Блоки газосиликатные теплопроводность: Газосиликатные блоки, технические характеристики и свойства: плотность, вес, теплопроводность, прочность

Содержание

Газосиликатные блоки – основные свойства и характеристики

Еще одним популярным материалом, захватившим значительную долю на рынке стройматериалов — является газосиликат. Готовые отформованные блоки имеют много общего с искусственным камнем, и отличаются заметными достоинствами. По этой причине газосиликатные блоки и приобрели такую широкую популярность при строительстве домов.

Оглавление:

  1. Где применяют газосиликатные блоки
  2. Характеристики материала
  3. Преимущества и недостатки газосиликатных блоков
  4. Как производятся газосиликатные блоки

Где применяют газосиликатные блоки

Сфера применения газосиликата лежит в таких направлениях:

  • теплоизоляция зданий,
  • постройка зданий и несущих стен,
  • изоляция теплосетей.

По своим качествам газосиликатные блоки имеют много общего с пенобетоном, но при этом превосходят их по механической прочности.

В зависимости от плотности материала. различают несколько областей применения:

  • Плотность блоков от 300 до 400 кг/м3 сильно ограничивает их распространение, и подобные блоки чаще используются в качестве утеплителя для стен. Низкая плотность не позволяет использовать их в качестве основы для стен, так как при значительной механической нагрузке они разрушатся. Но в качестве утеплителя низкая плотность играет свою роль, поскольку чем плотнее прилегают к друг другу молекулы — тем выше становится теплопроводность и холоду проще проникнуть в помещение. Поэтому блоки с малой теплопроводностью обеспечивают более эффективную теплоизоляцию,
  • блоки плотность в 400 кг/м3 нашли свое применение при строительстве одноэтажных зданий и рабочих помещений. За счет повышенной прочности блоков и их более низкого веса расходы на обустройство фундамента значительно снижаются,
  • блоки плотностью в 500 кг/м3 чаще используются при возведении зданий высотой в несколько этажей.
    Как правило, высотность здания не должна превышать отметку в три этажа. Подобные блоки, в непосредственной зависимости от климата — либо не утепляются вообще, либо требуют традиционных методов утепления.
  • наиболее оптимальным вариантом для постройки высотных зданий является использование блоков с плотностью в 700 кг/м3. Подобный показатель позволяет возводить высотные жилищные и производственные здания. Благодаря более низкой стоимости возводимые стены из газосиликатных блоков вытесняют традиционные кирпичные и изготовленные из железобетона.

Чем выше плотность — тем хуже показатели теплоизоляции, поэтому в таких зданиях потребуется дополнительная изоляция. Чаще наружную обеспечивают с помощью плит из пенопласта или пенополистирола. Этот материал отличается низкой ценой и при этом обеспечивают хорошую теплоизоляцию помещения в любое время года.

За последнее время позиция газосиликата, как одного из самых востребованных при строительстве материалов, значительно укрепилась.

Относительно малый вес готовых блоков позволит значительно ускорить постройку здания. К примеру, блоки газосиликатные, размеры которых имеют типовые значения, по некоторым оценкам снижают трудоемкость при монтаже до 10 раз по сравнению с кирпичом.

Стандартный блок с плотностью в 500 кг/м3 с весом в 20 кг способен заменить 30 кирпичей, суммарная масса которых составит 120 кг. Таким образом монтаж блоков на здания с малой этажностью не потребует специальной техники, снизит трудозатраты и затрачиваемое время на постройку здания. По некоторым оценкам, экономия времени достигает снижения в затрат по нему 4 раза.

Характеристики материала

Имеет смысл перечислить основные технические характеристики газосиликатных блоков:

  • удельная теплоемкость блоков, изготовленных автоклавных путем, составляет 1 кДж/кг*°С. К примеру, аналогичный показатель у железобетона находится на уровне 0.84,
  • плотность железобетона в 5 раза выше, но при этом коэффициент теплопроводности газосиликата составляет показатель всего в 0. 14 Вт/м*°С, что примерно аналогично показателю древесины сосны или ели. Железобетон имеет значительно больший коэффициент, в 2,04,
  • характеристики звукопоглощения материала находятся на уровне коэффициента 0,2, при частоте звука в 1000 Гц,
  • цикличность морозостойкости у газосиликатных блоков с плотностью материала ниже отметки в 400 кг/м3 не нормируется, у блоков с плотностью до 600 кг/м3 составляет до 35 циклов. Блоки с плотностью выше 600 кг/м3 способны выдержать 50 циклов замерзания и оттаивания, что равняется 50 климатическим годам.

Если сравнивать газосиликатные блоки с кирпичом, то выходят показатели не в пользу последнего. Так, требуемая толщина стен для обеспечения достаточной теплопроводности для блоков составляет до 500 мм, в то время как для кирпича потребуется аналогичная кладка толщиной в 2000 мм. Расход раствора для укладки материала составит для кирпича 0,12 м3 и 0,008 м3 для газосиликатных блоков на 1 м2 кладки.

Вес одного квадратного метра стены при этом составит до 250 кг для газосиликатного материала, и до двух тонн кирпича. При этом потребуется соответствующая толщина фундамента для несущих стен строящегося здания. Кирпичная кладка потребует толщину фундамента не менее 2 метров, в то время как для газосиликатных блоков достаточно толщины всего в 500 мм. Трудоемкость кладки блоков значительно ниже, что позволит снизить затраты на трудоемкость.

Помимо всего прочего, газосиликатные блоки отличаются значительно большей экологичностью. Коэффициент этого материала составляет два пункта, приближая его к натуральному дереву. В это же время показатель экологичности кирпича находится на уровне от 8 до 10 единиц.

Преимущества и недостатки газосиликатных блоков

Газосиликатные блоки, цена которых позволит значительно снизить затраты на постройку дома, обладают следующим рядом неоспоримых преимуществ:

  • Малый вес готовых блоков. Газосиликатный блок весит в 5 раз меньше по сравнению с аналогичным бетонным. Это существенно снизит затраты на доставку и монтаж.
  • Высокая прочность на механическое сжатие. Газосиликат с индексом Д500, обозначающим, что его плотность составляет 500 кг/м3, демонстрирует показатель до 40 кг/см3.

  • Показатель термического сопротивления в 8 раз выше, нежели аналогичный у тяжелого бетона. Благодаря своей пористой структуре обеспечивается хорошие показатели теплоизолированности.
  • Газосиликатные блоки обладают теплоаккумулирующими свойствами. Они способны отдавать накопленное тепло внутрь помещения, что снизит затраты на отопление.
  • Благодаря пористой структуре степень звукоизоляции выше аналогичной у кирпича в 10 раз.
  • Материал не содержит в себе никаких токсинов и обладает хорошими показателями экологичности.
  • Газосиликат отличается своей негорючестью и не распространяет горение. ОН выдерживает прямое воздействие пламени на протяжении не менее трех часов, благодаря чему практически полностью исключается ситуация с распространением пожара.
  • Паропроницаемость блоков значительно выше, нежели у конкурентов. Считается, что материал способен хорошо «дышать», создавая при этом комфортный микроклимат внутри помещения.

Тем не менее, газосиликатные блоки на данный момент не способны нанести сокрушительный удар по всем конкурентам. Этому материалу свойственны и существенные недостатки:

  • Газосиликат обладает невысокой механической прочностью. При вкручивании в него дюбеля он начинает крошиться и рассыпаться, и не способен при этом обеспечить эффективное удержание. Грубо говоря, на стену из газосиликатных блоков еще реально повесить часы или картину. Но полка уже может обвалиться, так как крепеж способен просто выскользнуть из стены.
  • Блоки не отличаются хорошей морозостойкостью. Несмотря на заявленные производителем цикл в 50 лет для марок с повышенной прочностью, нет достоверной информации по поводу долговечности блоков марок Д300.
  • Главный недостаток газосиликата — это его высокое поглощение влаги. Она проникает в структуру, постепенно разрушая ее и материал теряет свою прочность.
  • Из вышеуказанного недостатка выходит следующий: накопление и впитывание влаги приводит к появление грибка. В данном случае пористая структура служит хорошим условием для его распространения.
  • Материал способен значительно усаживаться, в результате чего нередко появляются трещины в блоках. Более того, уже через два года трещины способны проявиться на 20% уложенных блоков.
  • Не рекомендуется наносить цементно-песчаные штукатурки. Они способны попросту отвалиться от стены. Рекомендуемая многими продавцами гипсовая штукатурка так же не является эффективным средством. При нанесении на стену из газосиликатных блоков она не способна скрыть швы между блоками, а при наступлении холодов на ней появляются заметные трещины. Это происходит из-за разницы температур и перепадов герметичности материала.
  • Из-за высокой поглощения влаги штукатурка потребует нанесения как минимум в два слоя. Более того, по причине сильной усадки штукатурка покроется трещинами. Они не повлияют на герметичность, но сильно нарушат эстетическую составляющую.
    Гипсовая смесь хорошо удерживается на газосиликатных блоков, и несмотря на появление трещин — она не отрывается.

Как производятся газосиликатные блоки

Купить газосиликатные блоки целесообразнее у тех дилеров, которые представляет продукцию известных производителей. Современное качественное оборудование на заводских линиях позволяет обеспечить должный контроль за качеством выпускаемых газосиликатных блоков, благодаря чему покупатель уверен в долговечности закупаемой продукции.

Сам процесс производства делят на несколько этапов, и что характерно, каждый из них полностью автоматизирован. Это исключает вмешательство человеческого фактора, от которого зачастую зависит качество выпускаемой продукции. Особенно по пятницам и понедельникам. Кто работал на производстве — тот поймет.

Производится дробление извести, песка и гипса, которое составляет основу для производства блоков. С помощью добавления воды песок перемалывают до состояния жидкой смеси.

Ее отправляют в смеситель, в который добавляется цемент, гипс и известь. Далее компоненты замешиваются, и во время этого процесса в них добавляется алюминиевая суспензия.

После того, как все компоненты были тщательно смешаны между собой, смесь заливают в формы, которые перемещают в зону созревания. При воздействии температуры в 40°С на протяжении четырех часов происходит вспучивание материала. При этом активно выделяется водород. Благодаря этому конечная масса приобретает необходимую пористую структуру.

С помощью захвата для переворачивания и режущей машины производится нарезка блоков под нужные размеры. При этом автоматика контролирует точную и бездефектную нарезку изделий.

Вслед за этим блоки отправляют в автоклав для набора ими конечной прочности. Этот процесс протекает в камере при воздействии температуры в 180°С на протяжении 12 часов. При этом давление пара на газосиликат должно составлять не менее 12 атмосфер. Благодаря такому режиму готовые блоки набирают оптимальное значение конечной прочности.

Благодаря крану-делителю и оборудованию по финальному контролю за качеством производится укладка блоков для их последующего естественного остывания. После чего на автоматической линии с блоков удаляются возможные загрязнение и проводят упаковку и маркировку блоков.

Что примечательно, процесс производства является безотходным, поскольку в момент нарезки еще на стадии застывания отходы сырого массива отправляют на повторную переработку, добавляя материал в другие блоки.

Паллеты с упакованными газосиликатными блоками получают свой технический паспорт с подробно изложенными физическими свойствами и техническими характеристиками изделия, чтобы покупатель мог убедиться в соответствии.заявленным характеристикам.

Дальнейшая работа уже за дилерами и маркетологами, от которых и будет зависеть успешность продаваемости изделия.

Теплопроводность газосиликатных блоков

Газосиликатные блоки получают в результате сложных химических реакций порообразования. Основными компонентами для образования данного материала являются газообразователь (алюминиевая пудра или суспензия) и цементная смесь. Поры в газосиликатных блоках образуются в результате сложной реакции извести и алюминия – выделяется водород, который и образовывает пузырьки.

На теплопроводность газосиликатного блока влияет множество факторов. В первую очередь это качество исходных материалов и однородность структуры строительного материала. Некоторые производители, для снижения себестоимости газосиликатных блоков добавляют в основной состав золу, шлак или гипс, но эти материалы ухудшают качество продукции.

После твердения монолитного газобетона из него делают газосиликатные блоки, используя специальные струнные линии для высокоточной резки. После этого уже готовые блоки укладывают в автоклавы, в которых при высоких температурах происходит окончательное твердение блоков. Такая технология получения данного материала позволяет приобрести блокам их уникальные характеристики, основной из которых есть низкая теплопроводность.

Теплопроводность газосиликатных блоков зависит от средней плотности (от 300 до 700 кг/м³). При минимальной плотности газосиликат используют в качестве теплоизолирующего материала, так как прочность его достаточно мала. Марка блока Д500 характеризуется коэффициентом теплопроводности в 0,12 Вт/м, а  марка Д400 имеет  коэффициент теплопроводности 0,9 Вт/м.

Если использовать газосиликатные блоки для утепления здания, то лучше эту работу производить с наружной стороны, чтобы оставить полезную площадь здания без изменений. Для достижения оптимального результата следует использовать облицовочный кирпич. В таком случае между стеной из газосиликатных блоков и стеной из кирпича оставляют воздушную прослойку в несколько сантиметров. Блоки укладывают при помощи специального клея, это экономит раствор и позволяет уменьшить влияние мостиков холода, ведь клей сам по себе обладает морозостойкими качествами. Обычно данный материал не нуждается в утеплении. В результате неправильного монтажа слоя утеплителя на поверхность газосиликатных блоков на поверхности стены может скапливаться влага, которая уменьшит долговечность конструкции.  

Теплопроводность газосиликатного блока. Газосиликатный блоки

Благодаря своей низкой теплопроводности и небольшой толщине, газобетон позволяет в несколько раз увеличить энергосбережение и экономит средства владельцев, проживающих в холодных регионах. Общие преимущества материала выглядят следующим образом:. На сегодняшний день существует несколько видов газосиликатных блоков. При их производстве используются разные технологии, позволяющие получить материалы, которые будут обладать повышенными теплоизоляционными, конструкционными свойствами или отличаться хорошей плотностью и прочностью.

Как и любой другой строительный материал, газобетон не лишен отрицательных сторон.

Газосиликатные блоки — это строительный материал универсального значения. Он представляет собой искусственный пористый камень.

Первым важным моментом, который стоит учитывать при приобретении блоков, является разделение на виды. Каждая марка предназначена для узкого направления работы. В зависимости от плотности газобетон может быть:. Можно выделить еще несколько недостатков , связанных с техническими особенностями:. Все недостатки являются условными, т. Газобетон не представляет собой универсальный материал. Это можно рассматривать как неудобство, которое требует повышенного внимания при его приобретении, но сочетание нескольких видов позволит добиться отличных эксплуатационных качеств.

Например, высокая плотность марки D позволяет без труда возвести небольшое строение, которое будет отличаться высокой прочностью.

Дополнительный наружный слой небольшой толщины из марки D решит проблему с влажностью и теплом. Сравнительная таблица позволит лучше оценить параметры всех популярных марок. Чтобы не тратиться на дополнительный обогрев жилья в зимнее время года, стоит заранее продумать выбор материала для строительства и способы утепления. Более пористая структура делает газобетон менее теплопроводным, но при этом хрупким. Разные маркировки газобетонных блоков характеризуют их свойства в зависимости от плотности.

Так, теплопроводность газобетона d, d меньше теплопроводности блоков с маркировкой d, d Поэтому первые чаще всего используют в качестве теплоизоляции строений, но из-за хрупкости не применяют в возведении несущих конструкций. Для строительства жилых многоэтажных зданий подойдет более плотный газобетон dd Средний по плотности и изоляционным свойствам блок используют при строительстве одноэтажных зданий.

Выбор материала для стен: газосиликатные блоки

Газобетонные блоки делятся на три вида в зависимости от плотности и теплопроводности: теплоизоляционные D , конструкционно-теплоизоляционные DD и конструкционные D Газобетонные блоки марки D способны выдерживать вес стен высотой в 3 этажа вместе с перекрытиями. При этом предусмотрено обязательное укрепление конструкции армированием. Чтобы повысить энергосберегающую способность дома, построенного из газобетона, можно выбрать более широкую толщину стен. Обычно для жилого помещения толщину внешних конструкций см оптимальна для средней полосы.

Для очень холодных регионов возводят каркас сооружений в два или более слоя, а для хозяйственных построек можно выложить блоки шириной 20 см.

Для утепления жилого помещения из данного материала специалисты рекомендуют применять дополнительную наружную отделку. Если внешние стены оставить незащищенными, то из-за высокой паропроницаемости газобетона со временем теплопроводность таких газобетонных блоков повысится из-за влажности, а изоляционные свойства соответственно снизятся.

Наружный слой утеплителя должен обладать меньшей пароизолирующей способностью и большей теплоизолирующей, чем газобетон и материал внутренней отделки. Для утепления можно применять пенопласт или пенополистирол, в том числе экструдированный, минвату и эковату, а также теплую штукатурку.

А в качестве отделочных материалов используют виниловый или фиброцементный сайдинг, декоративную плитку, штукатурку. Среди других строительных материалов, газобетонные блоки можно сравнить с пеноблоками, деревом, кирпичом.

Пеноблоки похожи на газобетонные, но их плотность несколько выше, а ячейки не открытые, а замкнутые. Из всех представленных, дерево является самым экологичным строительным материалом. Жилье из дерева пропускает воздух, что позволяет создать приятный микроклимат в помещении, но один из главных минусов этого материала — его высокая горючесть.

А если сравнить теплопроводность дерева и газобетона, то первое существенно проигрывает по способности к теплоизоляции. Кирпич же является самым плотным материалом для возведения стен, выдерживает самые низкие морозы и долгие годы эксплуатации.

✪ Корзина:

Но стены из кирпича приходится делать многослойными, поскольку его плотная структура плохо задерживает тепло. Несомненно, при сравнении других строительных материалов с бетонными газоблоками, теплопроводность последних ниже. По такой характеристике, как теплопроводность, а точнее теплоизоляция, газобетон уступает лишь дереву, минеральной вате и пенополистеролу для утепления, поэтому можно сказать, что для возведения наружных стен здания более теплого материала не найти.

В строительной сфере применяются изделия из газосиликата. Процесс производства блоков осуществляется при высоком давлении, а также в естественных условиях. Благодаря пористой структуре они хорошо удерживают тепло.

Как показывает практика, блоки из газобетона очень хорошо зарекомендовали себя как в качестве утеплителя, так и в качестве основного строительного материала. Но, полагаясь на заверения производителя, не стоит забывать, что в зависимости от природных условий места, где используется такой блок, его характеристики способны изменяться. Газобетон, теплопроводность Газобетон и изделия из него получили популярность, благодаря высоким показателям свойств и качеств, одним из которых является теплопроводность.

Материал обладает высокой способностью к сохранению тепла, которая обусловлена особой структурой, составом и технологией производства изделий.

Давайте разберемся: теплопроводность газобетона — отчего конкретно она зависит? Какими преимуществами будет обладать строение, возведенное из данного материала?

И почему тысячи застройщиков, несмотря на высокую конкуренцию, отдают предпочтение именно изделиям из газобетона, опираясь, в первую очередь, на показатель теплопроводности? Газобетон является разновидностью ячеистого бетона, и отличается от схожих стеновых материалов составом сырья и методом порообразования.

Несмотря на схожесть его с аналогами, показатели теплопроводности и иных свойств, иногда существенно отличаются. Для того, чтобы понять, что именно способно оказывать влияние на изменения числовых показателей характеристик, следует рассмотреть предварительно индивидуальные особенности материала.

Характеристики достаточно конкурентные. Однако все они колеблются в определенных пределах и, как уже было сказано, зависят от некоторых условий. В таблице указаны средние и минимальные значения.

Комментарии

Теплопроводность газобетонного блока в 0,09, характерна исключительно для теплоизоляционных изделий в сухом виде. А как она будет изменяться с повышением плотности, мы рассмотрим ниже. Учитывая тему данной статьи, актуальным будет разобраться, какие же существуют виды материала. Ведь теплопроводность газобетонных блоков зависит от многих факторов.

Теплопроводность газосиликатных блоков: коэффициент теплопроводности в таблице

Обратите внимание! Автоклавный газобетон еще также называют газобетоном синтезного твердения. Отличается он тем, что на заключительном этапе производства его обрабатывают в специальном оборудовании — автоклаве, при воздействии высокой температуры и давления.

Как следствие, изделия обладают более высокими характеристиками, в том числе и более качественным соотношением плотности и теплопроводности. Но об этом поговорим позже.

Неавтоклавные изделия, или газобетон гидратационного твердения, достигают технической прочности естественным способом. Требования к нему, в соответствии с ГОСТ, несколько ниже.

Сравним показатели данных видов газобетона при помощи таблицы. Как видно, газобетон синтезного твердения во многом опережает своего конкурента — неавтоклава, и это касается практически всех характеристик. Следует отметить, что цена на последний также значительно ниже, и изготовление его возможно произвести своими руками.

Помимо вышеуказанных классификаций, существуют и иные, связанные с особенностью состава и внешнего вида изделий. Рассмотрим кратко. Категория указывает на возможные геометрические отклонения, максимальные значения которых продиктованы ГОСТ.

Блоки первой категории — самые ровные, отклонения по размеру не должны превышать 1,5 мм.

Химическая реакция при смешивании извести и алюминиевой пудры в цементном растворе происходит с выделением водорода. В процессе автоклавной сушки получают газобетон с равномерно распределенными открытыми ячейками неодинаковой формы. Пористая структура материала определяет его основные физические характеристики: небольшой вес при крупных размерах, паропроницаемость, изоляционные свойства. Низкая теплопроводность газобетона зависит от его плотности. Чем больше воздушных пор в объеме, тем медленнее предается тепловая энергия и дольше сохраняется комфортная атмосфера внутри помещения.

Укладывают их на клей с минимальной толщиной слоя. И заметьте, что для теплотехники стен в целом это оказывает значительное влияние! Блоки третьей категории обычно используются при возведении хозяйственных построек.

Теплопроводность газобетонных блоков

Повышенные отклонения диктуют необходимость возведения стен с использованием раствора со значительно большей толщиной шва. Это увеличивает мостики холода и теплопроводность помещения. Блоки различной категории отличаются между собой только геометрическими отклонениями.

