуры.
Боковая опора: Средства крепления элементов конструкции в горизонтальном пролете колоннами, контрфорсами, пилястрами или поперечными стенами, или в вертикальном пролете балками, перекрытиями, фундаментами или крышами.
Легкий заполнитель: Природный или промышленный заполнитель низкой плотности, такой как керамзит или спеченная глина, сланец, сланец, диатомовый сланец, перлит, вермикулит, шлак, природная пемза, вулканические шлаки, диатомит, спеченная зола-унос или промышленные золы.
Блок из легкого бетона: Блок с плотностью до высыхания менее 105 фунтов / фут 3 (1,680 кг / м 3 ). [4]
Известь: Оксид кальция (CaO), общий термин для различных химических и физических форм негашеной извести, гашеной извести и гидравлической гашеной извести.
Перемычка: Балка, устанавливаемая или сооружаемая над проемом в стене, чтобы выдерживать наложенную нагрузку.
Блок перемычки: П-образный блок каменной кладки, размещаемый открытой стороной вверх для размещения горизонтальной арматуры и раствора для образования непрерывной балки.Также называется блоком каналов.
Несущая: (см. «Стена, несущая конструкция»)
Заливка швов на малой высоте: (см. «Заливка швов на малой высоте»)
Произведенная кладка: Искусственное негорючее строительное изделие, предназначенное для ручной укладки и соединения с помощью строительного раствора, раствора или других методов. [5]
Каменная кладка: Набор элементов каменной кладки, соединенных с помощью раствора, раствора или других допустимых методов. [5]
Кладочный цемент: (1) Вяжущий материал, смешанный с мельницей, в который добавляется песок и вода для приготовления раствора.(2) Гидравлический цемент, производимый для использования в растворах при кладке.
Среднетяжелый бетонный блок: Блок, плотность которого в сушильном шкафу составляет не менее 105 фунтов / фут 3 (1680 кг / м 3 ), но менее 125 фунтов / фут (2000 кг / м 3 ) ). [4]
Метрика: Международная система (SI), стандартная международная система измерения. Жесткая метрическая система относится к продуктам или материалам, изготовленным с указанными метрическими размерами. Мягкая метрика относится к продуктам или материалам, изготовленным с указанными на английском языке размерами, а затем преобразованными в метрические размеры.
Состав смеси: Пропорции материалов, используемых для изготовления раствора, раствора или бетона.
Модульное согласование: Обозначение каменных блоков, дверных и оконных рам и других строительных компонентов, которые подходят друг к другу во время строительства без индивидуальной настройки.
Модульная конструкция: Конструкция со стандартными единицами измерения или размерами для гибкости и разнообразия в использовании.
Содержание влаги: Количество воды, содержащейся в установке во время отбора проб, выраженное в процентах от общего количества воды в установке при насыщении.[4]
Раствор: (1) Смесь вяжущих материалов, мелкозернистого заполнителя и воды с добавками или без них, используемая для создания блоков каменной кладки. [3] (2) Затвердевший эквивалент таких смесей.
Заливка строительного раствора: Горизонтальный слой строительного раствора, используемый для укладки кирпичной кладки.
Раствор: (см. «Связь»)
Раствор, слой: Горизонтальный слой раствора между каменными блоками. [1]
Строительный шов, головка: Вертикальный растворный шов, помещаемый между каменными блоками в пределах ширины.[1]
Профиль шва: Готовая форма открытой части шва. Общие профили включают:
- Вогнутый: производится с помощью закругленной фуганки, это стандартный раствор, если не указано иное. Рекомендуется для наружных стен, так как легко проливает воду.
- Raked: соединение, в котором от до ½ дюйма (от 6,4 до 13 мм) удалено с внешней стороны соединения.
- Пораженный: соединение примерно заподлицо. См. Также «Strike.”
Сечение нетто: Минимальное сечение рассматриваемого стержня.
Без нагрузки: (см. «Стена, без нагрузки»)
Бетонный блок нормального веса: Блок, плотность которого в сушильном шкафу составляет 125 фунтов / фут 3 (2000 кг / м 3 ) или больше. [4]
Блок с открытым концом: Полый блок с одним или двумя открытыми концами. Используется в основном с усиленной кладкой. (См. Блок «A» и блок «H».)
Parging: (1) Покрытие из строительного раствора, которое может содержать гидроизоляционные ингредиенты, на поверхности. (2) Процесс нанесения такого покрытия.
Пирс: Изолированная каменная колонна или несущая стена, не прикрепленные по бокам к связанной кладке. Что касается конструкции, то вертикальный элемент, горизонтальный размер которого, измеренный под прямым углом к его толщине, составляет не менее трехкратной его толщины и не более чем шестикратную его толщину, а высота которого менее пятикратной его длины.[1]
Пигмент: (см. «Цвет»)
Пилястра: Связанная или шпоночная колонна из кирпичной кладки, построенная как часть стены. Он может быть заподлицо или выступать с одной или обеих поверхностей стены. Он имеет равномерное поперечное сечение по всей высоте и служит вертикальной балкой, колонной или и тем, и другим.
Блок пилястров: Блоки бетонные, предназначенные для использования при строительстве пилястр и колонн из простой или железобетонной кладки.
Обычная кладка: (см. «Неармированная кладка.”)
Штукатурка: (см. «Штукатурка»)
Пластификатор: Ингредиент, такой как добавка, включенный в цементирующий материал для повышения его удобоукладываемости, гибкости или растяжимости.
Последующее натяжение: Метод предварительного напряжения, при котором предварительно напряженные арматуры растягиваются после укладки кладки. [1] См. Также «Стена, предварительно напряженная».
Арматура для предварительного напряжения: Стальной элемент, такой как проволока, стержень или прядь, используемый для создания предварительного напряжения в кладке.[1]
Призма: Небольшая сборка, сделанная из блоков каменной кладки и раствора, а иногда и раствора. В основном используется в целях контроля качества для оценки прочности полных элементов кладки.
Прочность призмы: Максимальное сопротивление сжатию на единицу чистой площади поперечного сечения кладки, определенное испытанием призм кладки.
Технические характеристики проекта: Письменные документы, определяющие требования к проекту в соответствии с параметрами услуги и другими конкретными критериями, установленными владельцем или агентом владельца.
Обеспечение качества: Административные и процедурные требования, установленные контрактной документацией и кодексом, чтобы гарантировать, что возведенная кладка соответствует контрактным документам. [1]
Контроль качества: Запланированная система действий, используемая для обеспечения уровня качества, отвечающего потребностям пользователей и использования такой системы. Цель контроля качества — предоставить систему, которая будет безопасной, адекватной, надежной и экономичной.Общая программа включает в себя интегрирующие факторы, включая: надлежащую спецификацию; производство в полном объеме, указанном в спецификации; проверка, чтобы определить, соответствуют ли полученные материал, продукт и услуга спецификациям; и обзор использования для определения любых необходимых изменений в спецификациях.
Армированная кладка: (1) Кладка, содержащая арматуру в швах раствора или заполненных цементным раствором сердцевинах, используемых для сопротивления нагрузкам. (2) Блочная кладка, в которой арматура заделана таким образом, что материалы компонентов действуют вместе, чтобы противостоять приложенным силам.
Арматурная сталь: Сталь, заделанная в кладку таким образом, что два материала действуют вместе, чтобы противостоять силам.
Замедляющий агент: Ингредиент или добавка в строительный раствор, замедляющий схватывание или затвердевание, чаще всего в форме тонко измельченного гипса.
Ребристый блок: Блок с выступающими ребрами (с прямоугольным или круглым профилем) на лицевой стороне для эстетических целей. Также называется рифленым.
Блок створки: (см. «Блок косяка.”)
Балочный блок: Блок с канавками на лицевой стороне для эстетических целей. Например, канавки могут имитировать стыки с наклоном.
Экранный блок: Открытый каменный блок, используемый в декоративных целях или для частичного экранирования участков от солнца или от посторонних глаз.
Корпус: (см. «Лицевая оболочка»)
Опора и распорки: Стойки или стойки, используемые для временной поддержки элементов во время строительства.
Усадка: Уменьшение объема из-за потери влаги, снижения температуры или карбонизации вяжущего материала.
Подоконник: Плоский или слегка скошенный элемент, устанавливаемый горизонтально у основания проема в стене.
Простая опора: Элемент конструктивно поддерживается сверху и снизу или с обеих сторон посредством штифтового соединения, которое не предполагает передачи момента.
Коэффициент гибкости: (1) Отношение эффективной высоты элемента к радиусу вращения. (2) Отношение высоты элемента к толщине.
Осадка: (1) Падение высоты цементного материала от его первоначальной формы в пластичном состоянии.(2) Стандартное измерение пластичного вяжущего материала для определения его текучести и удобоукладываемости.
Блок осадки: Блок бетонной кладки, изготовленный таким образом, что он неравномерно проседает или проседает до того, как затвердеет.
Гофрированный шов: Шов с раствором, заполненный после укладки блоков путем «забивания» раствора краем кельмы.
Каменный блок: Блок, чистая площадь поперечного сечения которого в каждой плоскости, параллельной опорной поверхности, составляет 75 процентов или более от его общей площади поперечного сечения, измеренной в той же плоскости.[4] Обратите внимание, что канадские стандарты определяют твердое тело как 100% твердое вещество.
Выкрашивание: Отслаивание или раскалывание из-за внутренних или внешних сил, таких как мороз, давление, изменение размеров после установки, вибрация, удар или какое-либо сочетание.
Указанные размеры: (см. «Указанные размеры»)
Установленная прочность на сжатие кладки, f ’: Минимальная прочность на сжатие кладки, требуемая контрактной документацией, на которой основывается проект (выраженная в единицах силы на единицу чистой площади поперечного сечения).[1]
Раздельный блок: Бетонная кладка с одной или несколькими гранями, специально сломанными для получения грубой текстуры в эстетических целях. Также называется блоком с разделенной поверхностью или каменной облицовкой.
Хомут: Усиление сдвига в изгибающемся элементе. [1]
Штрих: Завершить соединение раствора с помощью кельмы или специального инструмента, одновременно удаляя выдавленный раствор и выравнивая поверхность раствора, оставшегося в шве.
Штукатурка: Комбинация цемента и заполнителя, смешанная с подходящим количеством воды для образования пластичной смеси, которая будет прилипать к поверхности и сохранять наложенную на нее текстуру.
Темперамент: Для увлажнения и перемешивания раствора до нужной консистенции.
Температурное движение: Изменение размеров из-за изменения температуры.
Галстук: (см. «Соединитель, галстук»)
Допуск: Указанный допуск отклоняется от указанного размера, местоположения или размещения.
Инструменты: Сжатие и придание формы поверхности стыка раствора другим инструментом, кроме шпателя. См. «Профиль стыка раствора» для определения общих стыков.
Неармированная кладка: Кладка, при которой сопротивление растяжению кладки учитывается, а сопротивление армирования, если оно есть, не учитывается. Также называется однотонной кладкой. [1]
Шпон, приклеенный: Кладочный шпон прикреплен к основе и поддерживается за счет адгезии.[2]
Шпон, закрепленный на якоре: Кладочный шпон прикреплен к опоре и поддерживается сбоку с помощью анкеров и поддерживается вертикально фундаментом или другими конструктивными элементами.
Шпон каменный: Кладка, которая обеспечивает отделку стеновой системы и передает внеплоскостные нагрузки непосредственно на основу, но не считается добавляющей нагрузочной способности стеновой системы. [1]
Стена, связанная: Стена из каменной кладки, в которой две или более петель склеены и действуют как составная структурная единица.
Стена, полость: Многослойная стена из несоставной кирпичной кладки со сплошным воздушным пространством внутри стены (с изоляцией или без нее), скрепленная металлическими стяжками. [1]
Стена, композит: Многослойная стена, в которой отдельные элементы кладки действуют вместе, чтобы противостоять приложенным нагрузкам. (См. Также «Составное действие».)
Стена, занавес: (1) Ненесущая стена между колоннами или опорами. (2) Ненесущая внешняя стена, имеющая вертикальную опору только у своего основания или несущую опору через заданные вертикальные интервалы.(3) Наружная ненесущая стена в каркасной конструкции. Такие стены могут быть прикреплены к колоннам, перемычкам или перекрытиям, но не
.Стена, фундамент: Стена под полом ближайшего уровня, служащая опорой для стены, опоры, колонны или другой структурной части здания и, в свою очередь, поддерживаемая опорой.
Стена, несущая: Стена, которая выдерживает вертикальную нагрузку в дополнение к собственному весу. Согласно нормативам, стена, несущая вертикальные нагрузки более 200 фунтов / фут (2.9 кН / м) помимо собственного веса. [1]
Стена, многослойная: Стена, состоящая из 2 или более слоев кладки.
Стена, не несущая: Стена, которая не выдерживает вертикальных нагрузок, кроме собственного веса. Согласно нормативам, стена несет вертикальные нагрузки менее 200 фунтов / фут (2,9 кН / м) в дополнение к ее собственному весу. [1]
Стена, панель: (1) Наружная ненесущая стена в каркасной конструкции, полностью поддерживаемая на каждом этаже. (2) Ненесущая наружная каменная стена с несущими опорами на каждом этаже.
Стена, перегородка: Внутренняя стена без конструктивного назначения. [2]
Стена, предварительно напряженная: Каменная стена, в которую были введены внутренние сжимающие напряжения для противодействия напряжениям, возникающим в результате приложенных нагрузок. [1]
Стена, армированная: (1) Каменная стена, армированная сталью, заделанной таким образом, что два материала действуют вместе, оказывая сопротивление. (2) Стена, содержащая арматуру, используемую для сопротивления сдвиговым и растягивающим напряжениям.
Стена, подпорная: Стена, предназначенная для предотвращения движения грунта и конструкций, размещенных за стеной.
Стена, ширма: Кирпичная стена, построенная с более чем 25% открытой площади, предназначенная для декоративных целей, как правило, для частичного экранирования участка от солнца или из поля зрения.
Стена, сдвигающаяся: Стена, несущая или ненесущая, сконструированная для противодействия боковым силам, действующим в плоскости стены. [1]
Стена одинарная: Стена толщиной в один кирпичик.
Стена, сплошная каменная кладка: Стена либо построена из массивных каменных блоков, либо построена из пустотелых блоков и залита сплошным раствором.
Стенка: Металлический соединитель, соединяющий кирпичную кладку.
Стенка, фанера: Стенка, используемая для соединения облицовочной фанеры с основой.
Водопроницаемость: Способность воды проникать через такое вещество, как строительный раствор или кирпич.
Гидроизоляция: (1) Методы, используемые для предотвращения проникновения влаги через кладку.(2) Материалы, используемые для предотвращения проникновения влаги через кладку.
Водоотталкивающие свойства: Снижение абсорбции.
Водоотталкивающая способность: Материал, добавленный в кладку для повышения сопротивления проникновению воды. Может быть поверхностной обработкой или составной водоотталкивающей добавкой.
Web: Часть пустотелого бетонного блока, соединяющая лицевые оболочки.
Сливное отверстие: Отверстие, оставленное (или вырезанное) в швах раствора или облицовке кладки, для выхода влаги из стены.Обычно располагается сразу над окладом.
Технологичность: Способность раствора или раствора легко укладываться и растекаться.
Wythe: Каждая непрерывная вертикальная секция стены, толщиной одна каменная кладка. [1]
Модернизация внутренней изоляции каменных стен
ВведениеСнижение энергопотребления зданий становится все более настоятельной необходимостью из-за комбинированных требований энергетической безопасности, роста затрат на энергию и необходимости снижения экологического ущерба от потребления энергии .В результате значительного объема исследований были разработаны руководства и технологии, которые помогут проектировщикам и владельцам значительно снизить потребление энергии в новых зданиях. Однако существует огромное количество существующих зданий, подавляющее большинство которых имеют плохо изолированные ограждения. Повышение энергоэффективности этого фонда зданий станет очень важной частью перехода Северной Америки от региона, зависящего от импорта ископаемого топлива, к низкоуглеродной самодостаточной экономике.
Модернизация, реконструкция и переоборудование зданий для новых целей связаны с многочисленными проблемами.Социально, культурно и экономически важный класс зданий — это несущие здания из кирпичной кладки, построенные, как правило, до Второй мировой войны. Добавление изоляции к стенам таких каменных зданий в холодном, особенно холодном и влажном климате может в некоторых случаях вызвать проблемы с производительностью и долговечностью. Многие из тех же принципов применимы к внутренней изоляции стен CMU с каменной облицовкой, широко используемой в течение десятилетий после Второй мировой войны.
В этом дайджесте рассматриваются принципы контроля влажности, которым необходимо следовать для успешной утепленной модернизации сплошной несущей кирпичной стены.Представлены и сопоставлены различные возможные подходы к модернизации таких стен.
ВлагобалансОсновной проблемой при изоляции старых несущих кирпичных зданий в холодном климате является возможность повреждения кирпичной кладки от замерзания и гниения любой заделанной деревянной конструкции. Обе проблемы связаны с избыточным содержанием влаги, и поэтому уместно провести анализ влажности в ограждающих конструкциях здания.
Чтобы возникла проблема, связанная с влажностью, должны быть выполнены как минимум пять условий:
должен быть доступен источник влаги,
должен быть маршрут или средства для перемещения этой влаги,
должна присутствовать некоторая движущая сила, вызывающая движение влаги,
материалы должны быть подвержены воздействию влаги, и
содержание влаги должно превышать безопасное содержание влаги в материале в течение достаточного периода времени. .
Чтобы избежать проблем с влажностью, теоретически можно было бы исключить любое из перечисленных выше условий. В действительности практически невозможно удалить все источники влаги, построить стены без изъянов или устранить все силы, движущие движением влаги. Также неэкономично использовать только те материалы, которые не подвержены повреждениям от влаги. Поэтому на практике обычно учитываются два или более из этих предварительных условий, чтобы уменьшить вероятность превышения безопасного содержания влаги и время, в течение которого содержание влаги будет превышено.
Вся конструкция корпуса требует баланса смачивания и сушки (, рис. 1, ). Поскольку смачивание происходит в разное время, чем сушка, хранение сокращает время между смачиванием и сушкой. Если соблюдать баланс между смачиванием и сушкой, влага не будет накапливаться со временем, безопасное содержание влаги не будет превышено, а проблемы, связанные с влажностью, маловероятны. Однако при оценке риска повреждения из-за влаги всегда следует учитывать емкость хранения, а также степень и продолжительность смачивания и высыхания.
Рис. 1: Аналогия баланса влажности.
Четыре основных источника влаги для ограждения надземного здания ( Рисунок 2 ):
осадки, особенно проливной дождь,
водяной пар в воздухе, переносимый диффузией и / или движение воздуха через стену (изнутри или снаружи),
встроенной и накопленной влаги и
жидких и связанных грунтовых вод.
Рисунок 2: Источники и механизмы влажности для произвольной стены ограждения.
Способность сборки к высыханию является важным фактором при оценке ее уязвимости к проблемам влажности. Влага обычно удаляется из корпуса в сборе с помощью ( Рисунок 3 ):
испарение воды на внутренней и внешней поверхности, переносимой капиллярным всасыванием через микроскопические поры;
перенос пара путем диффузии (через микроскопические поры), утечки воздуха (через трещины и отверстия) или обоих, наружу или внутрь;
дренаж через щели, щели и отверстия под действием силы тяжести; и
вентиляция (вентиляционная сушка), преднамеренный поток воздуха за облицовкой.
Рисунок 3: Механизмы отвода влаги.
Стены ограждающих конструкций многих старых зданий состоят из нескольких слоев кирпичной кладки, цемента, извести или цементно-известкового раствора. Внутри может быть открытая кладка, но часто она завершается деревянной обрешеткой и / или штукатуркой. В институциональных зданиях, особенно построенных позже в этот период, один или несколько слоев полой глиняной или терракотовой плитки могут быть добавлены в интерьер и отделаны штукатуркой.Полые внутренние перемычки обеспечивали как повышенную изоляцию, так и пространство для работы сантехнических служб. Начиная со Второй мировой войны, внутренний слой кладки часто состоял из бетонных блоков, соединенных с облицовкой наружной кладки.
Несущие кирпичные кирпичные здания обладают потенциалом долговечности — именно по этой причине многие из них все еще существуют и доступны для ремонта и переоборудования после срока службы от 50 до 100 лет. Однако реалии растущих затрат на электроэнергию, повышение стандартов комфорта пассажиров и недопустимость экологического ущерба из-за чрезмерных потерь энергии на кондиционирование помещения означают, что современные ремонтные работы должны включать средства уменьшения теплового потока через ограждение.
Несущая кирпичная кладка прошлого имеет широкий спектр тепловых свойств, но можно предположить, что обычная кирпичная кладка средней плотности (от 80 до 110 фунтов на фут) обеспечивает R-значение от 0,25 до 0,33 рэнда на дюйм. Кирпич более высокой плотности (более 125 фунтов на квадратный фут) имеет более низкое тепловое сопротивление, около 0,15 / дюйм. Следовательно, стенка толщиной в три витка (12 дюймов) обеспечивает значение R от 3 до 4 плюс коэффициенты поверхностной теплопередачи («воздушные пленки») другого R1. Если кладка намокнет, показатель R снизится. Стена CMU с наружной облицовкой из кирпича имеет аналогичный уровень производительности.Этот уровень изоляции слишком низкий для многих практических целей и может даже привести к проблемам с конденсацией, если уровень влажности внутри помещения будет оставаться слишком высоким. Это особенно актуально, если использование здания изменено на музей или галерею. Однако даже переоборудование склада в квартиру на чердаке может изменить внутренние условия в достаточной степени, чтобы вызвать проблемы. Следовательно, по многим причинам часто принимается решение добавить изоляцию к стенам во время переоборудования и ремонта, поскольку в настоящее время это возможно с наименьшими нарушениями.
Чтобы обеспечить достижение целей комфорта, энергоэффективности и долговечности, окна, крыши, подвалы и воздухонепроницаемость также должны быть включены в любую оценку потенциала модернизации здания. Значительные улучшения производительности этих других компонентов ограждающих конструкций здания могут значительно улучшить общие характеристики здания.
Во многих случаях добавление теплоизоляции, уменьшение утечки воздуха и высокоэффективные окна не только сокращают потребление энергии, повышают комфорт и предотвращают конденсацию на внутренней поверхности, но также позволяют создавать меньшие, менее архитектурно навязчивые и менее дорогие системы отопления, вентиляции и кондиционирования воздуха. быть установлен.
Модернизация внешней изоляции
С точки зрения строительной науки, модернизация внешней изоляции предлагает самый простой, самый большой и минимальный подход к повышению термического сопротивления корпуса, воздухонепроницаемости и сопротивления проникновению дождя. В то же время, модернизация внешнего корпуса увеличивает долговечность существующей стены больше, чем любой другой подход (поддерживая постоянную температуру и устраняя все источники увлажнения), и обеспечивает непрерывность всех контрольных слоев.По сути, любой уровень производительности может быть достигнут с помощью внешней модернизации, поскольку существующий корпус используется просто как опорная конструкция.
Однако существует множество причин, по которым нельзя использовать модернизацию внешней изоляции, включая, конечно, необходимость защиты эстетической ценности внешнего фасада здания.
Рисунок 4: Модернизация внешней теплоизоляции является предпочтительным решением для строительной науки.
Ремонт любой стены может нарушить баланс влажности, и на практике есть примеры, когда это нарушение привело к повреждению или проблемам с производительностью. Механизмы повреждения, вызывающие озабоченность, — это в первую очередь замораживание-оттаивание и субфлуоресценция солей. Оба эти механизма представляют собой проблему только в холодную погоду, а наиболее опасный из них, замораживание-оттаивание, может возникать только при температурах значительно ниже нуля, когда кирпичная кладка практически насыщена.Во избежание повреждений, связанных с влажностью, баланс следует четко учитывать в процессе проектирования модернизации (Straube et al 2012).
Добавление теплоизоляции к внутренней части несущей кирпичной стены снизит температурный градиент по каменной кладке и уменьшит разницу температур между каменной кладкой и наружным воздухом (Рисунок 5). Оба эти изменения уменьшают сушильную способность кладки (в частности, снижается способность диффузионной сушки через кирпичную кладку, и может замедляться поверхностное испарение.) Однако капиллярный поток, безусловно, является наиболее мощным механизмом перераспределения влаги, и на него практически не влияет изоляция.
Вода, которая попадает на внутреннюю поверхность теперь изолированной внутренней поверхности кладки, все еще может испаряться с этой поверхности во внутреннюю часть через внутреннюю изоляцию и отделку в более теплую погоду (если паропроницаемость этих внутренних слоев позволяет это).
Поскольку снижение сушильной способности может привести к более высокому содержанию влаги (не обязательно небезопасным уровням, но часто не известно безопасный уровень с какой-либо точностью), было бы разумно одновременно уменьшить смачивание стены (в идеале, эквивалентное или большее количество) для восстановления баланса влажности.Следовательно, модернизация внутренней изоляции каменного здания требует тщательной оценки механизмов увлажнения. Преимущество внешнего переоборудования в долговечности можно оценить, сравнив результирующий температурный градиент (рис. 6).
Рисунок 5: Изменение температурного градиента из-за внутренней изоляции.
Рисунок 6: Изменение температурного градиента из-за внешней изоляции.
В последнее десятилетие оценка морозостойкости кирпичных и каменных кладок значительно расширилась.Результатом исследовательской работы стали методы тестирования и моделирования, которые позволяют количественно оценить степень устойчивости к замораживанию-оттаиванию (Mensinga et al 2010, 2014, Lstiburek 2011). Испытания и оценка позволяют группе количественно оценить риск повреждения в результате замерзания-оттаивания при эксплуатации после внутренней модернизации и в настоящее время регулярно проводятся лабораториями RDH Building Science Laboratories.
Механизмы смачивания и их контрольСмачивание, как описано выше, может происходить из-за смачивания дождем (особенно при плохих характеристиках дренажа поверхности), естественного увлажнения (из-за земли, таяния снега, плохого дренажа поверхности).После утечки изолирующего воздуха конденсация и диффузионная конденсация пара могут стать важными. Все необходимо учитывать (Рисунок 7).
Рисунок 7: Обычные механизмы смачивания каменных стен.
Наибольшее и наиболее интенсивное увлажнение, которое обычно получает существующее здание, связано с выпадением и концентрацией проливного дождя. Места с самой высокой интенсивностью увлажнения (часто в диапазоне от 10 до 100 галлонов на квадратный фут в год в северо-восточной части Северной Америки) — это нижние углы оконных проемов (поскольку окна стекают и концентрируют воду в нижних углах. ) и на уровне (если дренажные детали не предусмотрены должным образом).Контроль потока дождевой воды с поверхности является наиболее важным аспектом контроля влажности кладки. Следовательно, уменьшение смачивания в этих местах за счет использования выступающих подоконников и дренажа основания часто может уменьшить смачивание наиболее критических областей в гораздо большей степени, чем уменьшение высыхания, вызванное изоляцией. Нельзя недооценивать роль выступов (выступы всего лишь на 1 дюйм существенно влияют на смачивание), полос ленты и выступающих краев капель вдоль подоконников и вершин пилястров.