Различий в технических характеристиках существенных нет. Пузырьки размерами от 0,6 до 3 мм равномерно рассредоточиваются по всему материалу. В металлических емкостях или формах протекают основные химические реакции. Смесь подвергается вибрации, способствующей вспучиванию и схватыванию.

После затвердения, все неровности с поверхности снимаются стальной струной. Пласт разделяется на блоки, и затем они отправляются в автоклавную установку.

Конечная калибровка готовых блоков осуществляется фрезерной машиной. Газосиликатные блоки изготавливаются только автоклавным способом. Газобетонные блоки могут изготавливаться как автоклавным, так и неавтоклавным способом естественное затвердение смеси :. Первая разновидность стоит дороже. Это обусловлено значительными затратами на изготовление, а также лучшими техническими характеристиками газосиликатных блоков, произведенных таким методом.

Они значительно прочнее, их коэффициент теплопроводности меньше. Поры внутри такого газосиликата распределены исключительно равномерно, что сказывается на четком соответствии материала заданным параметрам.

Существует несколько классификаций газосиликатных блоков с определенными техническими характеристиками. Сегодня при проведении строительных работ применяют следующие марки этого материала. Оптимальным вариантом для малоэтажного строительства — газосиликатный блок d и газосиликатный блок d Цифровое обозначение марок, перечисленных ранее, показывает плотность материала.

Газосиликатный блок d применяется в строительстве несущих стен дома. Ее также рекомендуется применять при устройстве вентилируемых фасадов, которые хорошо крепятся к блокам такой плотности. Газосиликатный блок d наиболее популярен для малоэтажного до 3-х этажей строительства. Данную разновидность также используют в монолитном строительстве. При возведении дома выше трех этажей следует отдать предпочтение газосиликату с маркировкой выше D и дополнительно утеплить стены.

Данная разновидность применяется для обустройства утепления, для работ с проемами при строительстве многоэтажных зданий монолитным методом. Марка D также популярна в частном строительстве. При высокой прочности он обладает большими теплоизолирующими свойствами.

Марка D может быть использована только как утеплитель. На отечественном рынке это довольно редкая марка, что связано с ее хрупкостью. Прочность находится в пределах 0,,0 Мпа.

Коэффициент теплопроводности блоков из газосиликата

В зависимости от пропорций исходных ингредиентов можно получить продукт с различными эксплуатационными характеристиками. По внешнему виду выделяют несколько конфигураций газосиликатного блока. В основу классификации положено назначение блока. Абсолютно гладкий прямоугольный газосиликатный блок, имеющий выемки для захвата руками.

Коэффициент теплопроводности газосиликатных блоков

Главная » Разное » Коэффициент теплопроводности газосиликатных блоков

Теплопроводность газосиликатных блоков: коэффициент теплопроводности в таблице

Рынок современных строительных материалов регулярно пополняется усовершенствованными новинками. При возведении малоэтажных домов растет спрос на газосиликатные блоки, которые имеют более низкий коэффициент теплопроводности по сравнению с бетоном, деревом или кирпичом. Теплопроводность газосиликатных блоков обусловлена пористой структурой, которая на 80-85% состоит из воздуха. Сырьем для производства газосиликата являются: вода, цемент, кварцевый песок, известь. В качестве добавки используется алюминиевая пудра. При взаимодействии всех компонентов происходит вспенивание массы в результате выделения водорода.

Показатели теплопроводности газосиликатных блоков

В зависимости от пропорций исходных ингредиентов можно получить продукт с различными эксплуатационными характеристиками. Коэффициент теплопроводности газосиликатного блока (λ) зависит от его плотности и определяется по маркировке: D300, D400, D500, D600, D700.

Каждая марка имеет оптимальные показатели в зависимости от назначения:

  1. Теплоизоляционный (D300, D400) — имеет минимальную прочность при максимальной пористости. Обладает самым низким показателем теплопроводности, используется только для теплоизоляции готовых стен.
  2. Конструкционно-теплоизоляционный (D500, D600) — имеет средние показатели плотности и прочности. Предназначен для межкомнатных перегородок и стеновых конструкций до 2-х этажей.
  3. Конструкционный (D700 и выше) — применяется для возведения несущих стен малоэтажных построек.

При выборе строительных блоков необходимо учесть эксплуатационную влажность, назначение, технологию изготовления материала.

Таблица теплопроводности газосиликатных блоков

Характеристики влажностиD300D400D500D600D700
Теплопроводность λ (Вт/(м×°C)) в сухом виде0,0720,0940,120,140,165
Теплопроводность λ (Вт/(м×°C)) влажность 4%0,0880,1170,1410,160,192

При сравнении теплопроводности газосиликатного материала и кирпича, показатели последнего уступают в 4 раза. Так, для обеспечения желаемого теплосбережения потребуется толщина стен из газосиликата 500 мм. Тогда как для соблюдения аналогичных параметров понадобилось бы возвести кирпичную кладку толщиной не менее 2000 мм.

Теплопроводность газосиликата зависит от ряда факторов:

  1. Габариты строительного блока. Чем большую толщину имеет стеновой блок, тем выше его теплоизолирующие свойства.
  2. Влажность окружающей среды. Материал, впитавший влагу, снижает способность хранить тепло.
  3. Структура и количество пор. Блоки, имеющие в своей структуре большое количество крупных воздушных ячеек, имеют повышенные теплоизоляционные показатели.
  4. Плотность бетонных перегородок. Стройматериалы повышенной плотности хуже сохраняют тепло.

Высокая степень влагонакопления газосиликата исключает его использование в помещениях повышенной влажности без обработки гидроизоляционным материалом.

Теплопроводность блоков в зависимости от плотности

Характеристика теплопроводности газосиликатных блоков пропорциональна плотности.  Чем выше показатель плотности, тем больше коэффициент теплопроводности, следовательно, увеличиваются энергозатраты на обогрев помещения. Во избежании лишних расходов на отопление потребуется дополнительная теплоизоляция стен минеральной ватой, пенополистиролом или другим изолирующим материалом.

Плотность блоков влияет на:

  • потребность в гидроизоляции;
  • строение конструкции в один или несколько слоев;
  • необходимость дополнительной теплоизоляции;
  • метод укладки блоков на специальную клеевую основу.

Оптимальным вариантом для малоэтажного строительства (до 2-х этажей) является газосиликат марки D500. Объемная плотность этого материала составляет 500 кг/м3, что аналогично плотности деревянного бруса. Теплопроводность газосиликатного блока D500 в сухом состоянии равна 0,12 Вт/(м×°C), тогда как у кирпича она выше примерно в 4 раза (0,45 Вт/(м×°C)). Газосиликат D500 применяется для постройки несущих стеновых конструкций высотой до 2-х этажей, либо для возведения межкомнатных перегородок, оконных и дверных проемов, балок, ребер жесткости. Марка D500 максимально сочетает в себе конструкционные и теплосберегающие характеристики.

Вывод

На этапе планирования строительства необходимо точно рассчитать количество и конструкционные характеристики блоков различного назначения. От правильного выбора плотности и теплопроводности используемых материалов зависит не только сохранение температурного режима в доме, но и долговечность постройки. Гармоничное соотношение цены и качества газосиликата делают его одним из самых востребованных стройматериалов.

Коэффициент теплопроводности блоков из газосиликата

Способность к эффективному удержанию тепла внутри помещений играет ключевую роль при выборе материалов для возведения наружных стен зданий, характеристики, отражающие ее в количественном выражении, обязательно учитываются при проведении расчета их толщины. Неизменно высокие результаты показывают газосиликатные блоки и плиты, обеспечивающие низкую термопередачу при минимальной нагрузке на основание и достаточно хорошей прочности.

Определение и влияние на другие характеристики

В количественном выражении отражает способность газосиликата проводить тепло с учетом его постоянного агрегатного состояния и условий эксплуатации. По сути является аналогом электропроводимости: чем она выше, тем активнее происходит теплообмен. Существует прямая связь между толщиной строительных конструкций, удельным весом и структурой их основы и показателем термопередачи.

Пористые и удерживающие внутри воздух блоки или плиты в сухом виде имеют неизменно низкую теплопроводность, уплотненные разновидности – наоборот.

Обратная величина этой характеристики – способность к препятствованию прохождения тепла сквозь структуру: чем она выше, тем лучше элементы подходят для утепления или постройки энергосберегающих сооружений. По этой причине для организации отвода или теплопередачи используются элементы из стали или алюминия, имеющие крайне низкое термическое сопротивление, а при необходимости поддержки определенного режима внутри – стройматериалы с ячеистой или волокнистой структурой: дерево, минвата, газосиликат или пенобетон, поризованная или пустотелая керамика, пенопласт, ППУ, эковата.

Кладочные изделия представлены марками с разной плотностью, в пределах D300-D400 они относятся к теплоизоляционным, D500 и D600 – совмещают утепляющие и конструкционные способности, свыше D700 – не обладают энергосберегающими свойствами. D400 могут использоваться при возведении нагружаемых стен, но лишь при условии их надежного армирования и поддержки каркасом, при исключении мостиков холода в дополнительной защите от потерь тепла они не нуждаются. При повышении плотности марки скорость теплообмена между наружной и внутренней средой увеличивается, что приводит к необходимости утепления фасада.

Марка плотностиD300D400D500D600
Теплопроводность г в сухом состоянии, Вт/м·°C0,080,0960,120,14
Коэффициент паропроницаемости газосиликата, мг/м·ч·Па0,260,230,20,16

Это значение подтверждается производителем опытным путем, для его определения в домашних условиях можно направить на блок горелку (или поставить его на плиту) и измерять изменение температуры в 3-4 см углублении на другой стороне с интервалом в 1 мин. После прекращения нагрева отслеживается динамика охлаждения. Такой опыт позволяет проверить не только изоляционные свойства, но и огнестойкость.

Сравнения коэффициентов теплопроводности газоблоков и других материалов

Большинство современных строительных конструкций, разделяющих зоны с разными температурами, являются многослойными. Их величина термического сопротивления суммируется с учетом толщины каждой прослойки в метрах и термопроводности при стандартных условиях (нормальной влажности и температуре). Усредненные нормативные значения последней приведены в таблице ниже:

ВидСредний диапазон плотности, кг/м3Коэффициент теплопроводности в сухом состоянии, Вт/м·°C
Мелкоштучные кладочные изделия и блоки из искусственного камня
Кирпич красный плотный1700-21000,67
То же, пористый15000,44
Силикат1000-22000,5-1,3
Керамический поризованный камень810-8400,14-0,185
Многопустотные камни из легкого бетона500-12000,29-0,6
Дерево
Дуб7000,23
Клен620-7500,19
Лиственница6700,13
Липа320-6500,15
Сосна5000,18
Береза510-7700,15
Блоки и плиты из ячеистых видов бетона
Пенобетон300-12500,12-0,35
Автоклавные газосиликатные и газобетонные280-10000,07-0,21
Строительные плиты из пористого бетона500-8000,22-0,29
Утеплители
Пенополистирол400,038
Маты из минеральной ваты50-1250,048-0,056
Эковата35-600,032-0,041

Несложно заметить, что из всех видов кладочных материалов автоклавные газосиликатные блоки в разы выигрывают в сопротивлении теплопередаче. На практике это означает возможность уменьшения толщины стен при равном теплообмене и отсутствии необходимости их наружного утепления. В этом плане они уступают лишь дереву, для сравнения: равную теплопроводность имеют 140 мм сухого бруса, 250 – кладки из газосиликата, 500 – керамзитобетона и 650 – монолитной стены из кирпича. У продукции, используемой при утеплении, такая же низкая эффективность теплообмена наблюдается у плиты ППУ толщиной в 25 мм, полистирола в 60, пробки в 70 и минеральной ваты в 80.

Высокая способность к удержанию тепла допускает использование как конструкционных изделий, так и в качестве изолятора. Марки D500 и D600 совмещают оба свойства, но при превышении плотности свыше 700 кг/м3 сопротивление теплопередаче снижается и возникает потребность либо в наружном утеплении, либо в увеличении толщины кладки, и как следствие – росту затрат. С целью исключения ошибок этот параметр определяет расчет, проводимый на стадии проектирования и учитывающий климатические условия региона, требуемую температуру внутри здания и точную теплопроводность.

Какова теплопроводность газобетонных блоков

Последние 30-40 лет для строительства широко применяется газобетон, а именно газобетонные блоки. Впервые они появились еще в начале XX века, но применение нашли только ближе к XXI. Теплопроводность газобетона позволяет применять его в строительстве хозяйственных сооружений и для возведения жилых домов. Из газобетонных блоков высокой плотности возводят даже многоэтажные здания.

Характеристики материала

Газобетон получают при проведении реакции извести с алюминиевой пудрой. Из-за выделения газа водорода в процессе в толще бетона образуются пустоты в виде ячеек, поэтому этот материал еще называют ячеистым бетоном. Эта пористость и делает газобетон легким (для него характерен небольшой вес относительно его размеров), паропроницаемым, хорошим теплоизолирующим материалом.

По способу затвердевания блоки бывают автоклавные и неавтоклавные. Первые оставляют затвердевать в специальном оборудовании – автоклаве, где устанавливают нужную температуру и давление. Неавтоклавный газобетон твердеет на воздухе, его характеристики ниже, чем у автоклавного, а долговечность всего 50 лет (что в 4 раза меньше, чем у первого вида блоков).

Малый вес газобетонных блоков позволяет строить здания на небольшом фундаменте, который нет необходимости заглублять больше, чем на метр. Поверхность блоков ровная, что позволяет монтировать их на клей, без применения цемента. Это также повышает теплоизоляционные свойства.

Газобетонные блоки огнеупорны и экологичны, а строения из них прочные, надежные и безопасные для здоровья. А также обладают шумоизолирующими свойствами.

Внимание! Все газобетонные блоки делятся на 3 категории точности. Газобетон первой категории самый ровный, отклонения по размерам не должны превышать 1,5 мм! Второй класс точности – отклонения 2 мм, а третий –неровный, используется при строительстве хозяйственных построек.

По результатам исследований, газобетонный блок способен выдерживать до 100 циклов замораживания-оттаивания, не теряя своих физических свойств, что говорит о его морозостойкости. В зависимости от марки, показатели морозостойкости изменяются в пределах 35-150 для автоклавного, и 15-35 для неавтоклавного блока.

Коэффициент теплопроводности

Коэффициент теплопроводности – способность газобетона передавать тепловую энергию. То есть, чем выше этот коэффициент, тем быстрее строительный материал отдаст тепло окружающей среде и сделает помещение холодным. Чтобы не тратиться на дополнительный обогрев жилья в зимнее время года, стоит заранее продумать выбор материала для строительства и способы утепления.

Более пористая структура делает газобетон менее теплопроводным, но при этом хрупким. Разные маркировки газобетонных блоков характеризуют их свойства в зависимости от плотности. Так, теплопроводность газобетона d300, d400 меньше теплопроводности блоков с маркировкой d500, d600. Поэтому первые чаще всего используют в качестве теплоизоляции строений, но из-за хрупкости не применяют в возведении несущих конструкций. Для строительства жилых многоэтажных зданий подойдет более плотный газобетон d1000-d1200. Средний по плотности и изоляционным свойствам блок используют при строительстве одноэтажных зданий.

Газобетонные блоки делятся на три вида в зависимости от плотности и теплопроводности: теплоизоляционные (D300-500), конструкционно-теплоизоляционные(D600-D900) и конструкционные (D1000-1200).

Сравнить теплопроводность газобетона разных марок можно в таблице:

МаркировкаТеплопроводность, Вт/м °C, 0% влажностиТеплопроводность, Вт/м °C, 4% влажностиТеплопроводность, Вт/м °C, 5% влажности
D3000,0720,0840,088
D4000,0960,1130,117
D5000,1120,1410,147
D6000,1410,1600,183
D7000,15
D8000,21
D9000,24
D10000,29
D11000,34
D12000,38

Газобетонные блоки марки D500 способны выдерживать вес стен высотой в 3 этажа вместе с перекрытиями. При этом предусмотрено обязательное укрепление конструкции армированием.

Улучшение тепловых характеристик

Чтобы повысить энергосберегающую способность дома, построенного из газобетона, можно выбрать более широкую толщину стен. Обычно для жилого помещения толщину внешних конструкций 30-40 см оптимальна для средней полосы. Для очень холодных регионов возводят каркас сооружений в два или более слоя, а для хозяйственных построек можно выложить блоки шириной 20 см.

Для утепления жилого помещения из данного материала специалисты рекомендуют применять дополнительную наружную отделку. Если внешние стены оставить незащищенными, то из-за высокой паропроницаемости газобетона со временем теплопроводность таких газобетонных блоков повысится из-за влажности, а изоляционные свойства соответственно снизятся.

Наружный слой утеплителя должен обладать меньшей пароизолирующей способностью и большей теплоизолирующей, чем газобетон и материал внутренней отделки.

Для утепления можно применять пенопласт или пенополистирол, в том числе экструдированный, минвату и эковату, а также теплую штукатурку. А в качестве отделочных материалов используют виниловый или фиброцементный сайдинг, декоративную плитку, штукатурку.

Сравнение с другими материалами и блоками

Среди других строительных материалов, газобетонные блоки можно сравнить с пеноблоками, деревом, кирпичом.

Пеноблоки похожи на газобетонные, но их плотность несколько выше, а ячейки не открытые, а замкнутые. Из всех представленных, дерево является самым экологичным строительным материалом. Жилье из дерева пропускает воздух, что позволяет создать приятный микроклимат в помещении, но один из главных минусов этого материала – его высокая горючесть. А если сравнить теплопроводность дерева и газобетона, то первое существенно проигрывает по способности к теплоизоляции. Кирпич же является самым плотным материалом для возведения стен, выдерживает самые низкие морозы и долгие годы эксплуатации. Но стены из кирпича приходится делать многослойными, поскольку его плотная структура плохо задерживает тепло.

Несомненно, при сравнении других строительных материалов с бетонными газоблоками, теплопроводность последних ниже.

Материал/плотностьТеплопроводность, Вт/м °C, 0% влажностиТеплопроводность, Вт/м °C, 4% влажности
Газобетон D500/5000,120,141
Керамзитобетон/8000,2310,35
Железобетон/25001,692,043
Кирпич из глины (полнотелый)/18000,560,81
Кирпич из глины

(пустотелый)/1000

0,260,439
Силикатный кирпич (полнотелый)/18000,700,87
Дерево/5000,090,18
Минвата/1500,0420,045
Пенополистерол/350,0280,028

По такой характеристике, как теплопроводность, а точнее теплоизоляция, газобетон уступает лишь дереву, минеральной вате и пенополистеролу для утепления, поэтому можно сказать, что для возведения наружных стен здания более теплого материала не найти.

Как показывает практика, блоки из газобетона очень хорошо зарекомендовали себя как в качестве утеплителя, так и в качестве основного строительного материала. Но, полагаясь на заверения производителя, не стоит забывать, что в зависимости от природных условий места, где используется такой блок, его характеристики способны изменяться. Возможно, что в местах с повышенной влажность придется хорошо утеплять стены, а в местах, где мороз достигает значений ниже -40°С придется класть стены в несколько газобетонных слоев.

Теплопроводность газобетона: коэффициент теплопроводности

Газобетон, теплопроводность

Газобетон и изделия из него получили популярность, благодаря высоким показателям свойств и качеств, одним из которых является теплопроводность. Материал обладает высокой способностью к сохранению тепла, которая обусловлена особой структурой, составом и технологией производства изделий.

Давайте разберемся: теплопроводность газобетона — отчего конкретно она зависит? Какими преимуществами будет обладать строение, возведенное из данного материала? И почему тысячи застройщиков, несмотря на высокую конкуренцию, отдают предпочтение именно изделиям из газобетона, опираясь, в первую очередь, на показатель теплопроводности?

Краткая характеристика газобетона

Газобетон является разновидностью ячеистого бетона, и отличается от схожих стеновых материалов составом сырья и методом порообразования. Несмотря на схожесть его с аналогами, показатели теплопроводности и иных свойств, иногда существенно отличаются.

Для того, чтобы понять, что именно способно оказывать влияние на изменения числовых показателей характеристик, следует рассмотреть предварительно индивидуальные особенности материала.

Обзор основных свойств и качеств

Воспользуемся таблицей.

Основные характеристики газобетона:

Наименование характеристикиСреднее ее значение
Морозостойкость35-150
Марка прочностиДля неавтоклава – от В1,5, в соответствии с ГОСТ21520-89; для автоклавного газобетона, в среднем — В3,5
УсадкаОт 0,3 мм/м2
Минимальная рекомендуемая толщина стеныОт 0,4 м
ТеплопроводностьОт 0,09
Экологичность2
ПожароопасностьНе горит

Характеристики достаточно конкурентные. Однако все они колеблются в определенных пределах и, как уже было сказано, зависят от некоторых условий. В таблице указаны средние и минимальные значения.

Теплопроводность газобетонного блока в 0,09, характерна исключительно для теплоизоляционных изделий в сухом виде. А как она будет изменяться с повышением плотности, мы рассмотрим ниже.

Классификация и сфера применения

Учитывая тему данной статьи, актуальным будет разобраться, какие же существуют виды материала. Ведь теплопроводность газобетонных блоков зависит от многих факторов.

В соответствии со способом твердения, газобетонный блок может быть:

  1. Автоклавным;
  2. Неавтоклавным.
Автоклавный и неавтоклавный газобетон

Обратите внимание! Автоклавный газобетон еще также называют газобетоном синтезного твердения. Отличается он тем, что на заключительном этапе производства его обрабатывают в специальном оборудовании – автоклаве, при воздействии высокой температуры и давления. Как следствие, изделия обладают более высокими характеристиками, в том числе и более качественным соотношением плотности и теплопроводности. Но об этом поговорим позже.

Неавтоклавные изделия, или газобетон гидратационного твердения, достигают технической прочности естественным способом. Требования к нему, в соответствии с ГОСТ, несколько ниже. Сравним показатели данных видов газобетона при помощи таблицы.