Добавление теплоизоляции в интерьер также увеличивает потенциал для нового механизма увлажнения — конденсации из-за утечки воздуха. Поскольку любая изоляция или новая внутренняя отделка снизят температуру внутренней поверхности кладки зимой, любой внутренний воздух, контактирующий с этой поверхностью, может конденсироваться (см. Рисунок 5).
При достаточной утечке воздуха и достаточно высокой относительной влажности в помещении этот конденсат может накапливаться быстрее, чем высыхать, и внутренняя поверхность кладки станет насыщенной, в то время как внутренняя поверхность часто опускается ниже точки замерзания.Чтобы предотвратить возможное повреждение от влаги, в том числе повреждение при замораживании-оттаивании, внутри изоляции должен быть предусмотрен воздухонепроницаемый слой.
Наконец, изоляционная кладка внутри может увеличить вероятность конденсационного смачивания, вызванного диффузией. Некоторый контроль диффузии пара необходим, если используется как теплоизоляция с высокой паропроницаемостью, так и влажность внутреннего пространства становится слишком высокой в холодную погоду (от 30% до 40% относительной влажности в холодном климате). Однако в большинстве случаев обычно указываемый пародиффузионный барьер менее 1 перм. США не требуется.Фактически, внутренняя отделка и барьеры с низкой проницаемостью могут отрицательно сказаться на эксплуатационных характеристиках, поскольку такие барьеры для пара препятствуют или исключают возможность высыхания внутри.
Требуемый контроль диффузионного смачивания паров обычно может быть обеспечен с помощью типичной латексной краски, полупроницаемых изоляционных материалов, умных замедлителей парообразования (продуктов, которые снижают паропроницаемость зимой и увеличивают ее на порядок летом) и других подобных материалы. В общем, оптимальный уровень требуемого контроля паров может быть легко рассчитан для конкретных условий воздействия в здании и климата с использованием методов динамического одномерного гигротермического анализа.(Мы обнаружили, что наиболее точным и подходящим инструментом часто является WUFI).
Проблемные стратегии модернизацииОбычная схема включает гипсокартон на стене со стальной стойкой, заполненной изоляционным войлоком (рис. 5). Небольшой (от ”до 2”) воздушный зазор может быть намеренно установлен на внутренней стороне существующей каменной стены или может случайно образоваться из-за вариаций размеров, присущих существующим каменным зданиям. Отделка гипсокартона часто действует как воздушный барьер в этой ситуации, а краска, крафт-облицовка, полиэтиленовый лист или основа из алюминиевой фольги действуют как пароизоляционный слой.(Обратите внимание, что многослойная кладка обычно достаточно воздухопроницаема и сама по себе недостаточна в качестве слоя контроля воздуха). Такой подход сопряжен с множеством серьезных проблем.
Во-первых, высока вероятность образования конденсата и плесени в стене. Как видно из рисунка 9, если внутренние условия меняются от 68 F / 25% RH до 71 F / 35% RH, температура точки росы будет варьироваться от 30 до 40 F. Следовательно, когда тыльная сторона кладки опустится ниже этих значений. При высоких температурах (которые вероятны в холодную погоду) конденсация могла бы произойти, если бы за кладкой возник воздушный поток.Если наблюдается более высокая влажность в помещении и более низкие температуры наружного воздуха, вероятна серьезная конденсация даже с очень небольшими утечками через воздушный барьер из гипсокартона. Эту озабоченность усугубляет обычная склонность повышать давление в коммерческих и институциональных зданиях. Эта практика предназначена для предотвращения проблем с комфортом из-за сквозняков из-за неконтролируемых утечек воздуха, но она также гарантирует, что воздух будет вытекать наружу в достаточных объемах, чтобы вызвать опасное количество конденсата на обратной стороне холодно изолированной кладки.
Рис. 8: Концептуальный чертеж внутренней переоснащения шипами и обрешетками.
Если используются стальные шпильки, такой подход не обеспечит изоляцию до желаемого уровня. Стальные стойки представляют собой мосты холода, и в данном сценарии теоретически способны обеспечить только около R-6 (меньше, если включены плиты перекрытия). На практике установка войлока между стойками без подкладки очень трудна, и почти наверняка они не будут установлены должным образом.Наконец, воздух может петлять внутри изоляции через воздушный зазор между каменной кладкой и войлоком, еще больше снижая R-значение и способствуя конденсации.
Следовательно, эта схема страдает рядом ограничений — она не обеспечивает разумного уровня теплоизоляции, она увеличивает зимнее увлажнение в самую холодную погоду (тот же период, в течение которого существует риск повреждения от замерзания-оттаивания) и создает плесень и риск для качества воздуха в помещении. Учитывая серьезные ограничения и сомнительные преимущества этой схемы, ее нельзя рекомендовать для модернизации внутренней изоляции.
Рисунок 9: Температуры, при которых может происходить конденсация.
Полупроницаемая пеноизоляцияБолее успешный подход включает распыление воздухонепроницаемой изоляционной пены непосредственно на тыльную сторону существующей кладки (рис. 10). Внутренняя отделка должна иметь высокую паропроницаемость или иметь обратную вентиляцию. Преимущество этой модернизации состоит в том, что вся конденсация утечки воздуха строго контролируется, а кирпичные стены неровные и неровные.Использование аэрозольной пены также действует как барьер для влаги, поскольку любое небольшое случайное проникновение дождя будет локализовано и контролироваться. Таким образом, внутренняя отделка будет защищена, так как вода не будет стекать и скапливаться на полу, проникая через изоляцию. Вода, которая впитывается в кладку, может вытекать наружу (где она будет испаряться) или проникать внутрь, где она будет диффундировать через полупроницаемую аэрозольную пену и внутреннюю отделку.
Нанесение пенопласта толщиной от 2 до 4 дюймов после установки стены из стальных каркасов несложно.Пустое пространство для стоек идеально подходит для распределения услуг и позволяет легко наносить отделку гипсокартоном (требуется для обеспечения огнестойкости пенопласта). Стальные шпильки следует удерживать на расстоянии более 1 дюйма от стены (рекомендуется 3 дюйма), чтобы позволить пенопласту укладываться и прилипать к кирпичной кладке во всех точках, а также контролировать тепловые мосты и наноклимат влаги, испытываемый внешним фланцем корпуса. шпильки.
Рис. 10: Концептуальный чертеж модернизации распыляемой пены.
Использование этого подхода поднимает вопрос о выборе внутренней паропроницаемости для пены.Как правило, внутренние слои следует выбирать так, чтобы они имели максимально возможную паропроницаемость, а также избегали смачивания диффузионной конденсацией в зимний период. Эта стратегия обеспечивает максимальный уровень внутренней сушки в теплую погоду. Распылительная пена с закрытыми ячейками также обладает достаточным сопротивлением диффузии пара для управления конденсацией в холодную погоду на границе раздела кирпич-пена и контроля потенциально повреждающего входящего потока пара во время солнечного нагрева влажной кладки. Пенополиуретан с закрытыми ячейками, как правило, является хорошим решением для более тонких применений (2 дюйма полиуретановой пены с закрытыми ячейками 2 pcf имеет проницаемость около 1 доп. 5 ”имеет проницаемость около 13 перм и тепловое сопротивление почти R-20) может быть приемлемым выбором для большей толщины, если в помещении поддерживается низкая влажность зимой и температура наружного воздуха не слишком низкая.Гигротермическое моделирование можно использовать для определения материалов, подходящих для конкретного применения.
Во многих случаях для внутренней модернизации использовалась изоляция из жесткого пенопласта различных типов. Для тонких слоев изоляции можно использовать полупроницаемый пенопласт, такой как экструдированный полистирол или необработанный полиизоцианурат, но для более толстых слоев предпочтительнее использовать более проницаемые пенополистирольные плиты. Этот метод использовался успешно, но его сложнее построить, поскольку он требует большой осторожности при обеспечении плотного контакта плиты с кладкой (любые зазоры могут позволить конвективным петлям переносить влагу и тепло) и что полный воздушный барьер формованные (проклеенные и / или герметичные стыки).
Устранение проникновений в конструкцииКонструкция пола неизбежно проникает внутрь каменных стен этих зданий и опирается на них. Иногда это происходит на пилястрах, но чаще большие деревянные балки или бетонные плиты переносят нагрузки пола на стены. Эти проникновения нарушают непрерывность регулирования температуры, воздуха и воды. Самые большие опасения связаны с потенциальным воздействием на прочность пола после утепления стен (Ueno 2015).
Когда структурное соединение осуществляется через бетонные плиты, реальных проблем с долговечностью нет. Однако проводящий бетон может вызывать значительные потери тепла, чтобы сделать внутренние поверхности бетона холодными. В зависимости от внутренней отделки, наружной температуры и относительной влажности в помещении конденсация на поверхности может стать проблемой. Существует ряд решений, если тепловые мосты становятся проблемой, включая актуальное и целевое применение тепла и / или снижение внутренней влажности, а также стратегии изоляции.Двухмерный анализ теплового потока — бесценный инструмент для оценки влияния температуры поверхности и теплового потока.
Самым сложным сценарием является сценарий, в котором деревянные балки проникают в новую внутреннюю отделку и попадают в карманы в кладке. Цель должна заключаться в уменьшении всех утечек воздуха, которые переносят влагу в этот карман холодного луча. Обеспечение вентиляции этого пространства почти наверняка вызовет конденсацию, но не предотвратит ее. Тем не менее, желательно позволить небольшому количеству тепла поступать в это пространство, так как это будет сушить древесину по сравнению с более холодной (поскольку она лучше изолирована) кладкой вокруг нее.Если балки нечасто расположены на расстоянии 6 или 8 футов, то рекомендуется подход, показанный на Рисунке 7, то есть герметизация и пена обеспечиваются вокруг балки, и в этом месте будет использоваться более тонкая внутренняя изоляция. В некоторых случаях небольшие источники тепла могут быть предусмотрены в карманах для балок с помощью металлических клиньев с высокой проводимостью, установленных рядом с балками.
Альтернативные методы Изоляция из минерального волокнаИспользование полупроницаемой вспененной изоляции, контактирующей с обратной стороной существующей кладки, является наиболее распространенной успешной стратегией модернизации внутренней изоляции.Однако по многим причинам может быть необходимо или желательно использовать изоляцию из минерального волокна. Опыт использования этого метода менее успешен, но новые материалы и методы открывают потенциал для модернизации с низким уровнем риска и высокой производительностью. Один из рекомендуемых подходов показан на рисунке 11.
Наносимый жидкостью паропроницаемый воздух и водный барьер обычно следует наносить на обратную сторону кладки, когда используется изоляция плит, особенно плиты из минерального волокна, потому что изоляция не является способен остановить миграцию жидкой воды.Приклеенная мембрана предотвращает проникновение, слив и накопление любой небольшой и локальной утечки воды в местах проникновения в пол. Мембрана, наносимая жидкостью, также действует как первичный воздушный барьер, будучи достаточно паропроницаемой, чтобы водяной пар мог двигаться в любом направлении.
Полужесткая изоляционная плита может быть прикреплена с помощью клея или механических приспособлений (например, штифтов или винтов с изоляционной шайбой). Если используются клеи, плиты следует прикреплять с помощью сплошных горизонтальных канавок, чтобы ограничить конвекцию.
Рис. 11: Внутренняя модернизация с использованием изоляции из минерального волокна.
Сопротивление внутреннему потоку воздуха также необходимо для контроля риска естественной конвекции. Достаточно плотная изоляция из минерального волокна, плотно прижатая к кирпичной кладке, позволяет избежать зазоров, но стыки между плитами по-прежнему оставляют путь (что можно решить, используя два слоя изоляции со смещенными стыками между слоями). Если изоляция слишком плотная, она не будет сжиматься вокруг неизбежной шероховатой поверхности обнаженной кладки (иногда кладку можно сделать гладкой, нанеся известковый раствор или плотно прилегающий водовоздушный барьер).
Контроль диффузии пара также является проблемой при модернизации этого типа. Изоляция из минерального волокна имеет очень низкое сопротивление диффузии пара. Без дополнительной паростойкости в холодную погоду, скорее всего, произойдет конденсация на внутренней стороне кладки. Можно купить плиты, облицованные алюминиевой фольгой, но они имеют настолько низкую паропроницаемость, что конденсация на обращенной наружу обратной стороне фольги (часто на бумажной основе и отличная пища для форм) представляет собой реальный риск нагрева влажной кладки под воздействием солнечных лучей.
Идеальным решением является использование интеллектуального замедлителя парообразования: такую мембрану можно наклеить лентой и сделать непрерывной в качестве конвекционного барьера (который будет подвергаться умеренным перепадам давления), контролирует внешнюю диффузию в зимнюю погоду и, тем не менее, позволяет сушить внутрь в летних условиях (при условии использования проницаемой или вентилируемой внутренней отделки).
ДренажВ некоторых случаях кладка может быть повреждена настолько, что можно ожидать проникновения дождя.Если внешний ремонт и перенаправление не могут контролировать этот тип утечки дождя, в исключительных случаях может потребоваться дренажное пространство за несущей кладкой. Образовать дренажный зазор и установить дренажную плоскость несложно, но достижение требуемых и критически важных деталей гидроизоляции может быть сложной задачей (особенно вокруг проемов в конструкционных перекрытиях). При таком подходе по-прежнему важно обеспечить очень хорошую воздухонепроницаемость, а также избежать конвекции воздуха во внутреннюю часть, несмотря на намеренно введенный дренажный зазор.
Рисунок 12: Внутреннее дооснащение с дренажем.
Дренаж области стены легко осуществить, но собрать и слить любую собранную воду очень сложно: задача собрать воду в водосливной ванне и направить ее наружу через дренажные отверстия влечет за собой высокий риск поломки. В большинстве случаев переоборудование несущей стены в дренированную стену не рекомендуется из-за риска и трудностей. Внутренние водные барьеры и внешние детали должны быть в центре внимания для предотвращения проникновения дождя.
Активные решения для высокой влажностиДля применений, где требуется высокая (более 40%) относительная влажность зимой, может потребоваться регулирование воздушного потока путем создания давления в пространстве между изоляцией и внутренней отделкой с низкой влажностью. воздух (Рисунок 13). Это также позволяет наносить более тонкие слои изоляции (поскольку воздушный поток гарантирует, что внутренняя отделка будет иметь внутреннюю температуру, независимо от теплового потока через стену).Поскольку воздух рядом с изоляционным слоем очень сухой, он позволяет выбрать изоляцию из минерального волокна с высокой паропроницаемостью и способствует испарительной сушке внутри в течение всего года, а не только летом. Наиболее распространенным выбором подачи воздуха для этого применения является наружный воздух в холодную погоду, нагретый до внутренней температуры: механическое осушение дорого, а создание низкой влажности в холодную погоду является проблемой, тогда как нагрев наружного воздуха дает очень сухой воздух очень недорого.Подача нагретого воздуха используется только тогда, когда температура точки росы на улице ниже температуры точки росы комнатной температуры.
Этот метод внутреннего переоборудования является наиболее сложным, самым дорогим и наиболее энергоемким. Тем не менее, его выбирают в некоторых случаях, потому что он также обеспечивает максимальную внутреннюю сушку и меньше всего изменяет баланс влажности, в то же время допускает то, что в противном случае было бы опасно высокой влажностью внутри. Тот же подход можно использовать для окон, добавив однослойное внутреннее штормовое окно, что полностью предотвратит образование конденсата и обеспечит комфорт в помещении.
Рис. 8: Концептуальный чертеж внутренней модернизации с регулируемым давлением для работы с высокой влажностью. Резюме
Изоляция несущих кирпичных зданий внутри в холодном климате часто требуется для удовлетворения требований человеческого комфорта, экологических целей и целевых затрат. Многие такие внутренние переоборудования уже были успешно завершены в холодном климате с использованием непрерывного изоляционного слоя в сочетании с вниманием к внутренней воздухонепроницаемости и наружным деталям защиты от дождя.
Использование полупроницаемой пенопластовой изоляции с полным контактом (или приклеиванием) к обратной стороне существующей кладки является наиболее распространенной успешной стратегией модернизации внутренней изоляции в Северной Америке с отличным послужным списком успеха. Этот метод также имеет то преимущество, что он является одним из наиболее практичных в полевых условиях. Использование воздухо- и паропроницаемой полужесткой теплоизоляции из плит (пенопласт или минеральное волокно) может быть успешным, если достигается превосходная воздухонепроницаемость и подавляется конвекция, и часто требуется паропроницаемый водо-воздушный барьер, наносимый жидкостью на внутреннюю кладку. поверхность.
Чтобы обеспечить достижение целей комфорта, энергоэффективности и долговечности, окна, крыша, подвал и воздухонепроницаемость также должны быть включены в стратегию модернизации здания. Значительные улучшения характеристик этих компонентов ограждающих конструкций здания могут значительно улучшить общие характеристики здания.
Чтобы еще больше снизить вероятность проблем с влажностью в ограждении здания, механические системы должны быть спроектированы и введены в эксплуатацию так, чтобы избежать любого положительного давления в здании.Влажность в помещении также необходимо контролировать, особенно в холодную погоду и более холодный климат.
Источники
Лстибурек, Джо. «Building Science Insight # 047: Толстый, как кирпич», май 2011 г. Доступно по адресу http://www.buildingscience.com/documents/insights/bsi-047-thick-as-brick
Mensinga, P., Straube, JF, Schumacher, CJ, «Оценка морозостойкости глиняного кирпича для проектов модернизации внутренней изоляции», Proc. Buildings XI , Клируотер-Бич, Флорида, декабрь 2010 г.
Mensinga, P., DeRose, D., Straube, JF. «Метод испытаний для определения начала разрушения кладки при замораживании-оттаивании», ASTM STP 1577 , Ed. Майкл Тейт, Западный Коншохокен, Пенсильвания, 2014.
Штраубе, Джон Кохта Уэно и Кристофер Шумахер. «Внутренняя изоляция каменных стен: Руководство по окончательным мерам». Отчет Министерства энергетики США по строительству в Америке, июль 2012 г. Доступно по адресу: http://www.nrel.gov/docs/fy12osti/54163.pdf
Ueno, K., Straube, JF , vanStraaten, R., «Полевой мониторинг и моделирование исторического здания с массивной кладкой, модифицированного внутренней изоляцией», Proc.Of Buildings XII , Клируотер-Бич, Флорида, декабрь 2013 г.
Уэно, К. «Полевой мониторинг деревянных элементов в изолированных каменных стенах в холодном климате», BEST Conference Building Enclosure Science & Technology 4 , Kansas Город Апрель 2015 г.
R-значения изоляционных и других строительных материалов
В этой статье есть таблица значений R для строительных материалов, но сначала мы должны быстро осветить некоторые основы, касающиеся значений R, U-факторов и расчета теплового сопротивления.
Что такое R-значения?
В строительстве R-значение является мерой способности материала сопротивляться тепловому потоку с одной стороны на другую. Проще говоря, R-значения измеряют эффективность изоляции, а большее число представляет более эффективную изоляцию.
R-значения складываются. Например, если у вас есть материал с R-значением 12, прикрепленным к другому материалу с R-value 3, то оба материала вместе имеют R-значение 15.
R-значение Единицы
Как мы уже говорили, показатель R измеряет термическое сопротивление материала. Это также можно выразить как разность температур, которая заставит одну единицу тепла проходить через одну единицу площади за период времени.
Уравнение R-значения (Британские единицы) R-value Уравнение (единицы СИ)Два приведенных выше уравнения используются для вычисления R-ценности материала. Имейте в виду, что из-за единиц измерения имперское значение R будет немного меньше, чем значение R.В приведенных ниже таблицах используются имперские единицы, поскольку наш веб-сайт ориентирован на рынок Северной Америки.
Что такое U-фактор?
Многие программы моделирования энергопотребления и расчеты кода требуют U-факторов (иногда называемых U-значениями) сборок. U-фактор — это коэффициент теплопередачи, который просто означает, что это мера способности сборки передавать тепловой энергии по своей толщине. U-фактор сборки является обратной величиной общего R-значения сборки.Уравнение показано ниже.
Уравнение фактора UТаблицы R-значений строительных материалов
Значения R для конкретных узлов, таких как двери и остекление, в таблице ниже являются обобщениями, поскольку они могут значительно различаться в зависимости от специальных материалов, используемых производителем. Например, использование газообразного аргона в стеклопакете с двойным стеклопакетом значительно улучшит R-значение. Обратитесь к документации производителя для получения информации о значениях, характерных для вашего проекта.
Материал | Толщина | R-значение (F ° · кв.фут · ч / британская тепловая единица) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Воздушные пленки | |||||||||||||||
Внешний вид | 0,17 | ||||||||||||||
Внутренняя стена | 0,68 | ||||||||||||||
Воздушное пространство | |||||||||||||||
Минимум от 1/2 «до 4» | 1,00 | ||||||||||||||
Строительная плита | |||||||||||||||
0.45 | |||||||||||||||
Гипсокартон | 5/8 « | 0,5625 | |||||||||||||
Фанера | 1/2″ | 0,62 | |||||||||||||
Фанера | 1 « | 1 дюйм | 1/2 « | 1,32 | |||||||||||
Древесно-стружечная плита средней плотности | 1/2″ | 0,53 | |||||||||||||
Изоляционные материалы 9221 Волокно с металлическими шпильками 2х4 @ 16 дюймов, ОК | 5.50 | ||||||||||||||
Минеральное волокно R-11 с деревянными шпильками 2×4 @ 16 дюймов OC | 12,44 | ||||||||||||||
Минеральное волокно R-11 с металлическими шпильками 2×4 @ 24 дюйма OC | 6.60 | ||||||||||||||
R-11 Минеральное волокно с металлическими штифтами 2×6 @ 16 дюймов OC | 7,10 | ||||||||||||||
R-19 Минеральное волокно с 2×6 металлическими штифтами @ 24 дюйма OC | 8,55 | ||||||||||||||
R-19 Минеральное волокно с деревянными стойками 2×6 @ 24 «OC | 19.11 | ||||||||||||||
Пенополистирол (экструдированный) | 1 « | 5,00 | |||||||||||||
Пенополиуритан (вспененный на месте) | 1″ | 6,25 | |||||||||||||
Лицевая сторона 7.20 | | ||||||||||||||
Кладка и бетон | |||||||||||||||
Обычный кирпич | 4 « | 0.80 | |||||||||||||
922 Лицевой кирпич | |||||||||||||||
Бетонная кладка (CMU) | 4 « | 0,80 | |||||||||||||
Бетонная кладка (CMU) | 8″ | 1,11 | |||||||||||||
Кирпичная кладка 12187 | 1,28 | ||||||||||||||
Бетон 60 фунтов на кубический фут | 1 дюйм | 0,52 | |||||||||||||
Бетон 70 фунтов на кубический фут | 1 дюйм | 0,42 | |||||||||||||
на кубический фут | на бетонный фут 80 фунтов | 0.33 | |||||||||||||
Бетон 90 фунтов на кубический фут | 1 дюйм | 0,26 | |||||||||||||
Бетон 100 фунтов на кубический фут | 1 дюйм | 0,21 | |||||||||||||
Бетон 120 фунтов | на кубический фут | 0,13 | |||||||||||||
Бетон 150 фунтов на кубический фут | 1 дюйм | 0,07 | |||||||||||||
Гранит | 1 дюйм | 0,05 | |||||||||||||
Песчаник / известняк 1 | 1 дюйм | 08 | |||||||||||||
Сайдинг | |||||||||||||||
Алюминий / винил (без теплоизоляции) | 0,61 | ||||||||||||||
Алюминий / винил 9182 1⁄2 дюйма | |||||||||||||||
Напольные покрытия | |||||||||||||||
Твердая древесина | 3/4 « | 0,68 | |||||||||||||
Плитка | 0.05 | ||||||||||||||
Ковер с волокнистой подушкой | 2,08 | ||||||||||||||
Ковер с резиновым ковриком | 1,23 | ||||||||||||||
9018 9018 9228 | 9018 Кровельные покрытия|||||||||||||||
Деревянная черепица | 0,97 | ||||||||||||||
Остекление | |||||||||||||||
Одинарная панель | 0.91 | ||||||||||||||
Двойное стекло с воздушным пространством 1/4 дюйма | 1,69 | ||||||||||||||
Двойное стекло с воздушным пространством 1/2 дюйма | 2,04 | ||||||||||||||
Двойное стекло с воздушным пространством 3/4 дюйма | 2,38 | ||||||||||||||
Тройное остекление с воздушным зазором 1/4 дюйма | 2,56 | ||||||||||||||
Тройное остекление с воздушным зазором 1/2 дюйма | 3,23 | ||||||||||||||
Дерево, массивная сердцевина | 1 3/4 « | 2.17 | |||||||||||||
Металлическая дверь с твердой изоляцией, изоляция из полистирола ASTM C518 Расчетный | 1,5 — 2 дюйма | 6,00 — 7,00 | |||||||||||||
Металлическая дверь с твердой изоляцией, изоляция из полистирола ASTM C1363 Действует | 1,5 дюйма — 2 дюйма | 2,20 — 2,80 | |||||||||||||
Металлическая дверь с твердой изоляцией, полиуретановая изоляция ASTM C518 Расчетное | 1,5 дюйма — 2 дюйма | 10,00 — 11,00 | |||||||||||||
Металлическая дверь с твердой изоляцией, изоляция из полиуретана ASTM C1363 .5–2 дюйма | 2,50 — 3,50 |
Значения в приведенной выше таблице были взяты из ряда источников, включая: Справочник по основам ASHRAE , ColoradoENERGY.org и Building Construction Illustrated Фрэнсиса Д.К. Чинг. Также использовались другие второстепенные источники. Archtoolbox не тестирует материалы или сборки.
Двери и агрегаты
В приведенной выше таблице вы заметите, что для изолированных металлических дверей с полиуретановой изоляцией предусмотрены два совершенно разных значения R.На основании ASTM C518 (метод расчета) дверь имеет значение R до 11, но при использовании ASTM C1363 (проверено / работоспособно) та же дверь имеет значение R только до 3,5. Это огромная разница и, по сути, сводится к тому, что ASTM C518 является теоретическим максимумом, основанным на тепловом испытании в установившемся режиме только части дверной панели. Однако все мы знаем, что рама, прокладки и оборудование значительно влияют на коэффициент теплопередачи. Поэтому был внедрен новый стандартный тест ASTM C1363, который тестирует всю дверную сборку. включая раму и фурнитуру.
Результаты ASTM C1363 намного ниже, но они гораздо более точны для реальных условий установки. Фактически, двери работают так же, как и раньше — просто значения R намного больше соответствуют тому, как дверь действительно работает. Многие архитекторы в настоящее время определяют двери с тестом ASTM C1363 в качестве стандарта на коэффициент теплопередачи. Ожидается, что этому примеру последуют и другие продукты.
Для получения дополнительной информации ознакомьтесь со статьей Института стальных дверей «Почему изменились рейтинги тепловых характеристик?»