Сравнение автоклавного и неавтоклавного газобетона:

Наименование показателяЗначение для автоклавного газобетонаЗначение для неавтоклавного газобетона
Прочность, маркаВ2,5-5В1,5-2,5
Морозостойкость35-15015-35
Паропроницаемость0,20,18
Теплопроводность эксплуатационная0,096-0,1550,17-0,25
ОгнестойкостьНе горитНе горит
Рекомендуемая минимальная толщина стены, метрыОт 0,4От 0,65
ДолговечностьДо 200 летДо 50 лет

Как видно, газобетон синтезного твердения во многом опережает своего конкурента — неавтоклава, и это касается практически всех характеристик. Следует отметить, что цена на последний также значительно ниже, и изготовление его возможно произвести своими руками.

Характеристика газобетона разной плотности

Также газобетон разделяют в зависимости от плотности.

В соответствии с этим, материал может быть:

  1. Теплоизоляционным. Такие изделия отличаются низкой плотность (до 400) и теплопроводностью. Используются они в качестве материала для утепления, так как никаких существенных нагрузок блок выдержать не способен.
  2. Конструкционно-теплоизоляционный газобетон обладает более высокой плотностью. Числовой показатель варьируется от 400 до 800. Однако коэффициент теплопроводности газобетонных блоков также вырастает. Используется материал при возведении стен и перегородок.
  3. Конструкционный газобетон – наиболее прочный из всех. Плотность его равна 900-1200. Может выдержать значительные нагрузки, однако при этом, стены требуют дополнительного утепления, так как способность к сохранению температуры у таких блоков достаточно низкая.
Отличия газобетона разной плотности

Помимо вышеуказанных классификаций, существуют и иные, связанные с особенностью состава и внешнего вида изделий. Рассмотрим кратко.

В зависимости от типа вяжущего, газобетон бывает:

  • На цементном вяжущем;
  • На известковом;
  • На шлаковом;
  • На зольном;
  • На смешанном.

Это указывает на то, что содержание основного компонента варьируется в пределах от 15 до 50%.

В соответствии с типом кремнеземистого компонента:

  1. На песке;
  2. На золе;
  3. На иных вторичных продуктах промышленности.

Также хотелось бы отметить классификацию, основанную на геометрии блока.

Газобетон может быть:

  1. Первой категории точности;
  2. Второй категории точности;
  3. Третьей категории точности.

Категория указывает на возможные геометрические отклонения, максимальные значения которых продиктованы ГОСТ.

Важно! Блоки первой категории – самые ровные, отклонения по размеру не должны превышать 1,5 мм. Укладывают их на клей с минимальной толщиной слоя. И заметьте, что для теплотехники стен в целом это оказывает значительное влияние!

Вторая категория имеет большие отклонения: до 2-х мм – по размеру, до 3-х – по диагонали.

Блоки третьей категории обычно используются при возведении хозяйственных построек. Повышенные отклонения диктуют необходимость возведения стен с использованием раствора со значительно большей толщиной шва. Это увеличивает мостики холода и теплопроводность помещения.

Обратите внимание! Блоки различной категории отличаются между собой только геометрическими отклонениями. Различий в технических характеристиках существенных нет. Теплопроводность, прочность, морозостойкость и иные показатели будут идентичными. Отличаться они могут только ввиду сравнения изделий различных производителей.

Понятие теплопроводности и ее значение

Теплопроводность – это способность материала к сохранению температуры. Например, если коэффициент ее высок, то в холодное время года, затраты на отопление помещения значительно возрастут, так как тепло будет быстро выходить наружу — и здание, соответственно, будет быстро остывать.

Давайте разберемся, насколько практичным является использование газобетона в качестве материала для утепления либо возведения стен в данном случае.

Что такое теплопроводность
Показатели теплопроводности газобетона. Зависимость коэффициента теплопроводности от технико-механических показателей

Коэффициент теплопроводности газобетона продиктован ГОСТ 25485-89. Бетоны ячеистые. Технические условия. Как уже упоминалось, данный показатель напрямую зависит от плотности изделий и, более того, от типа кремнеземистого компонента. Рассмотрим таблицу.

Зависимость теплопроводности от плотности газобетона и типа кремнеземистого компонента:

Вид газобетонаМарка прочностиКоэффициент теплопроводности газобетона, изготовленного на золеКоэффициент теплопроводности газобетона, изготовленного на песке
Теплоизоляционный3000,080,08
4000,090,1
Конструкционно-теплоизоляционный5000,10,12
6000,130,14
7000,150,15
8000,180,21
9000,200,24
Конструкционный10000,230,29
11000,260,34
12000,290,38

Вывод напрашивается сам собой: чем больше плотность, тем выше и показатель теплопроводности.

График зависимости теплопроводности от плотности
  • В соответствии с ГОСТ, производителем должен быть учтен тот факт, что теплопроводность изделий не должна превышать вышеуказанных показаний более чем на 20%.
  • Также в таблице видно, что газобетон, изготовленный на золе, более способен к сохранению температуры.
  • Возьмем, к примеру, блоки газозолобетонные d=600: коэффициент теплопроводности у них равен значению в 0,13. А у блоков той же плотности, но изготовленных на песке, данный показатель — на 0,1 выше
  • Немаловажным фактом является то, что теплопроводность блока значительно ухудшается при его увлажненности. А так как газобетон впитывает влагу достаточно сильно, стоит обратить внимания на подобные изменения.
  • Например, коэффициент теплопроводности газобетона d500 равен 0,12, но это – при стандартных условиях измерения. При эксплуатационной влажности, этот показатель увеличивается минимум на 0,2.
Теплопроводность газобетона d500

То есть, чем выше влажность, тем выше и коэффициент теплопроводности. В соответствии с ГОСТ, отпускная влажность газобетонных изделий не должна превышать показателя в 25%, при производстве изделий на песке, и 30% — на основе золы и иных вторичных продуктов промышленности.

Отдельно стоит обратить внимание на такой материал как монолитный газобетон. Он также может быть разной плотности, и обладать различным коэффициентом теплопроводности. Во многом это зависит от марки используемого при изготовлении цемента, пористости и соотношения компонентов.

Его активно используют при:

  • Устройстве стяжки. Монолитные полы из газобетона прочны, материал прост в обращении. Нередко с его помощью производят подготовку основания под теплый пол.
  • Для изоляции кровли. При этом применяют материал меньшей плотности.

Это, разумеется, не все возможные сферы применения материала, их существует достаточно большое количество. Фактом остается то, что популярность газобетона растет с каждым годом все больше, именно благодаря соотношениям плотности и теплопроводности, высоким показателям морозостойкости и других эксплуатационных характеристик.

Сравнение способности газобетона к сохранению тепла с различными стеновыми материалами

А теперь давайте сравним показатели теплопроводности газобетона с другими стеновыми изделиями, а также проанализируем соотношение плотности к данной характеристике. Достоин ли газобетон находиться в лидерах?

Сравнение физико-технических показателей газобетона и других стеновых материалов:

Наименование материалаПлотность кг/м3Коэффициент теплопроводности
Газобетон600-8000,18-0,28
Силикатный кирпич1700-19500,85-1,16
Арболит400-8500,08-0,18
Шлакобетон900-14000,2-0,58
Пенобетон400-12000,14-0,39
Керамзитобетон900-12000,5-0,7
Кирпич пустотелый1500-19000,56-0,95

Фактически выходит, если сравнивать вышеперечисленные материалы и газобетон, теплопроводность его несколько превышает лишь аналогичный показатель у арболита и пенобетона. Остальные стеновые материалы остаются далеко позади.

Сравнение теплопроводности материалов

Как уже говорилось, газобетон низкой плотности используют в качестве материала для утеплителя. Давайте сравним теперь обоснованность его применения.

Теплопроводность материалов, предназначенных для утепления, в сравнении с теплоизоляционным газобетоном:

Наименование материалаКоэффициент теплопроводности, м2*С/Вт
Газобетон теплоизоляционный, Д300От 0,08
Эковата0,014
Изовер0,044
Пенопласт0,037
Керамзит0,16
Стекловата0,033-0,05
Минеральная вата0,045-0,07
Теплопроводность строительных материалов

Даже в качестве теплоизоляционного материала, газобетон может быть достойным конкурентом.

Часто выбирая утеплитель, застройщики задаются вопросом: керамзит или газобетон, что лучше? Ответить однозначно достаточно сложно. В первую очередь, следует обратить внимание на приоритеты в показателях. Оба материала – легкие, недорогие и способны сохранять тепло.

Однако, если учитывать данные, указанные в таблице, то теплоизоляционный газобетон все же выигрывает в последнем показателе. А выбор, остается за вами.

Расчет оптимальной толщины стены

Рекомендуемая минимальная толщина стены из газобетона, как мы уже выяснили, составляет 400 мм. Однако для разных регионов, этот показатель может значительно отличаться. В местах, где температура воздуха более низкая, стена должна быть значительно толще, при сохранении оптимальной температуры.

Давайте разберемся, как же правильно посчитать нужную толщину стены, с учетом всех необходимых факторов, в том числе требований СНиП 23-02-2003 Тепловая защита зданий, СП 23-101-2004 Проектирование тепловой защиты зданий.

Для начала рассмотрим, каким будет показатель теплопроводности, в соответствии со СНиП, при условиях изготовления с использованием различного кремнеземистого компонента и кладки готовых изделий на различные растворы.

Расчетные коэффициенты теплопроводности в условиях эксплуатации при возведении стен с использованием раствора и клея и соответствующие условия эксплуатации А-В:

Вид блокаМарка плотностиКоэффициент теплопроводности, при условии укладки на известково- песчаный раствор (условия эксплуатации А-В).Коэффициент теплопроводности, при условии укладки на цементно-песчаный раствор

(условия эксплуатации А-В).

Коэффициент теплопроводности, при условии укладки изделий на клей

(условия эксплуатации А-В).

Газобетон, изготовленный из кварцевого пескаД5000,25-0,30,24-0,280,18-0,23
Д6000,27-0,320,26-0,310,22-0,26
Д7000,35-0,40,34-0,390,27-0,31
ГазозолобетонД5000,28-0,330,27-0,320,19-0,25
Д6000,31-0,370,3-0,360,25-0,31
Д7000,39-0,450,38-0,440,3-0,36

Далее, для проведения расчетов необходимо определить, к какой зоне влажности относится ваш регион. Для этого можно воспользоваться картой зон влажности и следующей таблицей:

Влажностный режим регионов:

РежимВлажность воздуха при температуре до 12 градусовВлажность воздуха при температуре от 12 до 24 градусовВлажность воздуха при температуре более 24 градусов
Влажный – 1Более 75От 60 до 75От 50 до 60
Нормальный -2От 60 до 75От 50 до 60От 40 до 50
Сухой -3Менее 60Менее 50Менее 40

Теперь следует заглянуть в СНиП 23-02-2003 и определить, к каким условиям эксплуатации ограждающих конструкций относится регион в зависимости от влажности.

Карта зон влажности, фото

Эксплуатационные условия конструкций А, Б в зависимости от влажностного режима в регионе:

Режим влажностиУсловия эксплуатации во влажной зонеУсловия эксплуатации в нормальной зонеУсловия эксплуатации в сухой зоне
Влажный – 1БББ
Нормальный – 2ББА
Сухой — 3БАА

Теперь стоит вернуться в таблице 6, в которой мы сможем найти нужный для себя показатель.

  • Например, предположим, что наш регион – Смоленск. Его территория относится к зоне нормальной влажности – 2, влажность в помещении – тоже нормальная, значит, в этом случае, для региона характерны условия В.
  • Теперь переходим к расчетам. Нам потребуется значение нормируемого сопротивления теплоотдаче. Для Москвы это – 3,29.
  • Возводить мы будет стену из блоков плотностью Д500, укладку производить – на клей. Находим в таблице 6 необходимое значение. В данном случае оно равно – 0,23.
  • Теперь определяем толщину стены, для чего перемножаем коэффициент теплопроводности и показатель сопротивления теплоотдаче: 3.29*0.23=0,7567 метра.
  • То есть, для того, чтобы не нарушить нормы СНиП, толщина стены, при вышеописанных условиях, должна составлять 0,76 метра!

Так почему же все производители в один голос заявляют, что толщина стены может быть от 400 мм, а на практике выходит по-другому? Все просто!

Во-первых, теплопроводность газоблока в условиях эксплуатации – повышается, так как изменяется влажность, во-вторых, изготовителями, при подсчетах показателей для рекламы продукции, не учитываются мостики холода и иные определяющие факторы. Теоретически, толщина стены может быть и тоньше, но, чтобы сохранить нужное значение теплопроводности, необходимо будет компенсировать разницу при утеплении конструкции.

Газобетонные блоки теплопроводность: вариант утепления, схема

Видео в этой статье расскажет подробнее о методах утепления газобетона, и сохранения оптимального показателя качества теплопроводности

Обзор основных достоинств и недостатков строений, возведенных из газобетона

Итак, мы выяснили, что коэффициент теплопроводности газобетона достаточно хорош, относительно других материалов, предназначенных, в первую очередь, для возведения стен. Однако это не может являться единственным аргументом при выборе изделий.

Давайте кратко рассмотрим, какими же еще сильными сторонами обладают газоблоки:

  1. Изделия — легкие, что значительно сократит нагрузку на фундамент;
  2. Как уже упоминалось выше, материал прост в обращении, он легко пилится, режется, шлифуется;
  3. Состав газоблока – немаловажный аспект. Он не содержит ядовитых и вредных для окружающих веществ, а, значит, является экологически чистым;
  4. Газобетон не горит и не поддерживает огня. При возгорании может в течение нескольких часов находиться под воздействием высокой температуры;
  5. Высокие показатели морозостойкости. Изделия могут выдержать до 150 циклов размораживания и оттаивания;
  6. Паропроницаемость обеспечит максимально комфортный микроклимат;
  7. Звукоизоляционные характеристики – также достаточно неплохие. Стены из газобетона смогут оградить пребывающих в помещении от посторонних шумов извне;
  8. Доступность и распространенность материала среди производителей. Это – тоже значительный плюс. Практически в любом регионе можно найти изготовителя или дилера, находящегося по близости. Это поможет сэкономить на доставке;
  9. Вариативность выбора размеров;
  10. Еще одно весомое преимущество – возможность самостоятельного изготовления изделий. Для желающих сэкономить или просто попробовать свои силы – отличный шанс;

Основными недостатками являются:

  1. Высокое водопоглощение материала. В этом случае, пористость является отрицательной стороной в особенности, при отрицательных температурах воздуха. В это время, влага может кристаллизироваться и разрушительно воздействовать на структуру блока.
  2. Хрупкость изделий. Это достаточно заметно при проведении работ и транспортировке.
  3. Усадка здания имеет место быть достаточно часто и, в следствие этого, а также некоторых других факторов, могут появиться трещины.
  4. Необходимость поиска и приобретения специального крепежа, а при желании закрепить особо тяжелых предметы, необходимость планирования и укрепления узлов фиксации.

Метод испытания теплопроводности изделий

Метод контроля теплопроводности осуществляется в соответствии с ГОСТ 7076, а отбор проб – в соответствии с ГОСТ 10180. Документы содержат всю информацию о порядке отбора проб, их испытаний и протоколировании результатов.

Суть метода заключается в следующем: создается стационарный тепловой поток, который проходит через образец выбранной толщины. Направление его – перпендикулярно наибольшим граням образца. В результате производят измерение плотности этого потока тепла, а также температуру лицевых граней образца и его толщину.

Необходимое количество образцов, подлежащих испытанию, должно быть указано в сертификате на материал. Если же такое указание отсутствует, испытания проводятся на образцах в количестве пяти штук.

Прибор для измерения теплопроводности твердых тел

Краткая инструкция о порядке проведения испытания выглядит так:

  • Производят подготовку образцов и необходимого оборудования, согласно технической документации;
  • Образец помещают в прибор, предварительно градуированный;
  • Каждые 300 секунд производят измерения сигналов тепломера и датчика температуры;
  • После установления стационарного теплового потока, толщина образца подлежит измерению;
  • Заключительным этапом является определение массы образца.

Основные итоги

От показателя теплопроводности стенового материала зависят расходы на утепление помещения при строительстве, а в будущем — и величина расходов на отопление. Ведь данная характеристика отвечает за способность здания к сохранению температуры.

Газобетон обладает завидным числовым показателем в сравнении с другими материалами для стен — но, все же, совсем без утепления все равно не обойтись. Теплопроводность зависит от иных показателей качеств, таких, например, как плотность, или влажность. А это значит, что при возведении здания, данный факт должен быть обязательно учтен.

Помимо вышеуказанного, газоблок наделен большим количеством сильных сторон, поэтому если ваш выбор пал на него, то вы не прогадали. Материал позволит возвести практичное, долговечное строение — а теплопроводность газобетонных блоков при этом, является крайне важной характеристикой.

Технические характеристики газосиликатных блоков — Орел Блок

    главная    |     Характеристики блоков

Характеристики блоков из ячеистого бетона

Характеристики силикатного кирпича


Характеристики блоков из ячеистого бетона

Cравнительная таблица характеристик материалов для домостоения

Показатели Ед. изм. Кирпич строительный Строительные блоки Пенобетон
глиняный силикатный керамзитобетон газобетон
Плотность кг/м3 1550-1700 1700-1950 900-1200 350-700 400-1200
Масса 1м2 стены кг 1200-1800 1450-2000 500-900 200-300 200-900
Теплопроводность вт/м2 0,6-0,95 0,85-1,15 0,5-0,7 0,10-0,28 0,12-0,38
Морозостойкость цикл 25 25 25 15-35 15-65
Водопоглощение % по массе 12 16 18 20 12
Предел прочности при сжатии МПа 2,5-25 5-30 3,5-7,5 1,5-10 1,5-17

 

Характеристики пенобетонных блоков

Марка бетона по средней плотности в сухом состоянии D400 D500 D600 D700 D800 D900
Пределы отклонений средней плотности бетона
в сухом состоянии, кг/м3
351-450 451-550 551-650 651-750 751-850 851-950
Коэффициент теплопроводности бетона в сухом состоянии не более, Вт/(м*К) 0,10 0,12 0,14 0,18 0,21 0,24
Класс бетона по прочности на сжатие М0,5
М0,75
В0,75
В1,5
В1 В1,5
В2
В1,5 В2
В2,5
В2 В2,5
В3,5 В5
В2,5 В3,6
В5 В7,5
Средняя прочность на сжатие (при коэффициенте вариации Vn=17%) не менее, МПа 0,7; 1,1 1,1; 1,4; 2,2 1,4; 2,2; 2,9 2,2; 2,9; 3,6 2,9; 3,6; 5,0; 7,2 3,6; 5,0; 7,2; 10,7

 

Характеристики газосиликатных блоков первой категории

Значение показателя для марки по средней плотности

Средняя плотность в сухом состоянии, кг/м3

Класс бетона по прочности на сжатие

Прочность на сжатие,МПа,

не менее

Марка по морозостойкости

Коэффициент теплопроводности,

Вт/(м*С)

Усадка, мм/м, не более

Отпускная влажность, %по массе, не более

Удельная активность естественных радионуклидов,

Бк/кг, не более

Предельные отклонения от размеров, мм

 

Характеристики газосиликатных блоков третьей категории

Значение показателя для марки по средней плотности

Средняя плотность в сухом состоянии, кг/м3

Класс бетона по прочности на сжатие

Прочность на сжатие,МПа,

не менее

Марка по морозостойкости

Коэффициент теплопроводности,

Вт/(м*С)

Усадка, мм/м, не более

Отпускная влажность, %по массе, не более

Удельная активность естественных радионуклидов,

Бк/кг, не более

Предельные отклонения от размеров, мм

 

Характеристики ячеистых бетонов

Показатель Ячеистый бетон
неавтоклавный
теплоизоляционный
Ячеистый бетон
неавтоклавный
конструкционный
Объемная масса в сухом состоянии, кг/м3 400-600 600-1600
Прочность на сжатие в 28 дней, кг/см2 10-30 30-60
Теплопроводность, Ккал/м.ч.гр. 0,1-0,17 0,17-0,33
Сопротивление теплопередачи через стену 200 мм.
300 мм, Ккал/кн.м.ч.гр.
  0,71-0,95
0,43-0,58
Акустические характеристики для стены 200 мм.
300 мм., Дб
43-45
35-37
40-42
47-49
Паропроницаемость, мг/м.ч.П.   0,17-0,23
Усадка после 90 дней, %   0,033
Огнеустойчивость, мин 120 120
Водопоглощение, %   8,5

Характеристики силикатного кирпича

Основные характеристики силикатного кирпича утолщенного 2-х пустотного


Значение показателя

Марка по прочности

Предел прочности при сжатии, Мпа, не менее

Предел прочности при изгибе, Мпа, не менее

Марка по морозостойкости

Водопоглощение,%, не менее

6

Масса (сух),кг. не более

4,3

Влажность,%

3-5

Пустотность,%

16

Коэффициент теплопроводности, Вт/(м*С)
(фрагмент бесшовной кладки)

0,856

Удельная активность естественных радионуклидов,
Бк/кг, не более

370

Средняя плотность, кг/м3

1630

 

Основные характеристики силикатного кирпича утолщенного 11-ти пустотного

Значение показателя

Марка по прочности

Предел прочности при сжатии, Мпа, не менее

Предел прочности при изгибе, Мпа, не менее

Марка по морозостойкости

Водопоглощение,%, не менее

Масса (сух),кг. не более

Коэффициент теплопроводности, Вт/(м*С)
(фрагмент бесшовной кладки)

Удельная активность естественных радионуклидов,
Бк/кг, не более

Средняя плотность, кг/м3

 

Основные характеристики силикатного камня 11-ти пустотного

Значение показателя

Марка по прочности

Предел прочности при сжатии, Мпа, не менее

Предел прочности при изгибе, Мпа, не менее

Марка по морозостойкости

Водопоглощение,%, не менее

Масса (сух),кг. не более

Коэффициент теплопроводности, Вт/(м*С)
(фрагмент бесшовной кладки)

Удельная активность естественных радионуклидов,
Бк/кг, не более

Средняя плотность, кг/м3

 

характеристики, размеры, вес, цена блоков из газосиликата.


В современном строительстве широко используются эффективные материалы на основе ячеистых бетонов. В индивидуальном загородном строительстве вместо кирпича все чаще используют современные материалы из газобетона и газосиликата, отличающиеся низкой ценой и высокими строительными и теплотехническими характеристиками.