Фундаменты зданий Министерства энергетики, Раздел 2-1 Рекомендации
Рисунок 2-1.Бетонная кладка стены подвала с внешней изоляцией
2.1 Рекомендуемые детали конструкции и конструкции
КОНСТРУКЦИЯ
Основными конструктивными элементами подвала являются стена, основание и пол (см. Рисунок 2-2). Стены подвала обычно строятся из монолитного бетона или бетонных блоков. Стены подвала должны быть спроектированы таким образом, чтобы выдерживать боковые нагрузки от грунта и вертикальные нагрузки от конструкции, расположенной выше.Боковые нагрузки на стену зависят от высоты насыпи, типа почвы, влажности почвы и сейсмической активности. Из-за большого количества переменных, участвующих в структурном проектировании фундамента, окончательное определение толщины стен, прочности бетона, размеров фундамента и армирования должно производиться после консультации с местными строительными нормами или проектированием лицензированным инженером-строителем.
Рисунок 2-2. Компоненты структурной системы подвала
Бетонные опоры служат опорой для бетонных и каменных стен и колонн подвала.Опоры должны иметь размер, достаточный для распределения нагрузки на почву. Замерзшая вода под опорами может вздыбиться, что приведет к растрескиванию и другим структурным проблемам. Если основание не основано на коренных породах или на грунтах, не подверженных промерзанию, опоры должны располагаться ниже максимальной глубины промерзания или быть изолированными для предотвращения промерзания.
Полы из бетонных плитобычно проектируются так, чтобы иметь достаточную прочность для выдерживания нагрузок на пол без армирования при заливке на ненарушенный или уплотненный грунт.Использование сварной проволочной сетки и бетона с низким водоцементным соотношением может уменьшить растрескивание при усадке, что является важной проблемой для внешнего вида и снижения потенциальной инфильтрации радона. Плиту следует вылить на материал контрольного шва, чтобы он мог двигаться независимо от фундаментной стены. Там, где присутствуют обширные грунты или в районах с высокой сейсмической активностью, могут потребоваться специальные методы строительства фундамента. В этих случаях рекомендуется проконсультироваться с местными строительными чиновниками и инженером-строителем.
УПРАВЛЕНИЕ ВОДОЙ / ВЛАЖНОСТЬЮ
В общем, схемы управления влажностью должны контролировать воду в двух состояниях. Во-первых, поскольку почва, контактирующая со стеной фундамента, всегда имеет относительную влажность 100%, стены фундамента должны иметь дело с водяным паром, который будет иметь тенденцию мигрировать внутрь в большинстве условий. Во-вторых, необходимо предотвратить попадание жидкой воды. Жидкая вода может поступать из таких источников, как:
- Неконтролируемые потоки поверхностных вод
- Высокий уровень грунтовых вод
- Капиллярный поток через конструкции подземного фундамента
Методы контроля накопления влаги в стенах подвала являются важным компонентом всей конструкции.Неправильное управление влажностью может привести к повреждению конструкции, отделке или содержимому подвала, а также к росту плесени, ремонт которой может быть очень дорогостоящим и опасным для здоровья.
Следующие методы строительства предотвратят попадание лишней воды в виде жидкой воды и пара в подвал. Это достигается за счет использования соответствующего дренажа и использования замедлителей образования пара, как показано на рисунках 2-3F и 2-3S.
Рисунок 2-3F. Компоненты системы дренажа и гидроизоляции в подвале, деталь фундамента
Рисунок 2-3S.Компоненты системы водоотведения и гидроизоляции подвала, деталь подоконника
- Управляйте внешней почвой и дождевой водой, используя водосточные желоба и водосточные трубы, а также выравнивая поверхность по периметру с падением не менее шести дюймов на десять футов пути. Установите дренаж в фундамент, окруженный гравием и обнесенный фильтровальной тканью. Нанесите на стены фундамента гидроизоляцию или гидроизоляцию (Дастур и др., 2005).
- Добавьте материал обратной засыпки или дренажную доску вокруг фундамента, который имеет свободный дренаж, чтобы земля или дождевая вода стекали в дренаж по периметру, установленный у основания фундамента.Существует множество подходов к проектированию дренажа фундамента, которые обсуждаются в следующем разделе.
- Добавьте капиллярный разрыв (герметик или прокладка из пенопласта с закрытыми порами) между верхней частью бетона и пластиной подоконника, чтобы предотвратить миграцию влаги между бетонным фундаментом и конструкцией пола выше. Точно так же, чтобы ограничить количество грунтовых вод, поглощаемых через основание, установите капиллярный разрыв между основанием и стеной фундамента (BSC 2006).
- Предотвратите проникновение влаги из земли в плиту, покрыв всю землю антипаром.Рекомендуется, чтобы замедлитель образования пара находился в непосредственном контакте с бетонной плитой, и чтобы между ними не было песка или гравия (Lstiburek 2008).
- Включает каменную подушку глубиной четыре дюйма и диаметром 3/4 дюйма (без мелких частиц) над землей и прямо под замедлителем образования пара. Он функционирует как гранулированный капиллярный разрыв под пароохладителем, дренажная подушка и расширитель поля давления воздуха для системы вентиляции почвенного газа.
Бетонные фундаментные стены содержат воду, оставшуюся после заливки, которую необходимо отвести, дав им высохнуть.В тех случаях, когда большая часть стены находится ниже уровня земли, высыхать можно только внутри. Изоляционный материал и настенные покрытия, размещенные на стенах во время строительства подвесного пространства, действуют как замедлители парообразования, не позволяя стенам высыхать изнутри. По этой причине рекомендуется устанавливать эти настенные покрытия ближе к концу строительства, чтобы обеспечить максимально возможное высыхание бетона (BSC 2006).
В подвальных помещениях важно не только иметь эффективный замедлитель паров, но и иметь полный воздушный барьер.По этой причине все зазоры между фундаментной стеной и пластиной порога, пластиной порога и ленточной балкой, а также ленточной балкой и черным полом должны быть заделаны. Все щели и проемы в фундаментной стене также должны быть должным образом заделаны.
Рисунок 2-4. Компоненты дренажной и гидроизоляционной системы в подвале (дренажная система по одному периметру), деталь основания
ДРЕНАЖНАЯ И ГИДРОИЗОЛЯЦИЯ
Не допускать попадания воды в подвалы — серьезная проблема во многих регионах.Источником воды в основном являются осадки, таяние снега, а иногда и орошение на поверхности. В некоторых случаях уровень грунтовых вод бывает около или выше уровня цокольного этажа время от времени в течение года. Существует три основных линии защиты от проблем с водой в подвалах: (1) поверхностный дренаж, (2) подземный дренаж и (3) гидроизоляция на поверхности стены (см. Рисунки 2-3F, 2-3S и 2-4). .
Цель поверхностного дренажа — удерживать воду из поверхностных источников подальше от фундамента за счет уклона поверхности земли и использования желобов и водосточных желобов для водостока с крыши.Системы подземного дренажа улавливают, собирают и уносят любую воду из земли, окружающей подвал. Компоненты подземной системы могут включать пористую засыпку, дренажные маты или изолированные дренажные плиты, а также перфорированные дренажные трубы в защищенном гравийном слое вдоль основания или под плитой, которые стекают в отстойник или на дневной свет. Местные условия определят, какие из этих компонентов системы подземного дренажа, если таковые имеются, рекомендуются для конкретного участка.
На рис. 2-3F показана система с двойным сливом, которая является наиболее надежным вариантом.На рис. 2-4 показана конфигурация с одним стоком. В обоих случаях предусматривается отвод воды с поверхности, которая стекает по фундаменту, а также воды, которая может скапливаться под плитой. На Рисунке 2-3F показана передовая система дренажа по периметру фундамента. Он состоит из двух независимых петель перфорированного дренажа фундамента, один внутри фундамента, а другой снаружи. Они сливаются независимо, либо на дневной свет, либо во внутренний отстойник. На рис. 2-4 показан другой вариант, который подходит при хороших дренажных условиях.Это также позволяет дренировать гравийный слой под плитами через каналы, проходящие через основание фундамента. Эти воздуховоды следует размещать как можно ближе к основанию основания, чтобы избежать скопления воды на внутренней стороне основания. Его единственная петля отвода фундамента находится на внешней стороне основания и отводится на дневной свет или во внутренний отстойник. Следует отметить, что соединение воздуховода с внешней стороной фундамента может снизить эффективность систем подавления радона с разгерметизацией под плитой за счет снижения способности системы поддерживать достаточно низкое давление под плитой.
Последняя линия защиты — гидроизоляция — предназначена для защиты от попадания воды в стены конструкции. Во-первых, важно различать необходимость в гидроизоляции и гидроизоляции. В большинстве случаев рекомендуется использовать гидроизоляционное покрытие, покрытое слоем полиэтилена толщиной 4 мил, чтобы уменьшить передачу пара и капиллярной тяги из почвы через стену подвала. Однако влагонепроницаемое покрытие не эффективно предотвращает проникновение воды под гидростатическим давлением через стену.Гидроизоляция рекомендуется (1) на участках с ожидаемыми водными проблемами или плохим дренажем, (2) когда планируется законченное пространство подвала, или (3) на любом фундаменте, построенном, где периодически возникает гидростатическое давление на стену подвала из-за дождя, ирригации или снег тает. За исключением очень сухих участков, обычно рекомендуется использовать гидроизоляцию. На участках, где цокольный этаж может быть ниже уровня грунтовых вод, рекомендуется использовать подполье или фундамент в виде плиты на уровне грунта.
МЕСТО ИЗОЛЯЦИИ
Рисунок 2-5. Возможные места для утепления подвала
Ключевым вопросом при проектировании фундамента является размещение изоляции на внутренней или внешней поверхности стены подвала (рис. 2-5). С точки зрения энергопотребления, нет существенной разницы между одинаковым количеством полной изоляции стены, нанесенной на внешнюю поверхность, и на внутреннюю часть бетонной или кирпичной стены. Однако стоимость установки, простота применения, внешний вид и различные технические аспекты могут быть совершенно разными.Индивидуальные соображения по дизайну, а также местные затраты и практика определяют лучший подход для каждого проекта.
Жесткая изоляция, размещенная на внешней поверхности бетонной или каменной стены подвала, имеет некоторые преимущества по сравнению с внутренним размещением в том, что она (1) может обеспечивать непрерывную изоляцию без тепловых мостов, (2) защищает и поддерживает гидроизоляцию и конструкцию стены при умеренных температурах. , (3) сводит к минимуму проблемы конденсации влаги, и (4) не уменьшает внутреннюю площадь пола подвала (рис. 2-6).Если внешняя изоляция простирается, чтобы покрыть обод, а ее коэффициент сопротивления R достаточно высок, балки и подоконники можно оставить открытыми для осмотра изнутри на предмет термитов и гниения. С другой стороны, внешняя изоляция на стене может обеспечить путь для термитов, если с ней не обращаться должным образом, и может помешать осмотру стены снаружи. Изоляция, которая подвергается воздействию выше класса, должна быть защищена покрытием для предотвращения физического повреждения и деградации. К таким покрытиям относятся фиброцементные плиты, обрезки (материал типа штукатурки), обработанная фанера или мембранный материал (Baechler et al.2005). Наружная изоляция помещает фундаментную стену в тепловую оболочку. Это означает, что зимой стена будет теплее, а влага не будет высыхать внутри. Из-за этого непроницаемые материалы, такие как масляная краска, полиэтилен или виниловые обои, не должны использоваться в качестве внутренней отделки.
Рисунок 2-6. Подвал с внешней изоляцией XPS или EPS
Изоляция наружных стен должна быть одобрена для использования в грунтовых условиях. Обычно используются три продукта ниже сорта: экструдированный полистирол, пенополистирол и жесткие панели из минерального волокна.(Baechler et al. 2005). Экструдированный полистирол (номинальное сопротивление R-5 на дюйм) является обычным выбором. Пенополистирол (номинальное R-4 на дюйм) дешевле, но имеет более низкие изоляционные свойства. Пены низкого качества могут подвергаться риску накопления влаги при определенных условиях. Экспериментальные данные показывают, что это накопление влаги может снизить эффективное значение R на 35% -44%. Исследования, проведенные в Национальных лабораториях Ок-Ридж, изучали содержание влаги и термическое сопротивление пенопластовой изоляции, находящейся ниже уровня земли в течение пятнадцати лет; влага может продолжать накапливаться и ухудшать тепловые характеристики после пятнадцатилетнего периода исследования.Это возможное снижение следует учитывать при выборе количества и типа используемой изоляции (Kehrer, et al., 2012, Crandell 2010).
Жесткие панели из стекловолокна и жесткой минеральной ваты (R-4 на дюйм) не изолируют так же хорошо, как экструдированный полистирол, но являются единственными изоляционными материалами, которые могут обеспечить дренажное пространство для фундаментных стен из-за их пористой структуры. Использование этих материалов в качестве дренажного пространства работает только при наличии эффективных дренажных систем по периметру фундамента.
К сожалению, утеплить снаружи сложнее и дороже, чем утеплить фундамент изнутри; это особенно верно при модернизации. По этой причине чаще всего используется внутренняя изоляция. Однако фактические затраты могут быть выше, если требуется законченная прочная поверхность. Кроме того, пенопластовые изоляционные материалы потребуют огнестойкого слоя для соответствия нормам. Экономия энергии может быть уменьшена с некоторыми системами и деталями из-за тепловых мостов.Изоляция может быть размещена на внутренней стороне балки обода, но с большим риском проблем с конденсацией и меньшим доступом к деревянным балкам и подоконникам для осмотра термитов изнутри. Системы внутренней изоляции не рекомендуются для бетонных фундаментов без полностью заполненных заполнителей из-за повышенного риска накопления влаги внутри стены. Системы внутренней изоляции также не рекомендуются в подвалах, которые имеют риск проникновения влаги, будь то из-за неадекватного дренажа, плохой почвы, высокого уровня грунтовых вод или других факторов из-за ограниченной способности этих систем высыхать изнутри.Не следует использовать внутреннюю изоляцию, если нет положительного разрыва капилляров между верхней частью фундаментной стены и системой деревянного каркаса из-за возможности накопления влаги в материалах деревянного каркаса.
При использовании внутренней изоляции она должна соответствовать следующим требованиям (Baechler et al. 2005):
- Внутренняя изоляция не должна применяться к бетонным стенам из кирпичной кладки ниже уровня земли, если только сердцевины блока не заполнены полностью.
- Применение внутренней изоляции поверх стен, где присутствует влага, вероятно, приведет к увеличению содержания влаги в стене из-за того, что она более холодная, и из-за ограничения возможности высыхания внутри.
- Стена подвала должна сохранять некоторую способность к сушке изнутри, если происходит намокание, поскольку нижняя часть стены не может высохнуть снаружи. Это означает, что внутренние пароизоляционные материалы или любые непроницаемые внутренние покрытия стен, такие как виниловые покрытия для стен или системы масляной / алкидной / эпоксидной краски, должны быть установлены , а не .
- Стеновая система должна быть герметично закрыта, чтобы влагосодержащий подвальный воздух не попадал в холодную фундаментную стену из-за переноса воздуха и конденсации.
- Материал, контактирующий с фундаментной стеной и бетонной плитой, должен быть влагостойким. Необходимо использовать разрывы капилляров для предотвращения попадания влаги в материалы, чувствительные к влаге.
Рисунок 2-7. Подвал с внутренней полупроницаемой изоляцией XPS или EPS
Есть два хороших подхода к внутренней изоляции подвала: панели из жесткого пенопласта и аэрозольная пена.Системы жесткого пенопласта состоят из пенополистирольных панелей из вспененного или экструдированного пенополистирола, нанесенных на всю фундаментную стену, как показано на Рисунке 2-7 (BSC 2002). Нанесение распыляемой пены обычно включает распыление всей фундаментной стены и, как правило, краевой балки до соответствующей толщины. При желании к каркасной стене, возведенной внутри пенопласта, может быть добавлен дополнительный утеплитель из необлицованного войлока. Изоляционные материалы из пенопласта легко воспламеняются и должны быть защищены от возгорания.Если дополнительная изоляция не требуется, поверх пенопласта можно прикрепить деревянные планки обшивки, а к полосам обшивки можно прикрепить гипсокартон. Во всех низкосортных постройках рекомендуется использовать гипсокартон без бумажной облицовки, чтобы снизить риск повреждения, связанного с влажностью. Гипсокартон следует держать не менее чем на полдюйма выше пола подвала, чтобы избежать намокания (Baechler et al. 2005). Никакие замедлители образования пара, такие как полиэтилен, виниловые обои или краска на масляной основе, не должны использоваться где-либо в системе для обеспечения высыхания внутри.
Можно отказаться от использования гипсокартона в качестве барьера воспламенения. Это было сделано с использованием изоляционных панелей из полиизоцианурата, облицованных фольгой, некоторые из которых рассчитаны на использование в подвалах и подпольях в некоторых юрисдикциях. Однако обратите внимание, что неперфорированная фольговая облицовка полностью паронепроницаема, и через нее будет происходить очень незначительное высыхание. Многие юрисдикции также разрешают пенополиуритан высокой плотности покрывать обод и подоконник (но не всю стену) без дополнительной противопожарной защиты.
Модернизация внутренней изоляции сопряжена с дополнительными рисками: между фундаментом и каркасом может не быть разрывов капилляров; изоляция внутри будет способствовать накоплению влаги в каркасе. Между основанием и стеной может не быть разрыва капилляров, что потенциально увеличивает присутствие влаги из-за капиллярного капиллярного капилляра. Поскольку в старых домах гидроизоляционные и дренажные системы часто отсутствуют или не работают, возможно проникновение воды в большом количестве.Описание надежной стратегии модернизации внутренней изоляции см. В Ueno (2011).
В дополнение к более традиционному внутреннему или внешнему размещению, описанному в этом руководстве, существует несколько систем, которые включают изоляцию в конструкцию бетонных или кирпичных стен. К ним относятся (1) изоляция из жесткого пенопласта, залитая внутри бетонной стены (рис. 2-5c), (2) шарики из полистирола, гранулированные изоляционные материалы или распыляемая пена, заливаемая в полости обычных каменных стен, (3) системы из бетонных блоков. со вставками из изоляционной пены, (4) сформированные, взаимосвязанные блоки из жесткой пены, которые служат в качестве постоянной изоляционной формы для монолитного бетона (изолированные бетонные опалубки, или ICF, рис. 2-5d), и (5) изготовленные каменные блоки с полистироловыми шариками вместо заполнителя в бетонной смеси, что приводит к значительно более высоким R-значениям.Однако эффективность систем, которые изолируют только часть площади стены, следует тщательно оценивать, поскольку тепловые мостики вокруг изоляции могут значительно повлиять на общую производительность.
И, наконец, еще одна технология строительства подвала в новом строительстве — использование сборных бетонных фундаментных стен. Допустимы два типа. Первый — это бетонные стены со встроенными нижними колонтитулами, которые опираются на гравийную основу, которая позволяет осушать всю сборку.Это означает, что до тех пор, пока панели во время строительства правильно загерметизированы, эти стены останутся теплыми и сухими. Эти стены предназначены для утепления снаружи. Вторые — это сборные бетонные стены, которые имеют один дюйм жесткой пенопластовой изоляции, прикрепленной к внутренней части. Эти стены сконструированы так, чтобы можно было установить дополнительную изоляцию между отсеками стоек, и поставляются со встроенными деревянными гвоздями для крепления гипсокартона или панелей (BSC 2002).
МЕТОДЫ КОНТРОЛЯ ТЕРМИТА И ДРЕВЕСИНЫ
Рисунок 2-8F.Методы борьбы с термитами в подвалах, деталь опор
Рисунок 2-8S. Методы борьбы с термитами в подвалах, деталь подоконника
Методы контроля проникновения термитов через жилые фонды рекомендуются на большей части территории Соединенных Штатов (см. Рисунки 2-8F и 2-8S). Следующие рекомендации применимы, когда термиты представляют собой потенциальную проблему. Для получения более подробной информации проконсультируйтесь с местными строительными органами и нормативами.
- Сведите к минимуму влажность почвы вокруг подвала, используя желоба, водостоки и водостоки для отвода воды с крыши, а также установив полную систему дренажа вокруг фундамента.
- Удалите с участка все корни, пни и обрезки древесины до, во время и после строительства, в том числе деревянные колья и опалубку с участка фундамента.
- Обработайте почву термитицидом или установите на всех участках, уязвимых для термитов, правильно обслуживаемые приманки.
- Поместите соединительную балку или ряд заглушек поверх всех бетонных стен фундамента, чтобы убедиться, что не осталось открытых стержней. В качестве альтернативы, заполните все стержни верхнего слоя строительным раствором и укрепите строительный шов под верхним слоем.
- Поместите порог на высоте не менее 8 дюймов над уровнем земли; это должно быть обработано консервантом давления, чтобы противостоять гниению. Пластина порога должна быть видна изнутри. Поскольку термитные щиты часто повреждаются или устанавливаются недостаточно тщательно, сами по себе они не могут считаться достаточной защитой.
- Убедитесь, что внешний деревянный сайдинг и отделка находятся на высоте не менее 6 дюймов над уровнем земли.
- Постройте подъезды и внешние плиты так, чтобы они отклонялись от стены фундамента и находились не менее чем на 2 дюйма ниже наружной сайдинга.Кроме того, подъезды и внешние плиты должны быть отделены от всех деревянных элементов 2-дюймовым зазором, видимым для осмотра, или непрерывным металлическим слоем, припаянным ко всем швам.
- Заполните стык между плиточным полом и фундаментной стеной уретановым герметиком или каменноугольной смолой, чтобы сформировать термитный барьер.
- Используйте деревянные стойки, обработанные консервантом, на плите пола в подвале или поместите столбы на гидроизоляцию или бетонный постамент, приподнятый на 1 дюйм над полом.
- Стальные пустотелые колонны наверху для остановки термитов.Твердые стальные несущие пластины также могут служить защитой от термитов наверху деревянного столба или полой стальной колонны.
Пенопласт и изоляционные материалы из минеральной ваты не имеют пищевой ценности для термитов, но они могут обеспечить защитное покрытие и облегчить проходку туннелей. Изоляционные установки могут быть детализированы для облегчения осмотра, хотя часто за счет снижения тепловой эффективности.
В принципе, щитки от термитов обеспечивают защиту, но на них не следует полагаться как на барьер.Термитные экраны показаны в этом документе как компонент систем внешней изоляции. Их цель — вытеснить любых насекомых, пролезающих через стену, наружу, где их можно будет увидеть. По этой причине щитки от термитов должны быть сплошными, а все швы должны быть герметизированы, чтобы не допустить обхода насекомыми.
Эти опасения по поводу изоляции и ненадежности защиты от термитов привели к выводу, что обработка почвы является наиболее эффективным методом борьбы с термитами с помощью изолированного фундамента.Однако ограничения на широко применяемые термитициды могут сделать этот вариант либо недоступным, либо вызвать замену более дорогими и, возможно, менее эффективными продуктами. Эта ситуация должна стимулировать использование методов изоляции, которые улучшают визуальный осмотр и создают эффективные барьеры для термитов. Для получения дополнительной информации о методах борьбы с термитами см. NAHB (2006).
МЕТОДЫ УПРАВЛЕНИЯ РАДОНОМ
Рисунок 2-9F. Методы контроля радона для подвалов, деталь опор
Рисунок 2-9S.Методы контроля радона для подвалов, деталь подоконника
Строительные методы минимизации проникновения радона в подвал подходят там, где есть разумная вероятность присутствия радона (см. Рисунки 2-9s, 2-9f и 2-10). Чтобы определить это, свяжитесь с государственным радоновым персоналом. Общие подходы к минимизации радона включают (1) удаление газа из почвы, окружающего подвал, и (2) герметизацию швов, трещин и проникновений в фундаменте.
Герметизация цокольного этажа
- Используйте сплошные трубы для отвода сточных вод в пол к дневному свету или механические ловушки, отводящие в подземные стоки.
- Используйте полиэтиленовую пленку толщиной не менее 6 мил (минимум) под плитой поверх гравийного дренажного слоя. Эта пленка служит замедлителем радона и влаги, а также предотвращает проникновение бетона в основание заполнителя под плитой во время ее заливки. Прорежьте «x» в полиэтиленовой мембране, чтобы получить проходы. Поднимите язычки и заклейте их до места проникновения герметиком или лентой. Следует проявлять осторожность, чтобы избежать непреднамеренного пробивания барьера; по возможности рассмотрите возможность использования окатанного руслового гравия.Гравий русла реки обеспечивает более свободное движение почвенного газа, а также не имеет острых краев, которые могли бы проникнуть в полиэтилен. Края пленки должны быть притерты не менее 12 дюймов. Полиэтилен должен выступать за верхнюю часть фундамента или быть уплотненным к стене фундамента.
- Обработайте стык между стеной и плиточным полом и заделайте полиуретановым герметиком, который хорошо прилегает к бетону и является долговечным.
- Избегайте создания желобов по периметру плиты, которые обеспечивают прямой выход в почву под плитой.
- Свести к минимуму растрескивание при усадке за счет минимального содержания воды в бетоне. При необходимости используйте пластификаторы, а не воду, чтобы улучшить удобоукладываемость.
- Укрепите плиту проволочной сеткой или волокнами, чтобы уменьшить растрескивание при усадке, особенно возле внутреннего угла плит L-образной формы.
- Если используются, обработайте контрольные швы с углублением на 1/2 дюйма и полностью заполните это углубление полиуретановым или аналогичным герметиком.
- Сведите к минимуму количество заливок, чтобы избежать холодных стыков.Начните отверждение бетона сразу после заливки в соответствии с рекомендациями Американского института бетона (1980; 1983). При 70F требуется не менее трех дней, а при более низких температурах — больше. Используйте непроницаемый покровный лист или влажную мешковину для облегчения отверждения. Национальная ассоциация производителей готовых смесей предлагает также использовать пигментированный отвердитель.
- Создайте зазор шириной не менее 1/2 дюйма вокруг всех вводов водопровода и инженерных сетей через плиту на глубину не менее 1/2 дюйма.Заполните полиуретаном или аналогичным герметиком.
- Не устанавливайте отстойники в подвалах в радоноопасных зонах без крайней необходимости. Если используется, накройте поддон герметичной крышкой и выпустите наружу. Используйте погружные насосы.
- Установите механические ловушки на все необходимые стоки в полу, выходящие через гравий под плитой.
- Разместите отводы конденсата HVAC таким образом, чтобы они стекали на дневной свет за пределы ограждающей конструкции или в герметичные отстойники в подвале.Отводы конденсата, которые соединяются с сухими колодцами или другой почвой, могут стать прямыми путями для почвенного газа и могут быть основным источником поступления радона. По крайней мере, убедитесь, что эти отводы конденсата должным образом закрыты, чтобы всегда был заполнен полный диаметр хотя бы части колена.
- Заделайте отверстия вокруг унитазов, сифонов для ванн и других сантехнических устройств (используйте безусадочную затирку).
Герметизация стен подвала
- Укрепите стены и опоры, чтобы свести к минимуму растрескивание при усадке и растрескивание из-за неравномерной осадки.
- Чтобы замедлить движение радона через пустотелые стены из кирпичной кладки, верхний и нижний ряды пустотелых стен должны быть сплошными блоками или сплошным заполнением. Если верхняя сторона нижнего ряда ниже уровня плиты, следует заполнить ряд блока на пересечении низа плиты. Если устанавливается облицовка из кирпича или другой уступ из каменной кладки, участок непосредственно под этим выступом также должен быть сплошным блоком.