В предыдущих публикациях мы уже рассмотрели характеристики пеноблков и узнали как построить стены бани из пенобетона.

Давайте сегодня поговорим о другом современном строительном материале – газосиликатных блоках. Обсудим их плюсы и минусы, узнаем цену и размеры, а также поговорим об основных технических характеристиках этого набирающего популярность материала.


Производство газосиликатных блоков

В состав смеси для производства газосиликата входят:

  • высококачественный портландцемент, содержащий не менее 50% силиката кальция;
  • песок с содержанием кварца не менее 85% и включением илистых и глинистых частиц не более 2%;
  • известь-кипелка со скоростью гашения 5-15 мин и содержанием оксида кальция и оксида магния не менее 70%;
  • газообразователь из алюминиевой пудры;
  • сульфанол С;
  • вода.

Блоки из газосиликата могут изготавливаться как с использованием автоклава, так и без него. При этом, автоклавный способ позволяет получить материал с более высокими характеристиками по прочности и усадке при высыхании.

 

Блоки, изготавливаемые без использования сушки в автоклаве, имеют в пять раз большую усадку, чем те, которые были просушены в автоклаве, а также худшие показатели прочности. Но при этом стоят они заметно дешевле.

Автоклавный способ изготовления применяется на достаточно крупных предприятиях, так как этот способ достаточно технологичный и требует большого количества энергии. Пропаривают продукцию из газосиликата при температуре до 200 градусов при давлении до 1,2 МПа.

Изменяя процентное соотношение ингредиентов, входящих в состав смеси для приготовления газосиликата, можно изменять характеристики получаемого материала. Так, увеличивая содержание цемента, можно повысить прочность изделия, но при этом уменьшится количество пор, что в конечном итоге повлияет на его теплотехнические характеристики, увеличив значение теплопроводности.


Технические характеристики газосиликатных блоков

Виды блоков по плотности

В зависимости от плотности все изделия из газосиликата принято делить на конструкционные, конструкционно-теплоизоляционные и теплоизоляционные.

К конструкционным относят блоки, имеющие плотность не ниже D700. Такой материал можно использовать для строительства несущих стен в зданиях до 3 этажей.

Конструкционно-теплоизоляционные блоки имеют плотность от D500 до D700. Они хорошо подойдут для устройства межкомнатных перегородок, а также стен зданий высотой не более 2 этажей.

Теплоизоляционные имеют высокую пористость и самую низкую прочность. Обладая плотностью D400, они очень востребованы в качестве материала повышающего теплотехнические характеристики стен, выполненных из менее энергоэффективных материалов.

Теплопроводность газосиликатных блоков

По своим показателям теплопроводности изделия из газосиликата имеют весьма высокие характеристики. Значения теплопроводности в зависимости от плотности приведены в таблице ниже:

Марка (плотность)

D400 и ниже

D500-D700

D700 и выше

 Теплопроводность, Вт/м°С

0,08-0,10

0,12-0,18

0,18-0,20

 

Морозостойкость газосиликатных блоков

Морозостойкость зависит от объема пор используемого для изготовления материала и, как правило, составляет от 15 до 35 циклов замерзания-размораживания.

Но, некоторые современные предприятия, уже освоили выпуск газосиликата с заявленной морозостойкостью от 50 до 75 и даже до 100 циклов.

Однако, в среднем, в соответствии с ГОСТ 25485-89 следует ориентироваться на показатель морозостойкости изделий плотностью D500 равный 35 циклам.


Размеры и вес газосиликатных блоков

Изделия из газосиликата могут иметь различные размеры в зависимости от завода-изготовителя. Но чаще всего встречаются следующие размеры: 600х200х300 мм, 600х100х300 мм, 500х200х300 мм, 250х400х600 мм, 250х250х600 мм и т.д.


Вес газосиликатного блока

Вес может различаться в зависимости от плотности используемого материала. Для примера в таблице ниже приведены значения веса газосиликатных блоков основных типоразмеров в зависимости от плотности:

 Плотность

Размер, мм

Вес, кг

D700

600x200x300

20-40

D700

600x100x300

10-16

D500-D600

600x200x300

17-30

D500-D600

600x100x300

9-13

D400

600x200x300

14-21

D400

600x100x300

5-10

 

Плюсы и минусы газосиликатных блоков

К плюсам блоков из газосиликата можно отнести следующие качества:

  • малый вес;
  • достаточная для малоэтажного строительства прочность;
  • хорошие теплотехнические характеристики;
  • звукоизоляционные свойства;
  • низкая цена;
  • огнестойкость.

Но есть у них и свои недостатки, к которым можно отнести:

  • необходимость навыка возведения стен на специальных клеях;
  • необходимость наружной отделки для повышения эстетичности вида стен;
  • высокая паропроницаемость и гигроскопичность;
  • необходимость прочного фундамента для возведения стен.

Внимание! Из-за гигроскопичности материала, его не желательно использовать в помещениях с повышенной влажностью без специальной отделки, не пропускающей влагу к стенам из газосиликата.


Стоимость блоков из газосиликона

Судя по прайс-листам, представленным в интернете на сайтах заводов изготовителей, стоимость одного блока размером 600х100х300 мм составляет примерно $1,8-1,9 за штуку, а блок размером 600х200х300 обойдется вам примерно в $3 за 1 шт.

Цены указаны на момент написания публикации и могут отличаться от текущих цен на рынке, поэтому при необходимости уточняйте актуальную стоимость у производителей.

Смотрите также:

Последние публикации:

Даже правильно выложенной кирпичной печи, со временем требуется ремонт. Высокие температуры, нарушение тяги, механические повреждения кладки – все это приводит к появлению дефектов, которые требуют устранения. Ведь хорошая тяга и отсутствие трещин в стенках –… Читать… Выбор печей для бани сегодня очень широк. Промышленностью выпускаются каменки на любой вкус и цвет. Вы можете подобрать готовую печь для установки в бане в соответствии с требуемой теплопроизводительностью в зависимости от объема парной и выбрать нужный… Читать… Для того, чтобы попариться в баньке сегодня вовсе не обязательно выкладывать основательную русскую печку, кладка которой под силу лишь опытным печникам. Сегодня промышленным способом выпускается большой ассортимент металлических каменок, обеспечивающих… Читать…
  • < Чем штукатурить газобетон?
  • Производство пеноблоков своими руками >

Плотность газосиликатных блоков: какую лучше выбрать

Современный строительный материал – газосиликат – относится к классу легких ячеистых бетонов и на сегодняшний день считается достойной альтернативой традиционному кирпичу.

В отличие от стандартных стеновых материалов легкие блоки имеют пористую структуру с огромным количеством мелких пор, обеспечивающих повышенные теплоизоляционные свойства материала. От размера пустот зависит плотность газосиликатных блоков, которая является основной характеристикой и главным критерием при выборе материала.

Что означает этот показатель?

Мнение эксперта

Сергей Коровин

Ведущий архитектор, проектировщик в сфере малоэтажного строительства

Задать вопрос

Исходным сырьем для изготовления газосиликатных камней служит смесь извести, измельченного кварцевого песка, цемента и алюминиевой пудры. Сырье загружается в специальные автоклавные печи и под действием высокой температуры до 200 градусов начинаются химические процессы, при которых алюминиевый порошок переходит в газообразное состояние.

В результате химической реакции замещения выделяется большое количество кислорода, и газосиликатная масса вспучивается, увеличиваясь в объеме в несколько раз. Ключевым параметром полученного материала считается его плотность, определяющая теплоизоляционные свойства и прочностные характеристики.

Основной ключевой параметр газосиликатного материала — плотность

Плотность — это  соотношение массы к объему материала. Применительно к ячеистым бетонам эта величина отражает соотношение объема пустых ячеек к общему объему материала. Чем выше содержание пустот в материале, тем ниже его плотность — и наоборот. Исходя из этого определения, газосиликатные блоки подразделяются на следующие марки:

  • D 1000;
  • D 800;
  • D 600;
  • D 500;
  • D 400;
  • D 300.

Если подробнее ознакомиться с предложенной маркировкой изделий, можно понять, что в 1 м³ газосиликата марки D 500 содержится 500 кг веса твердых веществ, а остальное место в объеме занимают воздушные пустоты. Отсюда можно сделать вывод: чем больше плотность газосиликатных блоков, тем тяжелее их вес.

От чего зависит плотность?

Этот показатель зависит от нескольких факторов:

  1. От размера пустот в теле камня. Для этого достаточно при изготовлении газосиликата внести изменения в количественный состав основных составляющих компонентов. Например, при увеличении количества основного вяжущего материала – цемента, значительно повышается прочность изделия, и уменьшается количество воздушных капсул. За счет этого существенно снижается плотность, и материал не будет таким воздушным и легким.
  2. От уровня влажности. Свежеизготовленные блоки содержат в своем составе влагу, которая постепенно испаряется в течение года после производства. Поэтому фактическая плотность «отлежавшихся» камней всегда немного меньше тех, которые недавно отгружены с завода.

Плотность – важный показатель газосиликатных блоков

Изменение физического показателя плотности существенно влияет на снижение теплотехнических характеристик и приводит к увеличению теплопроводности материала. Это означает, что дом, построенный из газосиликата с высокой плотностью, будет менее теплым. Для восприятия нагрузки от стен такого дома потребуется возведение более массивного фундамента.

На что влияет плотность?

Дом со стенами из газосиликата классифицируется как каменная постройка, внутри которой создается свой, особый микроклимат, аналогичный деревянному строению. Стены «дышат» и обеспечивают медленную аэрацию внутренних помещений за счет пропуска воздуха через поры материала.

Кроме того, ячеистая структура позволяет регулировать влажность воздуха внутри дома и полностью исключает появления таких неприятных явлений, как плесень и грибкок.

Ячеистая структура газосиликата позволяет регулировать влажность воздуха внутри дома

Фактический показатель плотности существенно влияет на технические характеристики газосиликатных блоков:

  1. Прочность. Существует два смежных понятия, характерных для газосиликата: «объемная густота» и «прочность на сжатие». Существует закономерность: чем выше объемная густота, тем больше прочность изделия. Это означает, что камни из газосиликата марки D 400 и D 800 обладают плотностью 400 кг/м³ и 800 кг/м³ соответственно. Показатель «прочности на сжатие» зависит от объемной густоты газосиликата. Например, изделие D 500 выдерживает предельную нагрузку на сжатие в 3,2 МПа, превышение допустимых нагрузочных воздействий может вызвать разрушительные деформации и стены здания начнут покрываться трещинами. Поэтому газосиликатные камни можно использовать для строительства несущих стен зданий с небольшой этажностью.
  2. Теплопроводность. Это значение находятся в прямой зависимости от показателя плотности. Теплопроводность понижается с увеличением объемного веса. И наоборот — чем ниже плотность, тем лучше лучше теплотехнические показатели.
  3. Морозостойкость. Значение морозостойкости для газосиликатных изделий достигает 100 циклов. Это говорит о том, что дом, построенный из таких камней, способен выдержать цикличное замораживание и оттаивание в течение 100 лет без видимых признаков разрушения и деформаций. При этом чем меньше размер пор (и выше плотность), тем выше показатель морозостойкости.
ПоказательЗначение технического показателя для марки по плотности
D 300D 400D 500D 600D 800D 1000
Плотность, кг/м³3004005006008001000
Класс бетонаВ 1,5 -В 2,0В 1,5В 2,0В 2,5В 5,0В 7,0
Прочность на сжатие, Мпа1,01,082,162,74,215,0
Марка морозостойкостиF 25 -F 35F 25 -F 35F 35F 35F 35F 35
Коэффициент теплопроводности, Вт(м*с)
0,0880,110,120,140,190,21
Предельные отклонения от размеров, мм
+-1,0-2,0

Какая марка лучше – D 500 или D 600

Газосиликатные блоки плотностью D 500 и D 600 – это самые востребованные и универсальные стеновые материалы среди легких ячеистых бетонных камней.

При покупке кладочных блоков частные застройщики часто испытывают трудности в целесообразности применения той или иной марки. Для того, чтобы разобраться в различии столь популярных марок, лучше всего ознакомится со сравнительной таблицей:

Марка по плотностиКласс по прочности на сжатиеПаропроницаемость,
мг/м•ч•Па
Теплопроводность,
Вт/м•°С
Морозостойкость
D 500B 2,5-3,50,200,12F35
D 600B 3,5-5,00,160,14F35

Сравнивая основные технические показатели, можно увидеть существенное различие в показателях паропроницаемости и теплопроводности. Это связано с тем, что пористая структура наполнена воздухом, который прогревается и препятствует передаче тепла. И если плотность газосиликатной массы меньше, то лучше и показатель теплопроводности.

В данном случае стены, построенные из газосиликатных камней плотности D 500, будут лучше аккумулировать тепло и создавать надежную преграду проникновению холодного воздуха в зимнее время. Марка D 600 чуть более холодная, однако более прочная.

Для одноэтажных домов рекомендуется применять марку D 500, для двухэтажных — D 600 и выше.

Классификация материала по плотности

В зависимости от показателя плотности газосиликатные блоки подразделяются на следующие виды:

  • Конструкционные. К ним относятся изделия с плотностью не менее D 700, которые допускается применять для строительства несущих стен 1-5- этажных зданий.
  • Конструкционно-теплоизоляционные. К таким блокам можно отнести газосиликат с плотностью от D 500 до D 700. Область применения – межкомнатные перегородки и возведение наружных стен построек до 3-х этажей.
  • Теплоизоляционные. Этот вид характеризуется низкой плотностью, большим количеством пор и самыми низкими прочностными характеристиками. К ним относятся блоки с плотностью до D400, которые используют для создания дополнительного теплоизоляционного слоя при строительстве зданий из низкоэффективных теплосберегающий материалов. Например, при постройке стен из шлакоблока или бетонита.

Сравнительные характеристики можно увидеть в представленной таблице:

Вид блока из газосиликатаОбъемный вес (плотность)ТеплопроводностьМорозостойкость
КонструкционныеОт D 7000,18 – 0,20 Вт/м50 — 100
Конструкционно — теплоизоляционныйD 500 – D 7000,12 – 0,18 Вт/м35
ТеплоизоляционныеD 4000,08 – 0,10 Вт/м15 — 35

Выбор оптимальной марки для несущих стен и перегородок

Блоки из газосиликатов применяют для кладки наружных и внутренних стен

В строительстве блоки из газосиликатов допускается применять для кладки наружных и внутренних стен. Согласно существующим нормам ГОСТ выбор марки изделий зависит от величины нагрузки на стены и от этажности строения:

  1. Для жилых зданий рекомендуются конструкционные блоки плотностью от D 500 до D 700 c шириной изделия равной 400 мм. Такая марка блоков отлично подходит для частного малоэтажного строительства. Например, двухэтажный коттедж может быть возведен из газосиликатов плотности D 600, самой универсальной марки для всех видов стен. Низкая теплопроводность стен обеспечит сохранение тепла внутри дома и создает оптимальный микроклимат для комфортного проживания.
  2. Для нежилых зданий (бани, гаражи, летние кухни, подсобные помещения) допускается использовать газосиликат плотностью D 400. Так как эти помещения не предназначены для постоянного нахождения человека, и эти небольшие строения не надо постоянно обогревать в холодное время года, рекомендуемая толщина стен составляет от 200 до 300 мм.
  3. Для внутренних межкомнатных перегородок можно использовать газосиликатные камни с плотностью D 400 – D 700. Так как внутренние стены обычно выполняют только разделительную функцию и являются самонесущими, то их рекомендуемая толщина составляет от 90 до 100 мм.

Оценка тепловых и энергетических характеристик кирпичных блоков, изготовленных из ясеня финиковой пальмы

  • 1.

    Вэй, Ю., Чжан, X., Шиа, Ю., Ся, Л., Пан, С., Вуд, Дж., Хан, М., Чжао, X .: Обзор основанных на данных подходов к прогнозированию и классификации энергопотребления в зданиях. Обновить. Поддерживать. Energy Rev. 82 , 1027–1047 (2018)

    Google Scholar

  • 2.

    Мезгани, И., Бен-Хаддад, Х .: Энергопотребление и экономический рост: эмпирическое исследование потребления электроэнергии в Саудовской Аравии.Обновить. Поддерживать. Energy Rev. 75 , 145–156 (2017)

    Google Scholar

  • 3.

    Амасали, К., Эль-гохари, Н.М.: Обзор исследований прогнозирования энергопотребления зданий на основе данных. Обновить. Поддерживать. Energy Rev. 81 , 1192–1205 (2018)

    Google Scholar

  • 4.

    Икбал, И., Аль-Хоуд, М.С.: Параметрический анализ альтернативных мер по энергосбережению в офисном здании в жарком и влажном климате.Строить. Environ. 42 , 2166–2177 (2007)

    Google Scholar

  • 5.

    Сайед, М., Мохамед, С., Абдулрахман, М., Салех, Х .: Анализ потребления электроэнергии в офисном здании в Саудовской Аравии. ASHRAE Trans. 106 , 173–184 (2000)

    Google Scholar

  • 6.

    Строительный сектор, Саудовская Аравия, Центр энергоэффективности. https://www.seec.gov.sa/en/energy-sectors/buildings-sector/.По состоянию на 01 июня 2020 г.

  • 7.

    Халил Н.М., Алгамал Й .: Экологические и экономические аспекты частичной замены обычного портландцемента саудовским сырьем. Кремний 11 , 241–255 (2019)

    CAS Google Scholar

  • 8.

    Эндрю Р.М .: Глобальные выбросы CO2 от производства цемента. Данные Earth Syst Sci 195–217 , 2018 (2018)

    Google Scholar

  • 9.

    Маннан, М.А., Ганапати, Ч .: Бетон из масличной пальмовой оболочки (OPS). Строить. Environ. 39 (4), 441–448 (2004)

    Google Scholar

  • 10.

    Сафиуддин, М., Джумаат, М.З., Салам, М.А., Ислам, М.С., Хашим, Р.: Использование твердых отходов в строительных материалах. Int. J. Phys. Sci. 5 (13), 1952–1963 (2010)

    CAS Google Scholar

  • 11.

    Исмаил М., Исмаил М.А., Лау, С.К., Мухаммад, Б., Маджид, З .: Изготовление кирпичей из бумажного шлама и золы пальмового масла. Concr. Res. Lett. Структура Азиатско-Тихоокеанского региона. Англ. Конф. APSEC 1 (2), 60–66 (2010)

  • 12.

    Аллеман, Дж. Э., Берман, Н. А.: Конструктивное управление осадком: биокирпич. J. Environ. Англ. 110 (2), 301–311 (1984)

    CAS Google Scholar

  • 13.

    Чоудхури, С., Мишра, М., Суганья, О.: Включение золы древесных отходов в качестве частичного заменителя цемента при изготовлении конструкционного бетона: обзор. Ain Shams Eng. J. 6 (2), 429–437 (2015)

    Google Scholar

  • 14.

    Шаннаг, М.Дж .: Высокопрочный бетон, содержащий природный пуццолан и микрокремнезем. Джем. Concr. Compos. 22 , 399–406 (2000)

    CAS Google Scholar

  • 15.

    Nochaiya, T., Wongkeo, W., Chaipanich, A .: Использование летучей золы с микрокремнеземом и свойства портландцемента — летучая зола — микрокремнеземный бетон. Топливо 89 (3), 768–774 (2010)

    CAS Google Scholar

  • 16.

    Pode, R .: Возможное применение отходов золы рисовой шелухи электростанции, работающей на биомассе рисовой шелухи. Обновить. Поддерживать. Energy Rev. 53 , 1468–1485 (2016)

    Google Scholar

  • 17.

    Аль-Кутти, В., Сайфул-Ислам, А.Б.М., Насир, М .: Возможное использование золы финиковой пальмы в материалах на основе цемента. J. King Saud Univ. Англ. Sci. 31 (1), 26–31 (2019)

    Google Scholar

  • 18.

    Антони, М., Россен, Дж., Мартирена, Ф., Скривенер, К.: Замена цемента в исследованиях на цемент и бетон комбинацией метакаолина и известняка. Джем. Concr. Res. 42 (12), 1579–1589 (2012)

    CAS Google Scholar

  • 19.

    Ланган, Б.В., Вен, К., Уорд, М.А.: Влияние микрокремнезема и летучей золы на теплоту гидратации портландцемента. Джем. Concr. Res. 32 , 1045–1051 (2002)

    CAS Google Scholar

  • 20.

    Ли, Г., Чжао, X .: Свойства бетона, включающего летучую золу и измельченный гранулированный доменный шлак. Джем. Concr. Compos. 25 , 293–299 (2003)

    CAS Google Scholar

  • 21.

    Эльсайед А.А .: Влияние микрокремнезема, летучей золы, супер-поцца и высокошлакового цемента на водопроницаемость и прочность бетона. Concr. Res. Lett. 3 , 528–540 (2012)

    CAS Google Scholar

  • 22.

    Валид-Аль-Кутти, НИБ, Насир, М., Джохари, МАМ, Сайфул-Ислам, АБМ, Манда, А.А.: Обзор и экспериментальное исследование гибридных связующих, содержащих золу финиковой пальмы, летучую золу, OPC и композиты-активаторы. Констр.Строить. Матер. 159 , 567–577 (2018)

    Google Scholar

  • 23.

    Аль-Кутти, В., Ислам, A.B.M.S., Насир, М.: Журнал Университета Короля Сауда — Технические науки Возможное использование золы финиковой пальмы в материалах на основе цемента. J. King Saud Univ. Англ. Sci. 31 (1), 26–31 (2019)

    Google Scholar

  • 24.

    Strength, E., Nasir, M .: Характеристики ясеня финиковой пальмы как вяжущего материала путем оценки прочности, долговечности и характеристик.Корпуса 9 (6), 1–13 (2019)

    Google Scholar

  • 25.

    Зейад, А.М., Хусейн, А., Тайех, Б.А.: Долговечность и прочностные характеристики высокопрочного бетона, содержащего вулканический порошок пемзы и полипропиленовые волокна. J. Mater. Res. Technol. 9 (1), 806–818 (2019)

    Google Scholar

  • 26.

    Каннан, Д.М., Абубакр, С.Х., Эль-Диб, А.С., Реда, М.М .: Бетон с высокими эксплуатационными характеристиками, включающий порошковые керамические отходы в качестве значительной частичной замены портландцемента. Констр. Строить. Матер. 144 , 35–41 (2017)

    CAS Google Scholar

  • 27.

    Сингх М., Шривастава А., Бхуниа Д .: Исследование эффекта частичной замены цемента мраморной суспензией. Констр. Строить. Матер. 134 , 471–488 (2017)

    CAS Google Scholar

  • 28.

    Купваде-патил, К. и др.: Воздействие воплощенной энергии на материалы / здания с частичной заменой обычного портландцемента (OPC) природным пуццолановым вулканическим пеплом. J. Clean. Prod. 177 , 547–554 (2018)

    Google Scholar

  • 29.

    Blaisi, N.I .: Экологическая оценка использования золы финиковой пальмы в качестве частичной замены цемента в растворе. J. Hazard. Матер. 357 , 175–179 (2018)

    CAS Google Scholar

  • 30.

    Бенмансур, Н., Агуджил, Б., Герабли, А., Карече, А.: Тепловые и механические характеристики натурального раствора, армированного волокнами финиковой пальмы, для использования в качестве изоляционных материалов в строительстве. Энергетика. 81 , 98–104 (2014)

    Google Scholar

  • 31.

    Сюй, К., Занг, Х .: Комментарии к «Генерации типичного метеорологического года для различных климатических условий Китая» [Energy, 35 (2010) 1946 e 1953]. Энергетика 36 (10), 6285–6288 (2011)

    Google Scholar

  • 32.

    Weingrill, H., Hohenauer, W., Resch-fauster, K., Zauner, C.: Анализ теплопроводности соединений на основе полиэтилена, наполненных медью. Макромол. Матер. Англ. 1800644 , 1–14 (2019)

    Google Scholar

  • 33.

    Linseis: Руководство пользователя анализатора переходных процессов горячего моста THB-100 (2013)

  • 34.

    Galán-Arboledas, RJ, Cotes-Palomino, MT, Bueno, S., Martínez-García, C. : Оценка включения использованного диатомита в материалы на основе глины для обработки легкого кирпича.Констр. Строить. Матер. 144 , 327–337 (2017)

    Google Scholar

  • 35.

    Абдул-Муджибу, М., Ашраф, Н .: Влияние местоположения и зоны нечувствительности на энергетические характеристики наноаэрогелевого остекления для офисного здания в Саудовской Аравии. Строить. Res. Инф. 48 (6), 645–658 (2020)

    Google Scholar

  • 36.

    ASHRAE, стандарт ANSI / ASHRAE 62.1-2013. Вентиляция для приемлемого качества воздуха в помещении.Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Атланта, Джорджия (2013)

  • 37.

    Алайдроос, А., Крарти, М.: Оптимальный дизайн ограждающих систем жилых зданий в Королевстве Саудовская Аравия Аравия. Энергетика. 86 , 104–117 (2015)

    Google Scholar

  • 38.

    Мохаммед М.А.-А.А.-Q., Альхефнави А.М.: Эффективность теплоизоляции невентилируемых фасадов с воздушными зазорами в жарком климате.Араб. J. Sci. Англ. 42 , 1155–1160 (2017)

    Google Scholar

  • 39.

    Халид, В., Абдул, М., Мохаммед, А., Алгарни, М .: Влияние стратегии внешнего затенения на энергоэффективность многоэтажного здания гостиницы в жарко-влажном климате. Энергетика 169 , 1166–1174 (2019)

    Google Scholar

  • 40.

    Аль-Хахрами, Л.М., Ахмад, А .: Оценка тепловых характеристик различных типов кирпича для кладки, используемых в Саудовской Аравии.Прил. Therm. Англ. 29 (5–6), 1123–1130 (2009)

    CAS Google Scholar

  • 41.

    Коринальдези В., Маццоли А., Морикони Г .: Механическое поведение и теплопроводность строительных растворов, содержащих частицы отработанной резины. Матер. Des. 32 (3), 1646–1650 (2011)

    CAS Google Scholar

  • 42.

    да Милани, А.П., Лабаки, Л.К .: Физические, механические и термические характеристики укрепленных цементом утрамбованных стен из земляно-рисовой шелухи из золы.J. Mater. Civ. Англ. 24 (6), 775–782 (2011)

    Google Scholar

  • 43.

    Хай-Алами, А .: Эксперименты с необожженными глиняными кирпичами, смешанными с пальмовыми листьями и финиковыми ямами, для теплоизоляции. J. Renew. Поддерживать. Энергетика 5 , 023136 (2013)

    Google Scholar

  • 44.

    Рахман М.Е., Бун А.Л., Мунтохар А.С., Хашем-Таним М.Н., Пакраши В.: Характеристики кирпичных блоков, содержащих золу из пальмового масла. J. Clean. Prod. 78 (2014), 195–201 (2014)

    Google Scholar

  • 45.

    Carrasco-Hurtado, B., Corpas-Iglesias, FA, Cruz-Pérez, N., Terrados-Cepeda, J., Pérez-Villarejo, L.: Добавление зольного остатка из биомассы в силикатную кладку агрегаты для использования в качестве строительного материала с теплоизоляционными свойствами. Констр. Строить. Матер. 52 (2014), 155–165 (2014)

    Google Scholar

  • 46.

    Benmansour, N., Agoudjil, B., Gherabli, A., Kareche, A., Boudenne, A .: Тепловые и механические характеристики натурального раствора, армированного волокнами финиковой пальмы, для использования в качестве изоляционных материалов в строительстве. Энергетика. 81 , 98–104 (2014)

    Google Scholar

  • 47.

    Wu, J., Bai, G., Zhao, H., Li, X .: Механические и термические испытания инновационного экологически чистого пустотелого блока в качестве материала для самоизоляции стен.Констр. Строить. Матер. 93 , 342–349 (2015)

    Google Scholar

  • 48.

    Дансо, Х., Мартинсон, Д. Б., Али, М., Уильямс, Дж. Б.: Физические, механические свойства и долговечность строительных блоков из грунта, армированных натуральными волокнами. Констр. Строить. Матер. 101 , 797–809 (2015)

    Google Scholar

  • 49.

    Li, J., Cao, W., Chen, G .: Коэффициент теплопередачи нового строительства — кирпичная кладка с блоками летучей золы.Энергетика 86 , 240–246 (2015)

    Google Scholar

  • 50.

    Раут, А.Н., Гомес, К.П .: Термические и механические характеристики раствора, армированного волокнами масличной пальмы, с использованием летучей золы пальмового масла в качестве дополнительного связующего. Констр. Строить. Матер. 126 , 476–483 (2016)

    Google Scholar

  • 51.

    Манохар, К .: Экспериментальное исследование теплоизоляции зданий от сельскохозяйственных побочных продуктов.Br. J. Appl. Sci. Technol. 2 (3), 227–239 (2012)

    Google Scholar

  • 52.

    Бенц, С.Дж., Пельтц, М.А., Дюран-Эррера, А., Вальдес, П .: Тепловые свойства больших объемов зольных растворов и бетонов. J. Build. Phys. 34 (3), 263–275 (2011)

    CAS Google Scholar

  • 53.

    Ахмадф Ф., Алам И.: Физические, механические характеристики и долговечность стеблей финиковой пальмы в качестве арматуры в конструкционном бетоне.Int. J. Cem. Compos. Свет. Concr. 10 , 175–181 (1988)

    Google Scholar

  • 54.

    Аль-факих, А., Мохаммед, Б.С., Лью, М.С., Никбахт, Э .: Включение отходов в производство кирпичной кладки: обновленный обзор. J. Build. Англ. 21 , 37–54 (2019)

    Google Scholar

  • 55.

    Ким Дж. Дж., Мун Дж. У .: Влияние изоляции на потребление энергии в здании.В: Моделирование зданий, стр. 674–680 (2009)

  • 56.

    Абдул, М., Мохаммад, И.: Энергетические характеристики окон в офисных зданиях с учетом интеграции дневного света и визуального комфорта в жарком климате. Энергетика. 108 , 307–316 (2015)

    Google Scholar

  • 57.

    Абдул-Муджибу, М., Ашраф, Н., Алсувайиг, А .: Энергоэффективность и экономическая жизнеспособность наноаэрогелевого остекления и нано-вакуумной изоляционной панели в многоэтажном офисном здании.Энергетика 113 , 949–956 (2016)

    CAS Google Scholar

  • 58.

    Абдул-Муджибу, М., Ашраф, Н., Алсувайай, А.Х .: Влияние нано-вакуумной изоляционной панели и остекления с наногелем на энергоэффективность офисного здания. Прил. Энергетика 173 , 141–151 (2016)

    CAS Google Scholar

  • 59.

    Аль-Угла, А.А., Эль-Шаарави, М.А.И., Саид, С.А.М., Аль-Кутуб, А.М.: Технико-экономический анализ систем кондиционирования воздуха с использованием солнечной энергии для коммерческих зданий в Саудовской Аравии. Обновить. Поддерживать. Energy Rev. 54 , 1301–1310 (2016)

    Google Scholar

  • 60.

    Фанг, З., Ли, Н., Ли, Б., Луо, Г., Хуанг, Ю.: Влияние изоляции ограждающих конструкций здания на потребление энергии охлаждения летом. Энергетика. 77 , 197–205 (2014)

    Google Scholar

  • Теплоизоляционный материал — обзор

    10.1 Введение

    Теплоизоляционные материалы выбираются для уменьшения теплового потока через среду, и они могут быть изготовлены из одного или нескольких материалов. Теплоизоляционные материалы экономят промышленности США более 60 миллиардов долларов в год на энергозатратах (Cengel, 1998, стр. 158–159). Таким образом, важность изоляционных материалов побуждает инженеров-энергетиков улучшать тепловые характеристики теплоизоляционных материалов в сторону более высокого теплового сопротивления. Волокнистые, ячеистые и гранулированные вещества обычно используются в качестве изоляционных материалов в зданиях.Выбор теплоизоляционного материала зависит от его теплопроводности, тепловой массы, температуры внутренних и внешних пространств, долговечности, стоимости и других факторов. Теплофизические свойства материалов, используемых в оболочке здания, сильно влияют на потребление энергии для отопления или охлаждения. Теплопроводность влияет на тепловой поток в установившемся режиме. В переходном состоянии удельная теплоемкость также влияет на тепловой поток, поглощая и сохраняя тепло в виде явного тепла.Интенсивность солнечного излучения и температура наружного воздуха меняются со временем; следовательно, теплопроводность и удельная теплоемкость материалов, используемых в строительных оболочках, влияют на тепловой поток. Предпочтительными теплоизоляционными материалами являются материалы с высокой теплоемкостью и низкой теплопроводностью. Комплексный обзор экономики проектирования теплоизоляционных материалов был проведен Тернером и Малли, а Торгал, Мистретта, Каклаускас, Гранквист и Кабеза (2013) объяснили в своей книге, как решить проблемы ремонта зданий, чтобы добиться почти нулевого энергопотребления.

    Включение материала с фазовым переходом (PCM) в ограждающую конструкцию здания было исследовано как рентабельный метод снижения охлаждающей нагрузки. PCM — это органические или неорганические вещества с низкой температурой плавления и высокой скрытой теплотой плавления, такие как парафин и соль. PCM классифицируются как изоляционные материалы емкостного типа, поскольку они замедляют тепловой поток, поглощая тепло. В периоды высокой наружной температуры PCM расплавляет и накапливает часть тепла, передаваемого из помещения в помещение, а в периоды низкой наружной температуры PCM затвердевает и выделяет накопленное тепло.В процессе плавления удельная теплоемкость ПКМ увеличивается более чем в 100 раз, что позволяет ему поглощать большое количество энергии в относительно небольшом количестве ПКМ. Использование ПКМ в строительных материалах было предложено Баркманном и Весслингом (1975). Морикама, Сузуки, Окагава и Канки (1985) представили концепцию инкапсуляции ПКМ в ненасыщенную полиэфирную матрицу для строительных материалов. Недавний обзор PCM для ограждающих конструкций зданий можно найти в справочных материалах (Osterman, Tyagi, Butala, Rahim, & Stritih, 2012; Pomianowski, Heiselberg, & Zhang, 2013; Soares, Costa, Gaspar, & Santos, 2013; Waqas & Дин, 2013).В зависимости от компонента оболочки исследования PCM можно разделить на три группы: кирпичи, крыши и окна. Что касается кирпича, Alawadhi (2008) представил термический анализ кирпича с цилиндрическими полостями, заполненными ПКМ, и результаты показывают, что приток тепла может быть уменьшен на 17,55% для определенных конструкций и погодных условий. Zhang, Chen, Wu, & Shi (2011) сообщили о тепловых характеристиках кирпича с PCM при реальных колебаниях наружной температуры. Температурный отклик, представленный температурой внутренней поверхности стены кирпичной стены, заполненной ПКМ, оценивается и сравнивается с таковой у сплошной кирпичной стены.Chwieduk (2013) опубликовал статью о возможности замены толстых и тяжелых кирпичей, использующих тепловую массу, используемых в высокоширотных странах, на тонкие и легкие кирпичи, имеющие тепловую массу. Влияние ориентации, положения слоя ПКМ, температуры фазового перехода и погодных условий изучалось Искьердо-Барриентосом и др. (2012), и они обнаружили, что PCM помогает уменьшить максимум и амплитуду мгновенного теплового потока.

    Для крыш Alawadhi & Alqallaf (2011) исследовали бетонную крышу с отверстиями в усеченном вертикальном конусе, заполненными ПКМ.Цель крыши PCM — уменьшить поток тепла из наружного во внутреннее пространство за счет увеличения тепловой массы крыши. Форма контейнеров из ПКМ сохраняет физическую прочность крыши, при необходимости может быть легко заменена и позволяет ПКМ расширяться в процессе плавления в направлении вверх. Сообщается, что тепловой поток на внутренней поверхности крыши может быть уменьшен на 39%. Численный анализ теплопередачи через конструкцию крыши с помощью PCM выполнен Ravikumar & Sirinivasan (2011), и примерно на 56% снижение поступления тепла в комнату достигается с помощью конструкции крыши из PCM по сравнению с обычной крышей.С другой стороны, концепция двойных слоев PCM в крыше здания была предложена Pasupathy & Velraj (2008) для круглогодичного регулирования температуры. Двойной слой ПКМ в крыше рекомендуется для уменьшения теплового потока через крышу.

    Исследования PCM в окнах также проводились как метод уменьшения теплопередачи через окна. На окна приходится большой процент поступления тепла в дневное время, а энергия проникает через окна через солнечное излучение и конвекцию.Следовательно, уменьшение поступления тепла через окна является ключевым фактором для экономии энергии в зданиях, а для уменьшения притока тепла устанавливаются внешние жалюзи, чтобы исключить влияние солнечного излучения. Оконные ставни, заполненные PCM, были предложены и проанализированы Alawadhi (2012), и было проведено параметрическое исследование для оценки влияния различных параметров конструкции, таких как тип и количество PCM в ставне. Сообщается, что температура плавления PCM должна быть близка к максимальной температуре наружного воздуха в дневное время, а количество PCM должно быть достаточным для поглощения большого количества тепла.Goia et al. (2012) описали теплофизическое поведение конфигураций системы остекления PCM. Стеклянные окна с наполнителем из ПКМ для уменьшения солнечного излучения, проникающего в помещение через окна, также были исследованы (Ismail, Salinas, & Henriquez, 2008), и эффективность системы сравнивается с окнами, заполненными отражающими газами.

    Исследование тепловых свойств пустотелых сланцевых блоков как материалов для самоизоляции стен

    Для снижения энергопотребления и защиты окружающей среды был разработан и изготовлен тип пустотелого сланцевого блока с 29 рядами отверстий.В данной работе исследовались термические свойства пустотелых сланцевых блоков и стен. Во-первых, метод защитного теплового ящика был использован для получения коэффициента теплопередачи стенок пустотелых сланцевых блоков. Экспериментальный коэффициент теплопередачи составляет 0,726 Вт / м 2 · K, что позволяет сэкономить энергию по сравнению с традиционными материалами стен. Затем было рассчитано теоретическое значение коэффициента теплопередачи, равное 0,546 Вт / м 2 · K. Кроме того, одномерный стационарный процесс теплопроводности для блока и стен был смоделирован с использованием программного обеспечения для анализа методом конечных элементов ANSYS.Расчетный коэффициент теплопередачи для стен составил 0,671 Вт / м 2 · K, что хорошо согласуется с результатами испытаний. Обладая выдающимися свойствами самоизоляции, этот тип пустотелого сланцевого блока может использоваться в качестве стенового материала без каких-либо дополнительных мер по изоляции в каменных конструкциях.

    1. Введение

    Во всем мире экономическое развитие все больше ограничивается нехваткой природных ресурсов [1]. Кроме того, экономический рост приводит к таким проблемам, как разрушение окружающей среды и растрата ресурсов.Чтобы улучшить эту ситуацию и повысить энергоэффективность зданий, традиционные полнотелые глиняные кирпичи были официально запрещены в строительстве, что способствует изучению и применению новых материалов для стен [2].

    В настоящее время существует много типов новых стеновых материалов, таких как небольшой полый бетонный блок, пенобетонный блок и небольшой полый блок летучей золы. Однако ни один из этих стеновых материалов не является самоизоляционным, поэтому требуются определенные меры по теплоизоляции внешних стен.Меры внешней изоляции для наружных стен широко используются в строительстве, несмотря на некоторые очевидные недостатки, такие как легкое падение, короткий срок службы и низкая безопасность. Кроме того, в традиционной кирпичной кладке толщина швов раствора варьируется от 8 мм до 12 мм, что позволяет легко образовывать явные тепловые мостики и приводить к значительным потерям энергии.

    За последние 40 лет были разработаны различные изоляционные спеченные полые блоки, например, предложенные Porothem, Klimation, Poroton, Thermopor, Unipor, Monomur и Thermoarcilla [3].Все эти блоки обладают низкой плотностью, большим числом отверстий, высокой гладкостью поверхности и хорошими тепловыми характеристиками. Zhu et al. [4] исследовали термические свойства бетона из переработанного заполнителя (RAC) и блоков из переработанного бетона. Sodupe-Ortega et al. [5] изготовили прорезиненный длинный пустотелый блок и изучили технико-экономическую целесообразность производства этих блоков с использованием автоматических кирпичных машин. Zhang et al. [6] изучали тепловые характеристики бетонных пустотных блоков с помощью моделирования методом конечных элементов.Fan et al. [7] описал новый строительный материал, названный пенополистиролом вторично переработанным бетоном, и провел соответствующее численное моделирование для пустотелых блоков EPSRC и теплоизоляционных стен на основе термодинамических принципов. В недавних работах методы численного моделирования были предложены Del Coz Díaz et al. [8–11] для изучения различных типов стен из разного легкого пустотелого кирпича. Ли и др. [12] представили разработку упрощенной модели теплопередачи полых блоков для простого и эффективного расчета теплового потока.

    Пустотелый сланцевый блок состоит из сланца в качестве основного сырья, опилок в качестве порообразователя и промышленных отходов, таких как летучая зола, стальной шлак и крошка макулатуры в качестве вспомогательных материалов. Все это сырье обжигается в соответствии с определенным производственным процессом, чтобы получить новый энергосберегающий и экологически чистый стеновой материал, который обладает такими преимуществами, как легкий вес, большой размер, высокая скорость отверстий и высокая гладкость. Между тем, пустотелые сланцевые блоки в полной мере используют богатые сланцевые ресурсы для сохранения сельскохозяйственных угодий.В процессе возведения стен из пустотелых сланцевых блоков разрабатывается технология строительства швов из раствора толщиной 1-2 мм, позволяющая значительно снизить теплопотери, вызванные структурными тепловыми мостами. Ожидается, что без мер внешней изоляции будут достигнуты отличные теплоизоляционные свойства и энергоэффективность жилых зданий в очень холодных и холодных зонах внешних стен. Wu et al. [13] исследовали механические и термические свойства стен из пустотелых обожженных блоков.Bai et al. [14, 15] исследовали сейсмическое поведение обожженных теплоизоляционных стен из сланцевых блоков с ультратонкими швами из раствора.

    Коэффициент теплопередачи — один из важнейших параметров для оценки тепловых характеристик стен. При заданной температуре окружающей среды чем ниже коэффициент теплопередачи, тем меньше тепла рассеивается через стену. В настоящее время коэффициенты теплопередачи стен в основном определяются измерениями на месте или лабораторными испытаниями [16].В этом исследовании коэффициенты теплопередачи стенок из пустотелых сланцевых блоков были получены в результате лабораторных испытаний и сопоставлены с теоретическими расчетами и результатами моделирования методом конечных элементов. В разделе 2 представлены подробные размеры, производственные процессы, химические компоненты и минеральный состав пустотного сланцевого блока.

    2. Блок из пустотелых сланцев
    2.1. Детали блока полых сланцев

    Размеры блоков 365 мм × 248 мм × 248 мм с 29 рядами отверстий; плотность составляет 850 кг / м 3 3 , что позволяет значительно снизить вес здания и повысить эффективность теплоизоляции блоков.Подробные размеры показаны на рисунке 1.


    2.2. Сырье
    2.2.1. Сланец

    Сланец — это древняя осадочная порода, образовавшаяся в результате длительных геологических процессов. Древние породы дробятся на глинистые минералы и небольшое количество обломочных минералов в результате выветривания и затем переносятся в осадочные места во взвешенном состоянии. Все эти минералы отложились механически и превратились в глинистые породы с ламелляционной структурой при низкой температуре и низком давлении из-за внешних сил и эффекта диагенеза.В Китае более 75% поверхности суши покрыто осадочными породами, из которых 77,5% составляют сланцы [17].

    Химический состав сланца представлен в таблице 1; Основные минеральные компоненты сланца — кварц, кальцит, натриевый полевой шпат, каолинит и иллит. Соответствующий спектр XRD показан на Рисунке 2. После добычи, дробления и тонкого измельчения сланец является одним из наиболее многообещающих новых материалов для стенок, заменяющих спеченный глиняный кирпич из-за его значительных объемов хранения и легкости добычи.