- Очистите и загерметизируйте внешнюю поверхность бетонных стен, находящихся ниже уровня земли, контактирующих с почвой.Установите дренажные доски, чтобы почвенный газ попадал на поверхность за пределами стены, а не через стену.
- Установите сплошную гидроизоляционную или гидроизоляционную мембрану снаружи стены. Полиэтилен толщиной 6 мил, обернутый внахлест, заклеенный лентой и размещенный на внешней стороне поверхности стены подвала, будет препятствовать проникновению радона через трещины в стенах.
- Заделайте проходы в стене вокруг сантехнических и других инженерных и служебных отверстий полиуретаном или аналогичным герметиком.Как снаружи, так и изнутри бетонные стены должны быть загерметизированы в местах проникновения.
- Установить герметичные уплотнения на дверях и других проемах между подвалом и прилегающей к нему подлостью.
- Уплотнение вокруг воздуховодов, водопровода и других служебных соединений между подвалом и подвальным помещением.
- Не размещайте воздуховоды подачи или возврата воздуха под плитой или в основании.
Улавливание почвенного газа
Рисунок 2-10.Методы сбора и сброса почвенного газа
Наиболее эффективным способом ограничения поступления радона и других газов в почву является использование активной разгерметизации почвы (ASD). ASD работает за счет снижения давления воздуха в почве по сравнению с внутренним. Избегать проемов фундамента в почву или герметизировать эти проемы, а также ограничивать источники разгерметизации помещений вспомогательными системами ASD. Иногда используется система пассивной разгерметизации грунта (PSD, без вентилятора). Если тестирование на радон после заселения показывает, что желательно дальнейшее сокращение содержания радона, в вентиляционную трубу можно установить вентилятор (см. Рисунок 2-10).
Снижение давления с помощью поддона оказалось эффективным методом снижения концентрации радона до приемлемых уровней даже в домах с чрезвычайно высокими концентрациями (Dudney 1988). Этот метод снижает давление вокруг оболочки фундамента, в результате чего почвенный газ направляется в систему сбора, избегая внутренних пространств и выбрасывая наружу.
В фундаменте с хорошим подземным дренажем уже есть система сбора. Дренажный слой из гравия под плитами можно использовать для сбора почвенного газа.Он должен быть не менее 4 дюймов в толщину и из чистого заполнителя не менее 1/2 дюйма в диаметре. Гравий должен быть покрыт слоем полиэтиленового радона толщиной 6 мил и замедлителем влажности.
Вентиляционная труба из ПВХ диаметром 3 или 4 дюйма должна быть проложена от подкладочного слоя гравия через кондиционированную часть здания и через самую высокую плоскость крыши. Труба должна заканчиваться под плитой тройником. Чтобы предотвратить засорение трубы гравием, к ножкам тройника можно прикрепить отрезки перфорированного дренажа длиной десять футов и загерметизировать его концы.В качестве альтернативы вентиляционная труба может быть подключена к дренажной системе по периметру, если эта система не подключена к внешней среде. Горизонтальные вентиляционные трубы могут соединять вентиляционную трубу через стены ниже уровня земли с проницаемыми участками под прилегающими плитами. Одной вентиляционной трубы достаточно для большинства домов с площадью плиты менее 2500 квадратных футов, которая также включает проницаемый подслой. Вентиляционная труба выводится на крышу через сантехнические желоба, внутренние стены или туалеты.
Система PSD требует, чтобы плита перекрытия была почти воздухонепроницаемой, чтобы не возникало короткого замыкания из-за втягивания чрезмерного количества воздуха в помещении через плиту в систему.Трещины, отверстия в плитах и контрольные швы должны быть заделаны. Крышки отстойников должны быть спроектированы и установлены таким образом, чтобы они были герметичными. Следует избегать сточных вод в полу, которые выходят на гравий под плитой, но при использовании их следует оборудовать механической ловушкой, способной обеспечить герметичное уплотнение.
Еще одно потенциальное короткое замыкание может произойти, если в дренажной системе имеется самотечный сброс в подземный водосток. Эта напорная линия может нуждаться в механическом уплотнении.Линия для отвода подземного дренажа, если она не входит в герметичный отстойник, должна быть построена с прочно приклеенной дренажной трубой, которая выходит на дневной свет. Напорная труба должна располагаться с противоположной стороны от дренажного слива.
В то время как правильно установленная система пассивной разгерметизации почвы (PSD) может снизить концентрацию радона внутри помещений примерно на 50%, системы активной разгерметизации почвы (ASD) могут снизить концентрацию радона внутри помещений на 99%. Система PSD более ограничена с точки зрения вариантов прокладки вентиляционных труб и менее прощает дефекты конструкции, чем системы ASD.Кроме того, в новом строительстве можно использовать небольшие вентиляторы ASD (25-40 Вт) с минимальным энергетическим воздействием. В активных системах используются бесшумные прямые канальные вентиляторы для забора газа из почвы. Вентилятор должен располагаться снаружи, а в идеале — над кондиционируемым пространством, чтобы любые утечки воздуха со стороны положительного давления вентилятора или вентиляционной трубы не попадали в жилое пространство. Вентилятор должен быть ориентирован так, чтобы в корпусе вентилятора не скапливался конденсат. Стек ASD должен быть проложен через здание, пристроенный гараж или навес и выступать на двенадцать дюймов над крышей.Его также можно провести через ленточную балку и вверх по внешней стороне стены до точки, достаточно высокой, чтобы не было опасности перенаправления выхлопных газов в здание через вентиляционные отверстия чердака или другие проходы. Поскольку системы PSD полагаются на естественную плавучесть для работы, стек PSD должен быть проложен через кондиционированную часть дома.
Вентилятор, способный поддерживать всасывание воды на 0,2 дюйма в условиях установки, подходит для обслуживания подсобных систем сбора в большинстве домов (Labs 1988).Это часто достигается с помощью центробежного вентилятора мощностью 0,03 л.с. (25 Вт) и 160 куб. Футов в минуту (максимальная мощность), способного втягивать до 1 дюйма воды перед остановкой. В полевых условиях на глубине 0,2 дюйма воды такой вентилятор работает со скоростью около 80 кубических футов в минуту.
Можно проверить всасывание подсистемы подслоя, просверлив небольшое (1/4 дюйма) отверстие в участках плиты, удаленных от точки всасывания, и измерив всасывание через отверстие с помощью микроманометра или наклонного манометра. Целью подсистемы сброса давления внутри плиты является создание отрицательного давления воздуха под плитой по сравнению с давлением воздуха в прилегающем внутреннем пространстве.Всасывание в 5 Па считается удовлетворительным, когда дом находится в наихудшем состоянии разгерметизации (т. Е. Дом закрыт, все вытяжные вентиляторы и устройства работают, а система отопления, вентиляции и кондиционирования воздуха работает с закрытыми внутренними дверями). После испытания отверстие необходимо закрыть.
СистемыPSD требуют почти идеальной герметизации проемов в почве, поскольку система использует 3- или 4-дюймовую трубу для более эффективной вентиляции, чем весь дом. Герметизация отверстий в почве менее критична для борьбы с радоном с помощью систем ASD, хотя это очень желательно для ограничения потерь энергии, связанных с утечкой кондиционированного воздуха в помещении в подстилку с пониженным давлением, а оттуда на улицу.Срок службы вентиляторов ASD составляет в среднем около десяти лет, причем ожидаемый срок службы выше, если вентилятор защищен от непогоды. Поскольку система ASD может быть отключена жильцами, сервисные выключатели обычно располагаются в зонах с ограниченным доступом.
Для получения дополнительной информации посетите Центр решений Building America.
Стеновые системы из каменной кладки | WBDG
Введение
Каменная кладка использовалась в строительстве на протяжении тысячелетий.Его можно использовать для создания прочной системы облицовки и достижения различных эстетических эффектов. Каменные блоки можно ориентировать в разных положениях для создания разных узоров на внешней стене. Помимо формирования внешней облицовки, каменные стены могут служить частью структурного каркаса здания. Кладка стен также обычно увеличивает огнестойкость стеновой системы или конструктивных элементов.
Кладка стен может быть одинарной или многослойной. Под шириной кладки понимается толщина стены, равная толщине отдельных блоков.
Описание
Каменная кладка обычно возводится (кладется) на месте с использованием готовых блоков кладки и раствора, смешанного на стройплощадке. Блоки укладываются в строительный раствор на разную высоту, при этом прочность конструкции достигается во время отверждения раствора. Кладка может образовывать структурные элементы (обычно несущие стены, колонны или пилястры) и / или готовую систему облицовки.
Каменная кладка
Обычно используются несколько различных типов кирпичной кладки. Обычные типы каменных блоков включают глиняные и бетонные блоки, которые могут быть сплошными или пустотелыми, а также застекленными или неглазурованными.Другие типы каменных блоков включают блоки из литого камня и силиката кальция.
Глиняные блоки
Блоки из глиняного кирпича обычно используются при строительстве кирпичной кладки. В зависимости от используемой глины и способа формования элементов во время изготовления, глиняные элементы бывают разных цветов, размеров и фактур. Другие типы блоков включают глазурованный кирпич (как глиняный, так и бетонный), бетонный кирпич, силикатный кирпич и пустотелую глиняную плитку (обычно используемую в старых каменных зданиях).
Кладки из глины обычно изготавливаются из мягкой глины, экструдированной в требуемую форму на заводе-изготовителе.На внешней поверхности кирпича может быть сформировано несколько различных отделок, таких как проволочная резка или шлифовка, в зависимости от метода, используемого для придания кирпичу желаемой формы. Затем блоки из кирпича нагреваются в печи (обжигаются) до температуры от 1100 до 1200 градусов по Фаренгейту для создания структурных свойств блоков.
Блоки могут быть полыми (стержни занимают более 25% блока) или сплошными. Юниты, отнесенные к категории твердых, обычно содержат сердечники для обработки и обеспечения более равномерного ведения огня.Для большинства наружных стен используются блоки, отнесенные к категории сплошных.
Стандарт для блоков из глиняной кладки — ASTM C216 (Стандартные спецификации для облицовочного кирпича (блоки сплошной каменной кладки, изготовленные из глины или сланца). В этом стандарте и в спецификациях зданий глиняные блоки классифицируются по классу (NW, MW или SW) и тип (FBA, FBS и FBX). Степень кладки зависит от требуемой прочности блоков. Как правило, в большинстве регионов США рекомендуется класс SW (суровые погодные условия). Эти блоки гораздо более устойчивы к циклическим замораживания-оттаивания.Установки MW (умеренное атмосферное воздействие) следует использовать только в районах, где не ожидается циклов замерзания. Блоки NW (незначительное атмосферное воздействие) следует использовать только во внутренних условиях, когда внутренний воздух кондиционируется и отсутствует воздействие влаги.
Тип агрегата зависит от требуемых допусков на размер. Обычно указывается тип FBS, если не требуются необычно жесткие допуски. Если требуются жесткие допуски, следует указать тип FBX. Агрегаты типа FBA обычно используются для создания деревенского внешнего вида с высокими допусками по размерам.
Кладки из глазурованной глины должны соответствовать требованиям ASTM C126 (Стандартные технические условия для облицовочной плитки из керамической глазурованной конструкционной глины, облицовочного кирпича и массивных кирпичей).
Бетонные блоки (CMU)
Бетонные блоки (CMU) изготавливаются из смеси портландцемента и заполнителей в контролируемых условиях. Блоки могут быть изготовлены с различными размерами, но обычно имеют лицевую часть 8 дюймов в высоту и 16 дюймов в ширину (номинальные). Бетонные блоки для кладки обычно изготавливаются для придания желаемой формы, а затем подвергаются отверждению под давлением на заводе-изготовителе.Единицы часто используются, когда кладка должна формировать несущую стену или внутреннюю перегородку между помещениями внутри здания. Бетонные блоки могут изготавливаться разных размеров и с различной фактурой лица.
Бетонные блоки должны соответствовать требованиям ASTM C90. Устройства делятся на категории в зависимости от веса (легкие, нормальные и тяжелые). Структурная кладка бывает нормальной или тяжелой. Легкие элементы используются в ненесущих условиях или в качестве облицовки.
Поскольку эти блоки обычно больше кирпичных, время строительства, необходимое для укладки блоков, обычно меньше, чем у кирпичных. Агрегаты могут быть сплошными или полыми (с двумя или тремя сердечниками) и иметь цельные или фланцевые концы. Ядра образуют непрерывные вертикальные пустоты, которые часто усиливаются. Стальные стержни помещаются в стержни, а вокруг стержней устанавливается раствор. Таким образом стена действует как железобетонный элемент.
Миномет
Раствор обычно состоит из цемента, извести и песка, хотя также могут быть составы известковые растворы, в которых цемент не используется.Компоненты и пропорции растворов меняются в зависимости от желаемых свойств раствора. Наиболее распространены строительные растворы, состоящие из портландцемента и извести, а также из песка. Предварительно приготовленные растворы необходимо тщательно проверять, чтобы определить фактические компоненты смеси.
Существуют разные типы минометов в зависимости от требуемой прочности. Растворы для нового строительства, как правило, относятся к типам N, S или M. Для ремонта существующих зданий могут потребоваться некоторые другие типы, такие как тип O или даже более мягкие растворы, чтобы воспроизвести свойства исходного раствора.Наиболее распространенные типы кладки и ее использование в новом строительстве:
- Тип N — Используется в общих каменных стенах над уровнем земли. Это наиболее распространенный кладочный раствор, используемый в неструктурных целях в новом строительстве. Он обладает хорошими адгезионными качествами и хорошей устойчивостью к проникновению воды.