    905 188 905 .2. Порообразователь

    Функция порообразующего агента заключается в образовании большого количества пор во время процесса спекания, что позволяет использовать более низкий коэффициент теплопроводности воздуха.Следовательно, порообразователь может эффективно улучшить изоляционные характеристики пустотелых сланцевых блоков и снизить их вес, что улучшает сейсмические характеристики. Принимая во внимание энергосбережение, переработку ресурсов и защиту окружающей среды, опилки были выбраны в качестве порообразователя для пустотелых сланцевых блоков. Как отходы обработки древесины, опилки имеют много преимуществ при использовании в качестве порообразователя. Опилки в основном состоят из стабильных растительных волокон, а потери при возгорании могут достигать 98.49%. При образовании пор внутри блоков может образовываться множество пор, что улучшает теплоизоляционные свойства. Кроме того, опилок также много, их дешево и легко достать.

    2.2.3. Промышленные отходы

    Летучая зола, стальной шлак и макулатура были добавлены в процессе спекания в качестве вспомогательных материалов.

    2.3. Производственный процесс

    В качестве нового типа энергосберегающего стенового материала процесс производства пустотелых сланцевых блоков включает измельчение, старение, перемешивание, экструзию, надрез, сушку, схватывание и высокотемпературное спекание.Большинство процессов автоматизировано. Процесс производства пустотелых сланцевых блоков показан на Рисунке 3.


    3. Детали эксперимента

    Для проверки применимости пустотелых сланцевых блоков были проведены испытания тепловых характеристик каменных стен в соответствии с китайскими нормами [18 ].

    3.1. Образцы

    Испытательные стены с размерами 1650 мм × 1650 мм × 365 мм (длина × высота × ширина) были построены с использованием пустотелых сланцевых блоков (см. Рисунок 4).


    Пустотность пустотелого сланцевого блока достигает 54%, а степень его прочности на сжатие достигает 10 МПа. Кроме того, его сотовая сетчатая структура может обеспечить отличные теплоизоляционные характеристики. Были изготовлены три образца, толщина горизонтального шва составляла от 1 мм до 2 мм. Поскольку в испытательных стенах не было вертикальных стыков из раствора, для блокировки и укрепления стенок из пустотелых сланцевых блоков использовались соединения «шпунт и паз». После того, как образцы были полностью высушены с выдержкой в ​​течение 20 дней, были протестированы тепловые характеристики.

    3.2. Устройство для испытаний

    Схема устройства для испытания характеристик теплоотдачи в установившемся режиме показано на рисунке 5, которое было разработано в соответствии с китайскими нормами GB / T13475-2008 [18] и методом защитного теплового ящика, как показано на рисунке 6. .



    Поскольку защитный бокс в методе защитного теплового бокса окружает дозирующий бокс, тепловой поток через стенку дозирующего бокса () и тепловой поток боковых потерь () могут быть уменьшены до незначительного уровня, если внутренние температуры воздуха в защитном боксе и измерительном боксе равны.Теоретически, если однородный образец установлен в устройство, внутренняя и внешняя температура которого одинаковы, температура поверхности образца будет стабильной. Другими словами, тепловой поток через стенки дозатора будет равен тепловому потоку от боковых потерь (). Однако коэффициент теплопередачи реального однородного образца всегда неравномерен, особенно для частей вблизи краев измерительной камеры. Следовательно, температура поверхности образцов и вблизи измерительной камеры неравномерна, и тепловой поток через стенку измерительной камеры () и тепловой поток боковых потерь () фактически не могут быть сведены к нулю.В настоящей работе можно получить и с помощью стандартного калибровочного теста. Кроме того, коэффициент теплопередачи можно рассчитать по формуле. (1) включает следующие переменные: подвод тепловой мощности, тепловой поток через образец, температура поверхности на теплой стороне, температура поверхности на холодной стороне, температура воздуха на теплой стороне, температура воздуха на холодной стороне, площадь поверхности образец и термическое сопротивление.

    3.3. Процедура испытания

    (1) После 20 дней естественной сушки на воздухе образцы были помещены в испытательную машину.Детали, пересекающие швы между образцом и коробкой для образцов, были заполнены вспенивающимся изоляционным материалом для герметизации, как показано на Рисунке 7 (а). (2) Длина установочных стержней, соединенных с датчиками температуры внутри холодильной камеры и нагрева измерительная коробка была проверена и отрегулирована, как показано на рисунке 7 (b). (3) После того, как испытательная машина проработала более 20 часов для каждого образца, а диапазон значений мощности нагрева составлял от 0,5 Вт до 3 Вт, все систему можно рассматривать как находящуюся в устойчивом тепловом состоянии.Затем измеренные данные собирались каждые полчаса и вычислялось среднее значение результатов теста.

    3.4. Результаты экспериментов и обсуждение

    На основании результатов испытаний трех стенок пустотелых сланцевых блоков были рассчитаны тепловые параметры, такие как коэффициент теплопередачи, тепловое сопротивление и общее тепловое сопротивление, которые перечислены в таблице 2.


    Химические составляющие Содержание (мас.%)

    SiO 2 905 905 905 905 905 905 905 905 905 905 905 905 17,01
    Fe 2 O 3 6,83
    CaO 6,13
    MgO 2,78
    Na 2 O 1.04
    SO 3 0,65
    TiO 2 0,77

    Образцы Коэффициент теплопередачи
    (Вт / м 2 ⋅K)
    Тепловое сопротивление
    2 K / Вт)
    Общее тепловое сопротивление
    2 К / Ш)

    A 0.751 1,275 1,332
    B 0,726 1,080 1,377
    C 0,703 1,342 1,422 905 905 18 1,342 905 23 905 905 1,422 905

    Результаты показывают, что коэффициент теплопередачи стен из пустотелых сланцевых блоков составляет 0,726 Вт / (м 2 · K), что соответствует проектному стандарту энергоэффективности общественных зданий в GB50189-2005 [19].

    Коэффициент теплопередачи и тепловое сопротивление различных материалов стен, которые измеряются одним и тем же оборудованием и одинаковыми методами испытаний, показаны в таблице 3 в соответствии с исследованиями Yang et al. [20] и Wu et al. [13] и техническая спецификация для бетонных малогабаритных пустотелых блочных зданий из Китая JGJ / T2011 [21]. Эффект сохранения тепла у пустотелых стен из сланцевых блоков в 3,16 раза выше, чем у традиционных стен из глиняного кирпича, в 3,11 раза выше, чем у стен из бетонных блоков, и 1.В 69 раз выше, чем у стен из переработанных бетонных блоков. В качестве материала оболочки здания пустотелые сланцевые блоки могут не только улучшить сохранение тепла и теплоизоляционные характеристики зданий, но также сделать тепловую среду в помещении более комфортной, особенно в холодных регионах.

    905

    Материал стены Коэффициент теплопередачи
    (Вт / м 2 ⋅K)
    Тепловое сопротивление
    2 K / W1824

    Пустотелый сланцевый блок 0.726 1,232 365 мм × 248 мм × 248 мм с 29 рядами отверстий
    Глиняный кирпич 2.240 0,296 240 мм × 115 мм × 53 мм
    Бетонный блок

    23 905

    0,300 390 мм × 190 мм × 190 мм с тремя рядами отверстий
    Блоки из вторичного бетона 1,620 0,457 390 мм × 240 мм × 190 мм с тремя рядами отверстий

    4.Теоретический расчет коэффициента теплопередачи стен из пустотелых сланцевых блоков

    Оболочки зданий можно разделить на однослойные, многослойные и комбинированные стены в зависимости от их состава. Многослойная стена, такая как двухсторонняя оштукатуренная кирпичная стена, состоит из нескольких слоев различных материалов стен вдоль направления теплового потока. Общее тепловое сопротивление многослойной стены складывается из теплового сопротивления каждой однослойной стены.Предполагая, что теплопередача представляет собой одномерный устойчивый процесс теплопередачи, многослойная стенка, параллельная направлению теплового потока, может быть разделена на несколько областей, границы раздела которых определяются в соответствии с составом слоя материала [22]. Среднее тепловое сопротивление многослойной стенки можно рассчитать следующим образом [18]: где — среднее тепловое сопротивление, — общая площадь теплопередачи, перпендикулярная направлению теплового потока, — поправочный коэффициент, равный 0.86 для пустотелого сланцевого блока, — разделенные области, параллельные направлению теплового потока, — тепловые сопротивления поверхностей теплопередачи, — тепловое сопротивление внутренней поверхности, которое составляет 0,11 м 2 · K / Вт, тепловое сопротивление внешней поверхности, которое составляет 0,04 м 2 · К / Вт [18].

    Пустотелые сланцевые блоки с 29 рядами отверстий представляют собой многослойные стенки. Их среднее термическое сопротивление можно рассчитать с помощью вышеупомянутого метода. Для удобства пазами на боковых поверхностях пренебрегаем.Подробное разделение площадей показано на рисунке 8.


    Общая поверхность теплопередачи полого сланцевого блока, перпендикулярного направлению теплового потока, разделена на 21 область. Все эти области теплопередачи являются многослойными, за исключением областей 1 и 2. Теплопроводность спеченного сланцевого материала составляет 0,463 Вт / (м · К), тепловое сопротивление слоя воздуха толщиной 8 мм составляет 0,12 м 2 · К / Вт, а тепловое сопротивление слоя воздуха 32 мм составляет 0,17 м 2 · К / Вт.Результаты расчета термического сопротивления приведены в таблице 4.

    9024 905 905 905 пустотелые сланцевые блоки можно получить по формуле (2): m 2 · K / W. Средний коэффициент теплопередачи может быть получен следующим образом:

    Предполагая, что толщина горизонтального раствора составляет 2 мм и принимая блок и горизонтальное соединение раствора в качестве типичной единицы, коэффициенты теплопередачи находятся где-то и представляют собой боковые площади полый сланцевый блок и шов из строительного раствора, соответственно, и и — коэффициенты теплопередачи полых блоков из сланца и шва из строительного раствора, соответственно.По сравнению с результатами экспериментальных испытаний, теоретические расчетные значения и для пустотелых сланцевых блоков меньше из-за упрощения с обеих сторон полого сланцевого блока.

    5. Численное моделирование методом конечных элементов
    5.1. Модель FEM

    Для обеспечения альтернативного термического анализа и проектирования полого сланцевого блока была разработана модель FEM с использованием трехмерного теплового элемента SOLID70 с использованием пакета ANSYS, как показано на рисунке 9.


    (a) Модель FEM блока
    (b) Создание сетки блока
    (a) Модель FEM блока
    (b) Создание сетки блока

    С учетом термического сопротивления Между воздушными прослойками отверстия в блоках трактовались как сплошные элементы с параметрами свойства воздушной прослойки. Тепловой поток между различными материалами рассматривался как непрерывный процесс. По температурам горячей камеры и холодной камеры определялись коэффициент теплопередачи и температурные нагрузки на поверхностях блоков.Температура внутренней поверхности составляет 30 ° C, а температура внешней поверхности -10 ° C.

    Фактически, параметры моделирования методом конечных элементов имеют решающее значение для получения разумных результатов расчетов. В существующих моделях FEM значения параметров, которые необходимо указать, были установлены на основе норм теплового проектирования для гражданского строительства Китая [23]. Коэффициенты конвективной теплопередачи внутренней поверхности (защитный тепловой бокс) и внешней поверхности (холодный бокс) стенки пустотелого сланцевого блока составляют 8,7 Вт / (м 2 · K) и 23.0 Вт / (м 2 · К) соответственно. Теплопроводность спеченного сланцевого материала составляет 0,463 Вт / (м · К), теплопроводность слоя воздуха 8 мм составляет 0,067 Вт / (м · К), а теплопроводность слоя воздуха 32 мм составляет 0,188 Вт / (м · К). Теплопроводность раствора составляет 0,339 Вт / (м · К).

    Поскольку вертикальный шов из раствора отсутствует, влиянием вертикальных соединений можно пренебречь в модели FEM. Вертикальный стык между сланцевыми блоками был симметричным, а плоскость симметрии считалась адиабатической границей, что означает отсутствие теплообмена по обе стороны от плоскости симметрии.Соответствующие сетки МКЭ и процесс нагружения стенок показаны на рисунке 10, на котором граничные условия и температурное моделирование такие же, как и для сланцевого блока.

    5.2. Результаты моделирования

    Смоделированные температурное поле и плотность теплового потока для пустотелого сланцевого блока показаны на рисунке 11. Наблюдается, что распределение температуры в блоке изменяется линейно вдоль направления теплового потока и распределяется равномерно. Плотность теплового потока и температурный градиент пустотелого сланцевого блока постепенно увеличиваются снаружи внутрь.Плотность теплового потока и температурный градиент малы для воздушной прослойки внутри блока, но больше на выступе между воздушными прослойками вдоль направления теплового потока. Кроме того, наибольший отвод тепла на единицу площади происходит в ребрах пустотелого сланцевого блока. Легко определить, что внутренний воздушный слой способствует предотвращению потерь тепла.

    На рис. 12 показаны результаты моделирования стенки пустотелого сланцевого блока. В вертикальном стыке двух блоков отсутствует воздушная прослойка вдоль направления теплового потока, особенно по краям блоков, где тепловой поток сильный и градиент температуры значительно меняется.И наоборот, тепловой поток невелик, и изменение температурного градиента не так велико на горизонтальных швах раствора. Вектор плотности теплового потока также указывает на меньшие потери тепла через горизонтальные швы раствора. Эффект теплопередачи пустотелых сланцевых блоков зависит от кладочного раствора, качества кладки стен и толщины швов раствора. Швы толщиной 2 мм в стенке пустотелого сланцевого блока достаточно тонкие, поэтому их влиянием на термические свойства можно с полным основанием пренебречь.

    Хотя коэффициент теплопередачи не может быть непосредственно получен из результатов моделирования методом конечных элементов, его можно рассчитать по следующей формуле: где — среднее значение теплового потока, которое может быть взято из карты распределения плотности теплового потока, — это толщина стены, а — разница температур между внутренней и внешней поверхностями стены. Коэффициент теплопередачи стенок полых сланцевых блоков, полученный с помощью этого метода, составляет 0,671 Вт / м 2 · K, что меньше экспериментального значения, но больше теоретического результата в разделе 4.

    По сравнению с экспериментальными результатами теоретические значения и результаты моделирования методом конечных элементов для коэффициентов теплопередачи пустотелых сланцевых блоков меньше. Возможные причины различия следующие: (1) На поверхности имеются трещины или внутренние повреждения, образовавшиеся во время транспортировки блоков, которые повлияют на тепловые характеристики кирпичной стены. (2) В процессе кладки, когда два блока плотно сцепляются друг с другом, теоретически между двумя блоками может образоваться несколько замкнутых воздушных слоев.Однако из-за отклонений блоков в процессе производства воздушные слои между двумя блоками могут быть взаимосвязаны внутри и снаружи стены, что приведет к потере тепла через этот канал и повлияет на тепловые характеристики стены.

    Помимо экспериментальных и численных методов, аналитические методы, например, метод гомогенизации, являются альтернативными способами исследования эквивалентных тепловых свойств. Гомогенизация — это довольно общая стратегия, которая предсказывает макроповедение среды на основе ее микроструктуры и свойств.Структуру кладки можно приблизительно рассматривать как периодический составной континуум; он состоит из двух разных материалов (кирпича или блока и раствора), расположенных периодически. Теория гомогенизации для периодических сред позволяет вывести общее поведение кладки из поведения составляющих материалов. До сих пор подход гомогенизации использовался для изучения механических свойств конструкции кладки [24–26]. По термическим свойствам этим методом было проведено несколько исследований.В следующих исследованиях ожидается, что стратегия гомогенизации может быть последовательно использована для прогнозирования тепловых свойств кирпичных стен, исходя из тепловых свойств и композиционных структур блока и раствора.

    6. Заключение

    В данном исследовании изучаются термические свойства пустотелых блоков сланцев с использованием экспериментальных испытаний, теоретических расчетов и моделирования методом конечных элементов. Из этого исследования можно сделать следующие выводы: (i) Экспериментальный коэффициент теплопередачи стенок пустотелых сланцевых блоков равен 0.726 Вт / м 2 · K, что соответствует стандартам проектирования и демонстрирует их замечательные характеристики самоизоляции по сравнению с другими материалами стен. (Ii) Используя теоретическую формулу, коэффициент теплопередачи одиночного пустотелого сланцевого блока составляет 0,544 Вт / м 2 · K, а коэффициент теплопередачи стенки пустотелого сланцевого блока составляет 0,546 Вт / м 2 · K. Используя моделирование методом конечных элементов, коэффициент теплопередачи стенки пустотелого сланцевого блока составляет 0,671 Вт / м 2 · K. Упрощение с обеих сторон пустотелых сланцевых блоков может способствовать более высокому экспериментальному коэффициенту теплопередачи.(iii) Сильный тепловой поток и большой температурный градиент в основном возникают в вертикальных стыках двух блоков, потому что нет воздушной прослойки вдоль направления теплового потока. Тонкие швы толщиной 2 мм обеспечивают высокую самоизоляцию стен из пустотелых сланцевых блоков.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

    Благодарности

    Это исследование было поддержано как инновационной группой Сианьского архитектурно-технологического университета, так и проектами Национального плана поддержки науки и технологий «Исследование технологии строительства энергосберегающих материалов для стен» и «Фонд поддержки отрывков из диссертаций». .”Мы также выражаем признательность за поддержку Китайского фонда естественных наук (гранты № 51478381, 51578444) и ключевого лабораторного проекта Департамента образования провинции Шэньси (15JS050).

    Механическая изоляция — типы и материалы

    Любая поверхность, более горячая, чем окружающая среда, будет терять тепло. Потери тепла зависят от многих факторов, но преобладают температура поверхности и ее размер.

    Укладка изоляции на горячую поверхность снизит температуру внешней поверхности.Благодаря теплоизоляции поверхность объектов будет увеличиваться, но относительный эффект снижения температуры будет намного больше, а потери тепла уменьшатся.

    Аналогичная ситуация возникает, когда температура поверхности ниже температуры окружающей среды. В обоих случаях теряется некоторая энергия. Эти потери энергии можно уменьшить, установив практичную и экономичную изоляцию на поверхностях, температура которых сильно отличается от окружающей.

    Категории изоляционных материалов

    Изоляционные материалы или системы также можно классифицировать по диапазону рабочих температур.

    Существуют разные мнения относительно классификации механической изоляции в зависимости от диапазона рабочих температур, для которого используется изоляция. Например, слово криогеника означает «производство холода»; однако этот термин широко используется как синоним для многих низкотемпературных применений. Не ясно, в какой точке шкалы температур заканчивается охлаждение и начинается криогенизация.

    Национальный институт стандартов и технологий в Боулдере, штат Колорадо, считает, что криогеника связана с температурами ниже -180 ° C.Они основывали свое определение на понимании того, что нормальные точки кипения так называемых постоянных газов, таких как гелий, водород, азот, кислород и нормальный воздух, лежат ниже -180 ° C, в то время как фреоновые хладагенты, сероводород и другие распространенные хладагенты имеют температуру кипения выше -180 ° C.

    Понимая, что некоторые из них могут иметь другой диапазон рабочих температур, по которому можно классифицировать механическую изоляцию, в отрасли механической изоляции обычно приняты следующие определения категорий:


    Номер зоны 1, 21 2, 4, 6, 8, 14, 16, 18, 20 3, 7, 15, 19 5, 17 9, 13 10, 12 11

    (мм) 14 × 248 18,5 905 248 4 × 248 4 × 248 4 × 248 18.5 × 248 4 × 248
    0,938 3,317 2,976 2,074 1,568 3,082 1,767
    Категория Определение
    Криогенные приложения -50 ° F и ниже
    Тепловые приложения:
    Холодильное оборудование, холодная вода и ниже температуры окружающей среды от -49 ° F до + 75 ° F
    Средняя и высокая температура.приложения от + 76 ° F до + 1200 ° F
    Применение огнеупоров + 1200 ° F и выше

    Ячеистая изоляция состоит из небольших отдельных ячеек, которые либо соединяются между собой, либо изолированы друг от друга, образуя ячеистую структуру. Стекло, пластмассы и резина могут содержать основной материал, и используются различные пенообразователи.

    Ячеистая изоляция часто дополнительно классифицируется как открытая ячейка (т.е.е. ячейки соединяются между собой) или закрытые ячейки (ячейки изолированы друг от друга). Как правило, материалы с закрытыми ячейками более 90% считаются материалами с закрытыми ячейками.

    Волокнистая изоляция состоит из волокон малого диаметра, которые тонко разделяют воздушное пространство. Волокна могут быть органическими или неорганическими, и они обычно (но не всегда) скрепляются связующим веществом. Типичные неорганические волокна включают стекло, минеральную вату, шлаковую вату и оксид алюминия-кремнезем.

    Волокнистая изоляция подразделяется на изоляцию на шерстяной или текстильной основе.Утеплители на текстильной основе состоят из тканых и нетканых волокон и пряжи. Волокна и пряжа могут быть органическими или неорганическими. Эти материалы иногда поставляются с покрытиями или в виде композитов с определенными свойствами, например атмосферостойкость и химическая стойкость, отражательная способность и т. д.

    Чешуйчатая изоляция состоит из мелких частиц или хлопьев, которые тонко разделяют воздушное пространство. Эти хлопья могут быть соединены вместе, а могут и не быть. Вермикулит, или вспученная слюда, представляет собой чешуйчатую изоляцию.

    Гранулированная изоляция состоит из небольших узлов, содержащих пустоты или пустоты. Эти материалы иногда считают материалами с открытыми порами, поскольку газы могут переноситься между отдельными пространствами. Изоляция из силиката кальция и формованного перлита считается гранулированной изоляцией.

    Светоотражающая изоляция и обработка добавляются к поверхностям для снижения длинноволновой эмиссии, тем самым уменьшая лучистую теплопередачу на поверхность или от нее.Некоторые системы светоотражающей изоляции состоят из нескольких параллельных тонких листов или фольги, разнесенных для минимизации конвективной теплопередачи. Куртки и облицовки с низким коэффициентом излучения часто используются в сочетании с другими изоляционными материалами.

    Некоторые примеры типов изоляции

    Ячеистая изоляция

    Эластомерный

    Эластомерная изоляция определяется ASTM C 534, Тип I (предварительно сформованные трубы) и Тип II (листы). В стандарте ASTM есть три широко доступных сорта.


    Эластомерные утеплители
    Марка Базовое описание Темп. Лимиты Индекс распространения пламени / Индекс развития дыма
    1 Широко используется в типичных коммерческих системах от -297 ° F до 220 ° F толщиной от 25/50 до 1½ дюйма.
    2 Высокая темп. использует от -297 ° F до 350 ° F Не 25/50 Номинальный
    3 Для применения с нержавеющей сталью при температуре выше 125 ° F от -297 ° F до 250 ° F Не 25/50 Номинальный

    Все три класса представляют собой гибкую и упругую пенопластовую изоляцию с закрытыми порами.Максимальная проницаемость для водяного пара составляет 0,10 перм-дюйма, а максимальная теплопроводность при температуре 75 ° F составляет 0,28 БТЕ дюйма / (час фут 2 F) для классов 1 и 3, а степень 2 составляет 0,30 БТЕ дюйма / (час фут ). 2 F). Состав класса 3 не содержит выщелачиваемых хлоридов, фторидов, поливинилхлорида или каких-либо галогенов.

    Предварительно сформованная трубчатая изоляция доступна с размерами внутреннего диаметра от 3/8 «до 6 IPS», с толщиной стенки от 3/8 «до 1½» и типичной длиной 6 футов. Трубчатый продукт доступен с предварительно нанесенным клеем и без него. .Листовая изоляция доступна непрерывной длины шириной 4 фута или 3 фута на 4 фута и с толщиной стенок от 1/8 дюйма до 2 дюймов. Листовой продукт доступен как с предварительно нанесенным клеем, так и без него.

    Эти материалы обычно устанавливаются без дополнительных ингибиторов пара. Дополнительная защита от паров может потребоваться при установке на трубопроводе с очень низкими температурами или в условиях постоянно высокой влажности. Все швы и точки соединения должны быть заделаны контактным клеем, рекомендованным производителем.Для наружного применения необходимо нанести атмосферостойкую куртку или рекомендованное производителем покрытие для защиты от ультрафиолета и озона.

    Ячеистое стекло

    Ячеистое стекло определяется ASTM как изоляция, состоящая из стекла, обработанного для образования жесткого пенопласта, имеющего преимущественно структуру с закрытыми ячейками. Ячеистое стекло соответствует стандарту ASTM C552, «Стандартные технические условия на теплоизоляцию из ячеистого стекла» и предназначено для использования на поверхностях, работающих при температурах от -450 до 800 ° F.Стандарт определяет две степени и четыре типа, а именно:


    Изоляция из ячеистого стекла
    Тип Форма и доступные сорта
    Я Плоский блок, классы 1 и 2
    II Трубы и трубки, готовые, классы 1 и 2
    III Формы специального изготовления, классы 1 и 2
    IV Доска сборная, марка 2

    Ячеистое стекло выпускается блочно (Тип I).Блоки продукта типа I обычно отправляются производителям, которые производят готовые формы (типы II, III и IV), которые поставляются дистрибьюторам и / или подрядчикам по изоляции.

    Максимальная теплопроводность определяется по классам следующим образом (для выбранных температур):

    Температура, ° F 1 класс 2 класс
    Тип I, Блок
    -150 ° F 0,20 0,26
    -50 ° F 0.24 0,29
    50 ° F 0,30 0,34
    75 ° F 0,31 0,35
    100 ° F 0,33 0,37
    200 ° F 0,40 0,44
    400 ° F 0,58 0,63
    Тип II, труба
    100 ° F 0,37 0,41
    400 ° F 0.69 0,69

    Стандарт также содержит требования к плотности, прочности на сжатие, прочности на изгиб, водопоглощению, паропроницаемости, горючести и характеристикам горения поверхности.

    Изоляция из ячеистого стекла — это жесткая неорганическая негорючая, непроницаемая, химически стойкая форма стекла. Доступны лицевые или безлицевые (с рубашкой или без нее). Из-за широкого диапазона температур в различных диапазонах рабочих температур иногда используются разные технологии изготовления.

    Как правило, изготовление изоляции из пеностекла включает склеивание нескольких блоков вместе, чтобы сформировать «заготовку», которая затем используется для изготовления изоляции труб или специальных форм. Используемый клей или адгезивы различаются в зависимости от предполагаемого конечного использования и расчетных рабочих температур. Для применений при температуре ниже окружающей среды обычно используются клеи-расплавы, такие как асфальт ASTM D 312 Type III.

    В системах с температурой выше окружающей среды или там, где органические клеи могут представлять проблему (например, при использовании LOX), в качестве производственного клея часто используется неорганический продукт, такой как гипсовый цемент.Для определенных областей применения могут быть рекомендованы другие клеи. При определении изоляции из пеностекла укажите условия эксплуатации системы, чтобы обеспечить надлежащее изготовление.

    Волокнистая изоляция

    Волокнистая изоляция состоит из волокон небольшого диаметра, которые тонко разделяют воздушное пространство. Волокна могут быть органическими или неорганическими, и они обычно (но не всегда) скрепляются связующим веществом. Типичные неорганические волокна включают стекло, минеральную вату, шлаковую вату и оксид алюминия-кремнезем.


    Волокнистая изоляция

    Труба из минерального волокна

    Изоляция труб из минерального волокна

    соответствует стандарту ASTM C 547.Стандарт содержит пять типов, классифицируемых в первую очередь по максимальной температуре использования.

    Тип Форма Максимальное использование
    Температура, ° F
    Я Литой 850 ° F
    II Литой 1200 ° F
    III Прецизионная V-образная канавка 1200 ° F
    IV Литой 1000 ° F
    В Литой 1400 ° F

    Стандарт дополнительно классифицирует продукты по сортам.Продукты класса A можно «налепить» при максимальной указанной температуре использования, в то время как продукты класса B предназначены для использования с графиком нагрева.

    Указанная максимальная теплопроводность для всех типов составляет 0,25 Btu in / (час фут 2 ° F) при средней температуре 100 ° F.

    Стандарт также содержит требования к стойкости к провисанию, линейной усадке, сорбции водяного пара, характеристикам горения на поверхности, характеристикам горячей поверхности и содержанию неволокнистых частиц (дроби). Кроме того, в стандарте ASTM C 547 имеется дополнительное требование к характеристикам коррозии под напряжением, если продукт будет использоваться в контакте с трубопроводами из аустенитной нержавеющей стали.

    Изделия для изоляции труб из стекловолокна обычно относятся к Типу I или Типу IV. Продукция из минеральной ваты будет соответствовать более высоким температурным требованиям для типов II, III и V.

    Эти изоляционные материалы для труб могут быть снабжены различными покрытиями, наносимыми на заводе, или могут быть покрыты рубашкой в ​​полевых условиях. Также доступны системы изоляции труб из минерального волокна с «самовысыхающим» влагоотводящим материалом, который непрерывно оборачивается вокруг труб, клапанов и фитингов. Эти продукты предназначены для того, чтобы изоляционный материал оставался сухим для трубопроводов с охлажденной водой в местах с высокой влажностью.

    Изоляционные секции труб из минерального волокна обычно поставляются длиной 36 дюймов и доступны для большинства стандартных размеров труб. Доступная толщина варьируется от 1/2 дюйма до 6 дюймов.

    Гранулированная изоляция

    Силикат кальция

    Теплоизоляция из силиката кальция определяется ASTM как изоляция, состоящая в основном из водного силиката кальция и обычно содержащая армирующие волокна.

    Изоляция труб и блоков из силиката кальция

    соответствует стандарту ASTM C 533.Стандарт содержит три типа, классифицируемых в основном по максимальной температуре использования и плотности.


    Теплоизоляция из силиката кальция
    Тип Максимальная температура использования (° F) и плотность
    Я Макс.температура 1200 ° F, Макс.плотность 15 шт.
    IA Максимальная температура 1200 ° F, максимальная плотность 22 шт. Фут
    II Макс.используемая температура 1700 ° F

    Стандарт ограничивает рабочую температуру от 80 ° F до 1700 ° F.

    Изоляция для труб из силиката кальция поставляется в виде полых цилиндров, разделенных пополам по длине или изогнутых сегментов. Изоляционные секции труб обычно поставляются длиной 36 дюймов и доступны в размерах, подходящих для большинства стандартных размеров труб. Доступная толщина в один слой составляет от 1 дюйма до 3 дюймов. Более толстая изоляция поставляется в виде вложенных секций.

    Изоляция блоков из силиката кальция поставляется в виде плоских секций длиной 36 дюймов, шириной 6 дюймов, 12 дюймов и 18 дюймов и толщиной от 1 дюйма до 4 дюймов.Блок с канавками доступен для установки блока на изогнутые поверхности большого диаметра.

    Из стандартных профилей можно изготовить специальные формы, такие как изоляция клапана или фитинга.

    Силикат кальция

    обычно покрывается металлической или тканевой оболочкой для внешнего вида и защиты от атмосферных воздействий.

    Указанная максимальная теплопроводность для типа 1 составляет 0,41 БТЕ-дюйм / (ч-фут 2 ° F) при средней температуре 100 ° F. Указанная максимальная теплопроводность для типов 1A и 2 составляет 0.50 БТЕ-дюйм / (час · фут 2 ° F) при средней температуре 100 ° F.

    Стандарт также содержит требования к прочности на изгиб (изгиб), прочности на сжатие, линейной усадке, характеристикам горения поверхности и максимальному содержанию влаги при поставке.

    Типичные области применения включают трубопроводы и оборудование, работающие при температурах выше 250 ° F, резервуары, сосуды, теплообменники, паровые трубопроводы, изоляцию клапанов и фитингов, котлы, вентиляционные и выхлопные каналы.

    Ссылка (-а):
    https: // www.wbdg.org и http://www.roxul.com

    Подробнее о механической изоляции

    Часть 1:
    Типы и материалы

    Часть 2:
    Требования к пространству для изоляции

    Часть 3:
    Изоляция трубопроводов

    Теплопроводность кирпичей из прессованного земли, укрепляемых отходами масла ши с цементом

    Теплопроводность кирпичей из прессованного земли, укрепляемых цементом из отходов масла ши

    Резюме : В настоящее время в контексте устойчивого развития экономические и экологические проблемы порождают , чтобы повысить ценность местных материалов, таких как глины и агропромышленные отходы.Именно при таком подходе была предложена новая категория кирпичей из прессованного земли (BTC), стабилизированных ши-мукой (TK) и цементом. Целью данной статьи является исследование влияния скорости сдвига муки на свойства теплопроводности цементно-стабилизированного земляного кирпича. Для изготовления кирпичей использовалась латеритная глина (Lat), состоящая в основном из каолинита (38,44%), кварца (24,94%), гетита (12,28%), гематита (4,44%) и иллита (19,9%). Были изучены различные смеси смесей, состоящих из латеритной глины и 5% цемента.Мука ши добавляется как частичный заменитель латеритной глины в различных пропорциях. Теплопроводность определялась методом горячего диска и коррелировала как с пористостью, так и с плотностью обработанных материалов. Полученные результаты показывают, что теплопроводность и плотность кирпича снижаются соответственно с 0,72 Вт · м-1 · K-1 до 0,52 Вт · м-1 · K-1 и с 2,77 г · см-3 до 2,52 г · см-1. 3. Присутствие ши в материале приводит к образованию пор, что частично может объяснить улучшение теплоизоляционных свойств.Отмечена положительная корреляция между плотностью и теплопроводностью этих материалов.

    1. Введение

    Вся деятельность человека (промышленность, транспорт, вырубка лесов, сельское хозяйство, строительство и т. Д.) Вызывает высокую концентрацию парниковых газов в атмосфере, что приводит к глобальному потеплению, с которым мир столкнулся в последние годы. Это имеет прямое следствие стихийных бедствий, таких как засуха, таяние ледников, наводнения, ураганы и т. Д.

    Строительный сектор играет важную роль, поскольку строительный процесс требует значительного энергопотребления и вызывает побочные эффекты для окружающей среды, а именно: выбросы парниковых газов, высокое потребление воды, а также образование твердых и жидких отходов [1] [2] [3 ]. Учитывая текущую глобальную озабоченность по поводу устойчивого развития, вызванную экологическими проблемами, такими как изменение климата и истощение ресурсов, в сочетании с быстрыми темпами технического прогресса в строительном секторе, возник интерес к альтернативным строительным материалам, таким как земля.

    Земля, благодаря своей доступности и простоте реализации, действительно является идеальным строительным материалом. Для его добычи, переработки, производства и транспортировки требуется очень мало энергии. Кроме того, земля на 100% пригодна для вторичной переработки и обеспечивает комфорт в помещении, поскольку является хорошим регулятором температуры, влажности и шума. Тем не менее, технология кирпичей из прессованного земли (CEB) или кирпичей из стабилизированного земли (SEB) по-прежнему использует значительное количество цемента [4].

    Земляные конструкции используются уже несколько тысяч лет в различных частях света [5].Но такое здание страдает определенными недостатками, такими как механическая прочность, водонепроницаемость и долговечность [6] [7]. Для решения этих проблем обычно добавляют растительный мусор, летучую золу или небольшое количество цемента или извести [8] [9].

    Кроме того, при производстве масла ши образуется значительное количество отходов, называемых мукой ши. Ши (научное название Vitellaria paradoxa) — это дерево, которое растет в дикой природе в регионах саванны на севере Кот-д’Ивуара. Шрот ши, который состоит из 50% — 75% семян масла ши, не может использоваться в качестве корма для скота из-за высокого содержания в нем бурого угля [10] и является источником загрязнения окружающей среды.Также было показано, что липкие черные остатки, оставшиеся после экстракции масла ши, можно использовать для заполнения трещин в стенах и в качестве гидроизоляционного материала [10]. Таким образом, мука из дерева ши может использоваться в дополнение к извести или цементу при производстве прессованного земляного кирпича для улучшения как механических, химических свойств, так и долговечности кирпичей. В районе Корого очень жарко, температуры часто достигают 36˚C. Это побуждает исследователей предлагать альтернативные решения на основе экологически чистых материалов «эко-материалы», обладающих хорошими теплоизоляционными свойствами.

    Теплопроводность материалов на основе глины широко изучалась, в основном в случае материалов, консолидированных с помощью термической обработки для применения в строительстве. Теплопроводность сильно зависит от природы сырья, температуры термообработки, во время которой происходят превращения в твердых фазах, и, очевидно, от конечной объемной доли пор [11] [12]. Значения для материала на основе глины часто ниже 1 Вт ∙ м −1 ∙ K −1 [13].

    Целью данной работы является изучение влияния скорости сдвига муки на теплопроводность цементно-цементного земляного кирпича.

    2. Материалы и методы

    2.1. Материалы

    Используемая латеритная глина (лат.) Происходит из региона Хамбол (Кот-д’Ивуар), именно в городе Катиола. Эта глина добывается в карьерах, расположенных в районе с географическими координатами: 08˚09.030 ‘север, 005˚05.850’ запад и высота 996 м, простирающаяся на 10 км 2 на глубине 1 м 50 (рис. 1).

    Цемент (C) под названием «LE CLASSIC®» был использован для пасты. Мука ши (TK), собранная на участке приготовления масла ши, расположенном в городе Корого (к северу от Кот-д’Ивуара), использовалась в качестве добавок и / или замены глины при производстве прессованных земляных кирпичей.

    2.2. Методы

    Химический состав глины, использованной в этом исследовании, был определен с помощью метода атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (ICP-AES). Перед анализом образец глины, высушенный при 110 ° C в течение 24 часов, растворяли с использованием микроволн типа ANTON Paar в кислой среде (фтористоводородная и азотная кислоты) и в условиях высокого давления.Растворение проводили в 50-минутном цикле: 10-минутное повышение температуры, затем 40-минутный этап при максимальной температуре (260 ° C) и охлаждение до 35 ° C.

    Рис. 1. Участок добычи латеритной глины г. Катиола [14].

    Кристаллические минералогические фазы определяли с использованием многофункционального дифрактометра Bruker D8 ADVANCE. Измерения проводились на порошкообразных образцах в режиме непрерывного сканирования в диапазоне углов 2θ от 2˚ до 70˚ с шагом 0.01˚ (2θ) и время счета 0,25 с.

    За термическим поведением образца глины следили с использованием оборудования SETSYS Evolution от SETARAM в диапазоне температур от 30 ° C до 1200 ° C в атмосфере осушенного воздуха со скоростью повышения 5 ° C / мин. Порошок оксида алюминия, предварительно прокаленный при 1500 ° C в течение 1 часа, использовали в качестве материала сравнения. Удельную площадь глины определяли методом Брунауэра-Эммета и Теллера (БЭТ) с использованием Micromeritics TriStar II [15]. Измерения были выполнены после 16-часовой стадии дегазации при 200 ° C измельченных и просеянных образцов при 100 мкм.

    Пористость определялась отношением объема пор к общему объему материала. Степень пористости определялась выражением, приведенным в уравнении (1).

    Пористость показатель знак равно [ 1 — ( ρ s / ρ п ) ] × 100 (1)

    , где ρ s — плотность материала, рассчитанная с учетом как размеров, так и массы материала.

    ρ p , — плотность твердого тела, измеренная с помощью гелиевого пикометра.

    Теплопроводность образцов ХЭП определялась методом горячего диска. Этот метод дает прямой доступ к теплопроводности материала. Основной принцип измерения состоит во введении зонда между двумя цилиндрическими блоками материала. Зонд действует как источник тепла (эффект Джоуля) и датчик повышения температуры. Измерение заключается в подаче питания на образец с момента (t = 0) и в отслеживании повышения температуры зонда с течением времени.Анализ увеличения температуры как функции времени дает доступ к теплопроводности материала.

    2.3. Разработка образцов кирпича из сжатого грунта (CEB)

    Было изготовлено несколько образцов ХЭБ разного состава, содержащих латеритную глину, цемент и ши. Все компоненты смешивали в сухом состоянии в месильной машине Contrelab при скорости 70 об / мин в течение примерно 10 мин. Смесь смачивают 20% воды и снова перемешивают 20 мин.Прессование производилось на гидравлическом прессе под давлением 40 МПа. Составы земляных кирпичей, полученных из различных смесей, даны в процентах от сухой массы каждого компонента (Таблица 1). Все образцы были высушены в печи при 40 ° C в течение 7 дней перед анализом.

    3. Результаты и обсуждение

    3.1. Характеристика сырой латеритной глины (лат.)

    Химический состав, а также физические параметры латеритной глины (Lat) приведены в таблице 2.Анализ полученных результатов показывает, что лат использовал

    Таблица 1. Различные рецептуры кирпичей из прессованного земляного камня (CEB) и их степень пористости.

    Таблица 2. Химический и минералогический состав и физические характеристики сырой латеритной глины (лат.).

    в основном состоит из оксидов алюминия, кремния и железа. Однако он также содержит некоторые второстепенные элементы, такие как оксиды калия, натрия и титана. K 2 O содержание 2.35 мас.% Предполагает присутствие слюды. Массовое отношение SiO 2 / Al 2 O 3 составляет 2,48 вместо 1,18 для чистого каолинита [16]. Такое высокое значение предполагает наличие кремнезема и глинистых минералов в свободной форме типа 2: 1 [17]. Согласно классификации латеритных почв Лакруа [18], глина, содержащая 15,67% по массе используемого оксида железа, принадлежит к семейству латеритных глин. Удельная площадь и плотность этой глины составляют соответственно 25,62 м 2 ∙ г −1 и 2.8 г ∙ см −3 . Плотность этой глины соответствует плотности, обычно наблюдаемой в латеритных почвах (от 2,5 до 3,7 г ∙ см −3 ). Maignian [19], работающий с латеритами, показал, что плотность латеритных глин увеличивается с увеличением содержания оксида железа, уменьшается с увеличением содержания глинозема и зависит от его химического состава. Индекс пластичности (PI) и значение метиленового синего (MBV) составляют соответственно 17 и 0,5. Значения индекса пластичности (12

    На рисунке 2 показана дифракция рентгеновских лучей латеритной глины, она показывает присутствие соединений железа, силикатных фаз и глинистых минералов семейства филлосиликатов 2: 1. Он состоит в основном из каолинита (Si 2 Al 2 O 5 (OH) 4 ), кварца (SiO 2 ), гематита (α − Fe 2 O 3 ), гетита ( α − FeOOH) и иллит (KAl 3 Si 3 O 10 (OH) 2 ).

    Рис. 2. XRD-диаграмма сырой латеритной глины.

    Результаты термического анализа (ДТА-ТГА) сырой латеритной глины представлены на Рисунке 3. Наблюдаются следующие превращения:

    ü Первая потеря массы (0,5%), наблюдаемая между 30˚C и 100C и связанная с эндотермическим пиком, связана с уходом свободной воды (физадсорбированной воды).

    ü Вторая потеря массы (1,25%), наблюдаемая между 200 ° C и 350 ° C, является следствием дегидроксилирования гетита в гематит [20] (Уравнение (1):

    2 FeOOH → Fe 2 О 3 + ЧАС 2 О (1)

    ü Третья потеря массы (6%) наблюдается между 400C и 600˚C.Эта потеря массы могла быть результатом суперпозиции двух явлений, а именно дегидроксляции каолинита (2) и иллита в латеритной глине [21]:

    Si 2 Al 2 О 5 ( ОЙ ) 4 → Si 2 Al 2 О 7 + 2H 2 О (2)

    ü При 572 ° C наблюдается эндотермическое явление, соответствующее переходу кварца (α → β).

    ü При температуре около 954 ° C наблюдался экзотермический пик. Это связано со структурной перестройкой метакаолинита в фазе шпинели [21]. Реакция следующая:

    2 [ Si 2 Al 2 О 7 ] → Si 3 Al 4 О 12 + SiO 2 (4)

    Расчеты, основанные на результатах химического анализа, дифференциального термического и термогравиметрического анализа и идеального химического состава фаз, обнаруженного методом рентгеновской дифракции, позволяют получить минералогический состав латеритной глины (таблица 2).Эти расчеты показывают, что каолинит (38,44%), иллит (19,9%), кварц (24,94%) и гетит (12,28%) являются основными фазами сырья (Lat). Гематит присутствует, но в очень небольшом количестве. Фазы, относящиеся к титану, находятся в следовой форме.