- Тип S — Обычно используется в конструкционной кладке. Имеет более высокую долю цемента и, следовательно, может иметь повышенную усадку раствора.
- Тип M — обычно используется только для грунтовых вод.
Пропорции раствора и требования к смешиванию изложены в ASTM C270 и в соответствующих технических примечаниях, опубликованных Brick Institute of America (BIA). Обычно строительные растворы смешиваются с водой на месте для получения влажной жидкой смеси с достаточным количеством воды для удобоукладываемости. Раствор периодически повторно темперируют (в смесь добавляют дополнительную воду) для сохранения удобоукладываемости. Через два часа сцепление свежего неиспользованного раствора с новыми элементами значительно уменьшается. Следовательно, следует отказаться от раствора, который не использовался в течение двух часов.
Основы
Установка
Кладка должна быть установлена на прочном жестком основании. Обычно это бетонный фундамент, конструкционная сталь или система бетонных балок. Большинство строительных норм и правил не позволяют поддерживать вес кладки деревянным каркасом из-за потери прочности деревянного элемента под воздействием влаги. Опорная система должна быть рассчитана на небольшие прогибы (обычно 1/600 пролета), чтобы избежать растрескивания кладки.
Каменная кладка закладывается в слой раствора.Горизонтальные стыки между агрегатами называются стыками станины, а вертикальные стыки — головными стыками. Кладка из глиняного кирпича должна включать сплошные (сплошные) стыки изголовья и ложа. В бетонной кладке блоки с раствором кладут только на лицевую обшивку. Это связано с размером ядер и сложностью установки строительного раствора в перемычках между сердцевинами, не позволяя значительным количествам раствора заполнить сердцевины. Полная заливка бетонных блоков кладки обычно выполняется только там, где часть ячеек будет заполнена раствором.При затирке строительный раствор не должен попадать в ячейки, так как это приведет к образованию слабой плоскости в затирке.
Курсинг
Каменные блоки также могут быть разных размеров и форм, чтобы соответствовать требованиям конкретного проекта. Модули также можно ориентировать по-разному для создания различных эстетических эффектов. Распространенные схемы курсинга следующие:
- Носилки — устройства ориентированы горизонтально, открывая все лицо (наиболее часто).
- Заголовки — блоки ориентированы перпендикулярно поверхности стены с открытым концом (заголовки могут быть истинными или ложными).
- Солдаты — подразделения ориентированы вертикально с открытым лицом.
- Rowlock — блоки ориентированы перпендикулярно поверхности стены с открытыми торцом и лицевой стороной (часто используется на подоконниках и на вершинах стен).
Расширение и усадка блоков
После изготовления кирпичи из глины расширяются под воздействием влаги.Это изменение объема блока приводит к необратимому накопленному росту стеновой системы. Бетонные блоки обычно дают усадку после изготовления. Эти движения, если они не учтены в конструкции элементов кладки, могут вызвать растрескивание, скалывание и смещения в кладке. По этой причине при строительстве из глиняной кладки требуются компенсационные швы, особенно в местах, открытых снаружи, где блоки могут намокнуть. Деформационные швы обычно требуются на углах, смещениях и других изменениях плоскости стены; изменения конструкции стен; и на обычных расстояниях (обычно от 20 до 30 футов максимум по центру, в зависимости от агрегатов).Рекомендации по проектированию / компоновке компенсаторов приведены в Техническом примечании 18A Ассоциации производителей кирпича (BIA).
Бетонные стены из кирпича обычно армируются арматурой швов для контроля усадки. В зависимости от размера и шага арматуры расстояние между контрольными швами может быть разным. Однако контрольные швы необходимы во всех бетонных стенах. Рекомендации по размещению контрольных швов приведены в Tek Note 10-A Национальной ассоциации бетонных кладок (NCMA).
Кладка из глины и бетона также подвергается циклическим тепловым движениям. Эти материалы расширяются при высоких температурах и сжимаются при низких температурах. Деформационные суставы также должны учитывать эти движения.
Стеновые системы
Кладка стен бывает нескольких видов:
- Шпон (стеновая система обеспечивает облицовку и выдерживает только передачу ветровых нагрузок на опору конструкции)
- Несущая стена / несущая стена (может быть облицовкой, но также обеспечивает несущую систему)
Следует ожидать проникновения воды через внешние элементы кладки под дождем.Вода обычно течет через промежутки между строительным раствором и агрегатами. Это может быть связано с расслоениями, пустотами и трещинами. Проникновение воды также может происходить, хотя обычно в меньшей степени, из-за абсорбции через блоки и строительный раствор. Во внешней кладке должны быть предусмотрены системы для предотвращения проникновения воды в стенную систему.
Кладочный шпон
Кладочный шпон состоит из наружной части кладки, которая образует только облицовочный материал. Боковая опора для облицовки каменной кладкой обязательна.Обычно это обеспечивается внутренней стеной. Общие внутренние стены (подпорные стены) представляют собой стены холодногнутого стального каркаса с водонепроницаемой обшивкой и бетонной кладкой.
Критические компоненты облицовки каменной кладкой, подверженные воздействию влаги, включают:
- Дренажная полость за облицовкой
- Система планок на основе шпона
- Уплотнения для полости на оконных проемах (окна, двери, рамы жалюзи и т. Д.)
- Боковая стяжка для крепления фанеры к опорной конструкции
- Вертикальная опорная система для поддержки веса фанеры
- Резервы для расширения / сжатия стеновой системы
Стены из шпона спроектированы как «дренажные стены» в отношении их устойчивости к проникновению воды.За облицовкой кладки следует установить воздушное пространство / дренажную полость, чтобы вода, проникающая через кирпичную кладку, могла стекать вниз к основанию стены, откуда она могла быть направлена наружу. Эта дренажная полость должна оставаться открытой, чтобы вода могла свободно стекать. Там, где есть ограничения в полости, рекомендуется использовать оклады для сбора воды и слива ее наружу. Это требуется на проемах в кирпичной кладке, таких как окна, опоры и т. Д. В основании дренажной полости должна быть установлена гидроизоляционная система, состоящая из трехстороннего поддона, обычно образованного из металла и / или мембранных материалов. для сбора воды, которая проникает в дренажную полость, и направлять ее наружу через канализацию или рытвины.Эти отливы должны быть водонепроницаемыми, особенно в углах, на перехлестах и на концах кладки. Концевые перегородки необходимы на окончаниях, чтобы вода не могла стекать сбоку от гидроизоляции в прилегающую конструкцию. Обычные материалы для окладов — нержавеющая сталь, медь и медь с свинцовым покрытием. Эти металлические отливы долговечны, их можно герметизировать, они включают припаянные уголки и концевые перегородки. Мембранные материалы, такие как прорезиненный асфальт и EPDM, также могут использоваться в сочетании с металлическими накладками для герметизации верхней части металлической оболочки на опорной конструкции.
Очень важно, чтобы на внутренней стороне дренажной полости (на поверхности опоры) имелся барьер для влаги, чтобы предотвратить попадание воды в опорную конструкцию. Рекомендуемая ширина полости за облицовкой кладки составляет минимум 2 дюйма.
В летние месяцы воздушное пространство за облицовкой из кирпича обычно содержит воздух, который является горячим и влажным по сравнению с интерьером. Этот воздух может достигать относительно высокого давления пара относительно внутреннего пространства.В зимние месяцы это воздушное пространство может быть заполнено относительно холодным по отношению к интерьеру воздухом. Это особенно верно в северном климате. Попадание этого воздуха на внутреннюю часть оконных рам или внутреннюю отделку может привести к конденсации. По этой причине уплотнения полости обычно рекомендуются на окнах, дверях и других проемах, чтобы предотвратить попадание воздуха (и влаги) в полость к дверной / оконной раме.
Вертикальная опора для облицовки каменной кладкой обычно предусмотрена на каждой линии пола.Для облицовки кирпичной кладкой на каждой вертикальной опоре должны быть предусмотрены меры для обеспечения вертикального расширения кладки. Это достигается за счет пропуска раствора между верхним слоем кладки и нижней стороной опоры. Этот шов должен быть спроектирован с учетом вертикального расширения кладки, а также структурных прогибов опоры. В бетонных конструкциях следует также учитывать ползучесть бетонного каркаса.
Металлические стяжки необходимы для бокового крепления фанеры к опорной стене.Обычно они расположены на расстоянии 16 дюймов по центру в каждом направлении.
Конструкционная кладка стен
Структурная кладка стен обычно выполняется с использованием бетонной кладки. Бетонную кладку можно армировать как по вертикали, так и по горизонтали для достижения необходимого сопротивления изгибу. Вертикальная арматура, устанавливаемая внутри ячеек бетонной кладки, обычно заливается сплошным раствором. Горизонтальную арматуру обычно устанавливают с помощью сборных сварных проволок, которые заделывают в стыки станины.Хотя это горизонтальное армирование улучшает прочность кладки, особенно для горизонтальных пролетов, оно также служит для контроля растрескивания при усадке.
Если структурные стены из кирпичной кладки должны служить внешними стенами, обычно рекомендуется вторая часть кладки. В этой конструкции каменная кладка может быть построена как композитная стена (обе стены действуют как единое целое, чтобы противостоять нагрузкам) или как несоставная стена (отдельные стены действуют независимо, поддерживая нагрузки). Поскольку ожидается проникновение воды через наружную поверхность кладки, полагаться на единственную стену кладки в качестве системы наружных стен, как правило, не рекомендуется.Если должны быть установлены одинарные наружные стены, на внешней поверхности должен быть предусмотрен барьер, такой как нанесение жидкого, воздухопроницаемого кирпичного покрытия или наружная облицовка (EIFS, металлические панели, штукатурка и т.п.) для предотвращения проникновения воды в помещение. каменная кладка. Добавки могут использоваться при изготовлении бетонных блоков для каменной кладки, чтобы уменьшить проникновение воды из-за поглощения самих блоков. Тем не менее, смесь также должна быть добавлена в строительный раствор для достижения надлежащего сцепления. Эти системы могут быть эффективными в уменьшении проникновения воды в кладку; однако не следует полагаться на них, чтобы исключить проникновение воды.
Тепловые характеристики
Каменная кладка обычно представляет собой большую тепловую массу, которую можно нагревать и охлаждать под воздействием солнца и внешних температур. Кладка, подверженная воздействию солнечного света, может достигать температуры, значительно превышающей 100 градусов по Фаренгейту. Кладка поглощает тепло и излучает тепло окружающим компонентам стенной системы. При низких температурах кладка будет прохладной, особенно в затемненных помещениях. При проектировании тепловые характеристики кладки обычно основываются в первую очередь на изоляции, размещенной в полости стены или внутри опорной стены.Обычно предполагается, что кладка обеспечивает небольшую изоляционную ценность.
Пожарная безопасность
Кладка обеспечивает значительное повышение пожарной безопасности стен здания. Бетонная кладка обычно используется для возведения брандмауэра. Огнестойкие характеристики зависят от толщины кладки.
Акустика
Из-за своей массы системы каменных стен могут обеспечить лучшую звукоизоляцию, чем более легкие стеновые системы, такие как металлические панели. Для улучшения акустических характеристик бетонную кладку обычно заполняют изоляцией, чтобы устранить пустоты в сердцевинах.
Техническое обслуживание
При правильной конструкции системы стен из каменной кладки требуют относительно небольшого обслуживания по сравнению с другими системами стен. Срок службы кладки может составлять 100 лет и более, в зависимости от детализации и ухода. Наиболее частым обслуживанием является регулярная замена герметика в деформационных швах, по периметру проемов (окна, двери и т. Д.) И при сквозных перекрытиях стен. Сроки замены герметика зависят от используемого герметика, но обычно составляют от 7 до 20 лет.
Повторное нанесение строительных швов в наружной кладке обычно требуется через 20–30 лет после укладки, в зависимости от типа и качества первоначальной укладки кладки.
Приложения
См. Приложения с учетом климатических требований в отношении конструкции ограждающих конструкций здания.
Детали
Следующие детали можно загрузить в формате DWG или просмотреть в Интернете в DWF ™ (Design Web Format ™) или Adobe Acrobat PDF, щелкнув соответствующий формат справа от заголовка чертежа.
Детали, связанные с этим разделом BEDG по WBDG, были разработаны комитетом и предназначены исключительно для иллюстрации общих концепций проектирования и строительства. Надлежащее использование и применение концепций, проиллюстрированных в этих деталях, будет варьироваться в зависимости от соображений производительности и условий окружающей среды, уникальных для каждого проекта, и, следовательно, не представляют окончательное мнение или рекомендацию автора каждого раздела или членов комитета, ответственных за разработку. ВБДГ.
Глиняный кирпич, внутренний угол PDF
Глиняный кирпич, внешний угол PDF
Глиняный кирпич через стену PDF
Новые проблемы
Новые разработки в дизайне стен из кирпичной кладки включают использование предварительно напряженной кладки. Он состоит из строительства бетонной стены из кирпича с кабелями внутри ячеек, аналогичных предварительно напряженному бетонному элементу. После того, как стена построена, кабели натягиваются и крепятся к кладке.Это может значительно повысить устойчивость кирпичной стены к изгибным нагрузкам и изгибу.
Необходимость обеспечения взрывостойкости ограждающих конструкций здания вынудила рассмотреть варианты конструкции фасада из армированной кирпичной кладки с точки зрения водонепроницаемости и тепловых характеристик.
Дополнительные ресурсы
WBDG
Задачи проектирования
Функциональные / эксплуатационные — Обеспечение соответствующей интеграции продуктов / систем
Продукты и системы
См. Соответствующие разделы в соответствующих спецификациях руководства: Unified Facility Guide Specifications (UFGS), VA Guide Specifications (UFGS), DRAFT Federal Guide for Green Construction Specifications, MasterSpec®