    Рисунок 3. Дифференциальный термический и термогравиметрический анализы сырой латеритной глины.

    3.2. Физические свойства кирпичей из сжатого грунта (CEB), армированных мукой из ши с цементом

    Было изучено влияние количества сдобной муки как на плотность, так и на теплопроводность прессованных земляных кирпичей, а также обсуждалась корреляция между двумя изученными параметрами.На рисунке 4 показано влияние содержания муки ши на плотность CEB. Результаты показывают снижение плотности с 2,77 г ∙ см −3 до 2,52 г ∙ см −3 (примерно 9% уменьшения) и небольшое увеличение пористости в разработанных образцах с 35% до 38% (Таблица 1). Эти наблюдения согласуются с результатами, полученными Ashour et al. и Bachir et al. Чтобы объяснить это снижение, эти авторы сделали разные предположения. Согласно Bachir et al., Уменьшение плотности с увеличением количества волокна или органического вещества может быть связано с уменьшением однородности, улучшением связей и увеличением степени пористости.По данным Ashour et al. замена цемента или гипса (плотные материалы) волокнами пшеницы или ячменя (менее плотные материалы) приводит к увеличению общего объема смеси. Такое увеличение объема уплотненной смеси приводит к уменьшению веса и плотности образцов [22] [23].

    На рис. 5 показано изменение теплопроводности и степени пористости полученного CEB в зависимости от содержания муки из дерева ши. При изменении содержания муки ши с 0% до 2% теплопроводность увеличивается с 0.72 Вт ∙ м −1 ∙ K −1 до 0,86 Вт ∙ м −1 ∙ K −1 . Это увеличение частично связано с уменьшением пористой сетки в материале с 35% до примерно 28% и большим количеством фаз на основе цемента (CSH, C 3 AH 3 ….). Это происходит в результате гидратации цемента, что способствует увеличению жесткости структуры материала. Следовательно, в материале улучшается теплопередача. Когда содержание муки ши выше, чем у цемента, теплопроводность материала уменьшается, а степень пористости увеличивается с 28% для материала

    .

    Рисунок 4.Влияние содержания муки ши на плотность CEB, стабилизированного 5% цемента.

    Рис. 5. Влияние содержания шиги на теплопроводность CEB, стабилизированного 5% цемента.

    с содержанием муки ши от 2% до примерно 33% для образцов, содержащих 6% и 8% муки ши.

    Однако эта пористость остается ниже, чем у материала без муки из дерева ши. Наблюдаемое уменьшение значения теплопроводности можно объяснить известной низкой теплопроводностью органического вещества.С другой стороны, когда содержание муки ши достигает 10%, теплопроводность достигает значения 0,52 Вт ∙ м −1 ∙ K −1 , то есть снижение примерно на 27% по сравнению с материалом без муки из масличного дерева. а степень пористости увеличивается с 33% до 38%. Согласно литературным данным, увеличение содержания органического вещества в материале приводит к снижению теплопроводности. Для объяснения этого снижения теплопроводности использовались два основных аргумента. Во-первых, наличие волокон или органических материалов внутри материала вызывает образование пор, что, как следствие, приводит к снижению его теплопроводности.Во-вторых, органические материалы характеризуются низкой теплопроводностью по отношению к глинистой матрице [24] [25]. Чтобы лучше понять термическое поведение прессованных земляных кирпичей, армированных шиловой мукой и цементом, была установлена ​​связь между теплопроводностью и плотностью этих материалов. Между обоими параметрами наблюдается положительная корреляция (рисунок 6). Низкое значение коэффициента корреляции (r 2 = 0,619) показывает меньшую корреляцию между плотностью и теплопроводностью.Это когерентно, потому что менее плотный материал имеет больше пустот между этими частицами, что приводит к снижению теплопроводности. Можно отметить, что для низких значений теплопроводности соответствуют самые низкие значения плотности. За исключением 0% содержания муки ши, в этом случае плотность самая высокая, но теплопроводность ниже, чем у образца с 2% отходов масла ши. Это могло бы объяснить низкое значение коэффициента корреляции (r 2 = 0,619) между теплопроводностью и плотностью.

    4. Выводы

    Основной целью данной работы было изучение влияния шиги на термические свойства стабилизированного земляного кирпича (CEB) с цементом. Для этого использовалась латеритная глина, состоящая в основном из каолинита, кварца, гематита, гетита и иллита, ши-ши, полученная при производстве масла ши в районе Корого, и цемент. Были изучены различные составы из латеритной глины и 5% цемента. Это исследование показывает, что присутствие муки ши вызывает

    Рисунок 6.Корреляция между плотностью и теплопроводностью CEB, стабилизированного 5% цемента и масляной муки (от 0% до 10%).

    создание пор в материале. Увеличение количества ши (от 0% до 10%) приводит к снижению плотности производимого материала. Это влияет на теплопроводность этих кирпичей. Коэффициент теплопроводности варьируется от 0,72 Вт ∙ м −1 ∙ K −1 для образца, содержащего 0% ши, до 0,52 Вт ∙ м −1 ∙ K −1 для образца, содержащего 10%.Мука из дерева ши улучшает теплоизоляционные свойства сложенного кирпича. Можно отметить хорошую корреляцию между теплопроводностью и плотностью этих кирпичей.

    Эта исследовательская работа позволила показать возможность использования ши в строительных материалах. Однако понимание взаимодействия органического вещества и минеральных фаз заслуживает углубления. Следует также рассмотреть возможность разработки этих материалов с другими типами глинистых минералов.

    Ссылки

    [1] Ашур, Т., Коренич, А., Коренич, С. и Ву, В. (2015) Теплопроводность необожженных земляных кирпичей, армированных сельскохозяйственными отходами с цементом и гипсом. Энергетика и строительство, 104, 139-146.
    https://doi.org/10.1016/j.enbuild.2015.07.016

    [2] Пачеко-Торгал, Ф. и Джалали, С. (2012) Земляное строительство: уроки прошлого для будущего экологически эффективного строительства. Строительные и строительные материалы, 29, 512-519.
    https://doi.org/10.1016/j.conbuildmat.2011.10.054

    [3] Дукас, Х., Патлициана, К.Д., Кагианнас, А.Г. и Псаррас, Дж. (2006) Возобновляемые источники энергии и обоснование использования энергии Развитие в странах Персидского залива: миф или реальность? Возобновляемая энергия, 31, 755-770.
    https://doi.org/10.1016/j.renene.2005.05.010

    [4] Гийод, Х., Жоффрой, Т. и Одул, П. (1995) CRATerre-EAG, Blocs de terre comprimée, том 2. Мануэль концепции и строительства.[Блоки из сжатого земли, Том 2. Руководство по проектированию и строительству.] GATE-GTZ и Консультационная служба по строительству и информационная сеть.

    [5] Монтгомери, Д. (2002) Динамически уплотненные цементно-стабилизированные грунтовые блоки для недорогих ограждающих конструкций. Кандидат наук. Диссертация, Уорикский университет, Уоридж.

    [6] Риза, Ф.В., Абдул Рахман, И. и Заиди, А.М.А. (2011) Предварительное исследование прессованного стабилизированного земляного кирпича (CSEB). Австралийский журнал фундаментальных и прикладных наук, 5, 6–12.

    [7] Алам И., Насир А. и Шах А.А. (2015) Экономическая стабилизация глины для строительства земляных построек в районах, подверженных дождям и наводнениям. Строительные и строительные материалы, 77, 154-159.

    [8] Араби М. и Уайлд С. (1986) Развитие микроструктуры в затвердевших почвенно-известковых композитах. Журнал материаловедения, 21, 497-503.
    https://doi.org/10.1007/BF01145514

    [9] Атто-Окин Б. (1990) Стабилизирующее влияние местной извести на отдельные латеритные почвы.Строительные и строительные материалы, 4, 86-91.

    [10] Ван дер Фоссен, H.A.M. и Камило, М. (2007) Végétale de l’Afriqueropical Ressources. 14. Oléagineux. [Tradcution de: Растительные ресурсы Тропической Африки 14. Растительные масла.] Fondation PROTA, Wagenngen, Pays-bas / Backhyus Publishers, Leiden, Pays-Bas / CTA, Wageningen, Pays-Bas, GS (Editeurs), 261.

    [11] Гуалтьери, М.Л., Гуальтьери, А.Ф., Гальярди, С., Руффини, П., Феррари, Р., и Ханускова, М.(2010) Теплопроводность обожженных глин: влияние минералогических и физических свойств сырья. Applied Clay Science, 49, 269-275.

    [12] Гарсия-Тен, Дж., Ортс, М.Дж., Сабурит, А. и Сильва, Г. (2010) Теплопроводность традиционной керамики: Часть II: Влияние минералогического состава. Ceramics International, 36, 2017-2024 гг.

    [13] Корнманн, М. (2007) Глиняные кирпичи и черепица: производство и свойства.Société de l’industrie Minérale, Париж.

    [14] Тагини Б. (1971) Esquisse Structural de la Côte d’Ivoire. Essai de géotectonique régionale. [Структурный эскиз Кот-д’Ивуара. Региональные геотектонические испытания.] Докторантский университет Лозанны.

    [15] Brunauer, S., Emmett, P.H. и Теллер, Э. (1938) Адсорбция газов в многомолекулярных слоях. Журнал Американского химического общества, 60, 309.
    https://doi.org/10.1021/ja01269a023

    [16] Леконт-Нана, Г., Боннет, Дж. П. и Соро, Н. (2013) Влияние железа на процесс структурной реорганизации во время спекания каолинов. Журнал Европейского керамического общества, 33, 661-668.

    [17] Jouenne, C.A. (1990) Traité de céramiques et matériaux minéraux. [Договор о керамике и минеральных материалах.] Издание Септима, Париж.

    [18] Лакруа, А. (1913) Les Latérites de Guinée et les produits d’altération qui leur sont assocés. [Латериты Гвинеи и связанные с ними продукты изменения.] В: Nouvelles Archives du Muséum D’Histoire Naturelle, 255–356.

    [19] Maignien, R. (1958) Le cuirassement des sols en Guinée, Afrique Occidentale. [Cuirassement of Soil in Guinea, West Africa.] Thèse Sciences Université de Lorraine Strasbourg, 239.

    [20] Фермер, V.C. (1974) Слоистые силикаты. В инфракрасных спектрах минералов. Минералогическое общество, Лондон.
    https://doi.org/10.1180/mono-4

    [21] Беллото, М., Гуальтьери, А., Артиоли, Г. и Кларк, С. (1995) Кинетическое исследование последовательности реакций каолинит-муллит. Часть I. Дегидроксилирование каолинита. Физика и химия минералов, 22, 207-214.

    [22] Ашур Т., Коренич А. и Коренич С. (2015) Равновесное содержание влаги в биокомпозитах земляных кирпичей, стабилизированных цементом и гипсом. Цементно-бетонные композиты, 59, 18-25.

    [23] Тааллах Б. и Геттала А. (2016) Механические и физические свойства блока сжатого грунта, стабилизированного известью и заполненного необработанными и обработанными щелочью волокнами финиковой пальмы.Строительство и строительные материалы, 104, 52-62.

    [24] Аль-Окла, Ф.М. и Сапуан, С. (2014) Полимерные композиты, армированные натуральным волокном, в промышленном применении: возможность использования волокон финиковой пальмы для устойчивой автомобильной промышленности. Журнал чистого производства, 66, 347-354.

    [25] Benmansour, N., Agoudjil, B., Gherabli, A., Karechea, A. and Boudenne, A. (2014) Тепловые и механические характеристики натурального мотара, армированного волокнами финиковой пальмы, для использования в качестве изоляционных материалов в строительстве .Энергетика, 81, 98-104.

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Радиационная проводимость при высоком давлении плотных силикатных стекол с потенциальными последствиями для темных магм

  • 1

    Столпер, Э., Уокер, Д., Хагер, Б. Х. и Хейс, Дж. Ф. Сегрегация расплава от областей частично расплавленных источников: важность плотности расплава и размер исходной области. J. Geophys. Res. 86 , 6261–6271 (1981).

    ADS CAS Статья Google Scholar

  • 2

    Стивенсон Д.J. in Происхождение Земли eds Newsom H. E., Jones J. H. 231–249Oxford Univ. Пресса (1990).

  • 3

    Кэмерон А. Г. и Бенц У. Б. Происхождение Луны и одиночное столкновение. Icarus 92 , 204–216 (1991).

    ADS Статья Google Scholar

  • 4

    Эйджи, К. и Уокер, Д. Флотация оливина в мантийном расплаве. Планета Земля. Sci. Lett. 90 , 144–156 (1993).

    ADS Статья Google Scholar

  • 5

    Кануп Р.М. Динамика формирования Луны. Ann. Рек. Astron. Astrophys. 42 , 441–475 (2004).

    ADS Статья Google Scholar

  • 6

    Лабросс, С., Хернлунд, Дж. У. и Колтис, Н. Кристаллизующийся плотный океан магмы у основания мантии Земли. Природа 450 , 866–869 (2007).

    ADS CAS Статья Google Scholar

  • 7

    Уильямс, К. и Гарнеро, Э. Дж. Сейсмические свидетельства частичного плавления в основании земной мантии. Наука 273 , 1528–1530 (1996).

    ADS CAS Статья Google Scholar

  • 8

    Гарнеро, Э., Ревено, Дж., Уильямс, К., Лэй, Т. и Келлог, Л. в The Core-Mantle Boundary Region, Vol.28 , ред. Gurnis M., Wysession M. E., Knittle E., Buffet B. A. 273–297AGU (1998).

    Артикул Google Scholar

  • 9

    Ли, C-T. A. et al. Перевернутая дифференциация и образование «изначальной» нижней мантии. Природа 463 , 930–933 (2010).

    ADS CAS Статья Google Scholar

  • 10

    Lay, T., Hernlund, J. & Buffett, B.А. Граничный тепловой поток ядро-мантия. Нат. Geosci. 1 , 25–32 (2008).

    ADS CAS Статья Google Scholar

  • 11

    Гончаров А.Ф., Хауген Б.Д., Стружкин В.В., Бек П. и Якобсен С.Д. Радиационная проводимость в нижней мантии Земли. Природа 456 , 231–234 (2008).

    ADS CAS Статья Google Scholar

  • 12

    Гончаров, А.Ф., Стружкин В. В., Якобсен С. Д. Пониженная радиационная проводимость низкоспинового (Mg, Fe) O в нижней мантии. Наука 312 , 1205–1208 (2006).

    ADS CAS Статья Google Scholar

  • 13

    Кепплер, Х., Дубровинский, Л.С., Нарыгина, О., Кантор, И. Оптическое поглощение и радиационная теплопроводность силикатного перовскита до 125 гигапаскалей. Наука 322 , 1529–1532 (2008).

    ADS CAS Статья Google Scholar

  • 14

    Мантилаке, Г. М., де Кокер, Н., Фрост, Д. Дж. И Маккаммон, К. А. Решеточная теплопроводность минералов нижней мантии и тепловой поток из ядра Земли. Proc. Natl Acad. Sci. США 108 , 17901–17904 (2011).

    ADS CAS Статья Google Scholar

  • 15

    Ohta, K. et al.Решеточная теплопроводность перовскита и постперовскита MgSiO3 на границе ядро-мантия. Планета Земля. Sci. Lett. 349 , 109–115 (2012).

    ADS Статья Google Scholar

  • 16

    Allwardt, J. R. et al. Влияние структурных переходов на свойства силикатных расплавов высокого давления: 27 Al ЯМР, плотности стекла и вязкости расплавов. г. Минеральная. 92 , 1093–1104 (2007).

    ADS CAS Статья Google Scholar

  • 17

    Ли, С. К. и др. Исследование методом комбинационного рассеяния рентгеновских лучей стекла MgSiO3 при высоком давлении: последствия для трикластерного расплава MgSiO3 в мантии Земли. Proc. Natl Acad. Sci. США 105 , 7925–7929 (2008).

    ADS CAS Статья Google Scholar

  • 18

    Шен Г. и др. Отчетливое термическое поведение стекла GeO2 в тетраэдрической, промежуточной и октаэдрической формах. Proc. Natl Acad. Sci. США 104 , 14576–14579 (2007).

    ADS CAS Статья Google Scholar

  • 19

    Уильямс, К. и Жанло, Р. Спектроскопические доказательства изменений координации под давлением в силикатных стеклах и расплавах. Наука 239 , 902–905 (1988).

    ADS CAS Статья Google Scholar

  • 20

    Ли, С.К., Коди, Г. Д., Фей, Ю., Майсен, Б. О. Природа полимеризации и свойства силикатных расплавов и стекол при высоком давлении. Геохим. Космохим. Acta 68 , 4189–4200 (2004).

    ADS CAS Статья Google Scholar

  • 21

    Ли, С. К. Простота уплотнения расплава в многокомпонентных магматических резервуарах в недрах Земли, выявленная с помощью многоядерного магнитного резонанса. Proc. Natl Acad.Sci. США 108 , 6847–6852 (2011).

    ADS CAS Статья Google Scholar

  • 22

    Nomura, R. et al. Спиновый кроссовер и богатый железом силикатный расплав в глубокой мантии Земли. Природа 473 , 199–202 (2011).

    ADS CAS Статья Google Scholar

  • 23

    Бернс Р. Г. Минералогические приложения теории кристаллического поля Cambridge Univ.Пресса (1993).

  • 24

    Ohtani, E. & Maeda, M. Плотность базальтового расплава при высоком давлении и стабильность расплава в основании нижней мантии. Планета Земля. Sci. Lett. 193 , 69–75 (2001).

    ADS CAS Статья Google Scholar

  • 25

    Миллер Г. Х., Столпер Э. М. и Аренс Т. Дж. Уравнение состояния расплавленного коматиита 2. Приложение к петрогенезису коматиита и хадейской мантии. J. Geophys. Res. 96 , 11849–11864 (1991).

    ADS Статья Google Scholar

  • 26

    Mitsui, T. et al. Разработка энергетического спектрометра 57 Fe-мёссбауэра с использованием синхроторного излучения и его применение для исследований сверхвысоких давлений с помощью ячейки с алмазной наковальней. J. Synchrotron Rad. 16 , 723–729 (2009).

    CAS Статья Google Scholar

  • 27

    Мэддок, А.G. Мёссбауэровская спектроскопия: принципы и приложения Horwood (1997).

  • 28

    Кларк, М. Г., Бэнкрофт, Г. М. и Стоун, А. Дж. Моссбауэровский спектр Fe 2+ в плоско-квадратной среде. J. Chem. Phys. 47 , 4250–4261 (1967).

    ADS CAS Статья Google Scholar

  • 29

    Hayashi, N. et al. 57 Мессбауэровское исследование Fe на оксидах Fe 2+ с бесконечнослойной и лестничной структурой. J. Phys. Soc. Япония 79 , (2010).

  • 30

    Prescher, C. et al. Спиновое состояние железа в силикатном стекле при высоком давлении: последствия для расплавов в нижней мантии Земли. Планета Земля. Sci. Lett. 387 , 130–136 (2014).

    ADS Статья Google Scholar

  • 31

    Клима, Р. Л., Питерс, К. М. и Дьяр, Д. М. Спектроскопия синтетических пироксенов Mg-Fe I: разрешенные и запрещенные по спину полосы кристаллического поля в видимой и ближней инфракрасной областях. Метеор. Планета. Sci. 42 , 235–253 (2007).

    ADS CAS Статья Google Scholar

  • 32

    Томас С.-М., Бина К.Р., Якобсен С.Д., Гончаров А.Ф. Радиационный теплоперенос в переходной зоне водной мантии. Планета Земля. Sci. Lett. 357 , 130–136 (2012).

    ADS Статья Google Scholar

  • 33

    Абрас, А.& Mullen, J. G. Mössbauer исследование диффузии в жидкостях: диспергированный Fe 2+ в глицерине и водно-глицериновых растворах. Phys. Ред. A 6 , 2343–2353 (1972).

    ADS CAS Статья Google Scholar

  • 34

    Литтерст, Ф. Дж., Рамиш, Р. и Калвиус, Г. М. Мёссбауэры, исследование структурной релаксации при стекловании. J. Non-Cryst. Твердые вещества 24 , 19–28 (1977).

    ADS CAS Статья Google Scholar

  • 35

    Sanloup, C. et al. Структурные изменения в расплавленном базальте в условиях глубокой мантии. Природа 503 , 104–107 (2013).

    ADS CAS Статья Google Scholar

  • 36

    Сато Т. и Фунамори Н. Шестиконечный аморфный полиморф SiO2 под высоким давлением. Phys.Rev. Lett. 101 , 255502 (2008).

    ADS Статья Google Scholar

  • 37

    Benmore, C.J. et al. Структурные и топологические изменения кварцевого стекла под давлением. Phys. Ред. B 81 , 054105 (2010).

    ADS Статья Google Scholar

  • 38

    Сато Т. и Фунамори Н. Структурное превращение стекла SiO2 под высоким давлением до 100 ГПа. Phys. Ред. B 82 , 184102 (2010).

    ADS Статья Google Scholar

  • 39

    Ханада Т., Сога Н. и Тачибана Т. Координационное состояние ионов магния в аморфных пленках, полученных высокочастотным распылением, в системе MgO-SiO2. J. Non-Cryst. Твердые вещества 105 , 39–44 (1988).

    ADS CAS Статья Google Scholar

  • 40

    Куряева Р.Г., Киркинский В. А. Влияние высокого давления на показатель преломления и плотность толеитового базальтового стекла. Phys. Chem. Шахтер. 25 , 48–54 (1997).

    ADS CAS Статья Google Scholar

  • 41

    Андерсон О. Л. и Шрайбер Э. Связь между показателем преломления и плотностью минералов, связанных с мантией Земли. J. Geophys. Res. 70 , 1463–1471 (1965).

    ADS CAS Статья Google Scholar

  • 42

    Гарнеро, Э. Дж., Макнамара, А. К. Структура и динамика нижней мантии Земли. Наука 320 , 626–628 (2008).

    ADS CAS Статья Google Scholar

  • 43

    Kono, Y.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *