Калькулятор расчет нагрузки на грунт: Страница не найдена ⋆ Строительство частного дома

Содержание

Нагрузка на фундамент расчет

Нагрузка на фундамент — это суммарная масса всех элементов дома, включая снеговые, ветровые и эксплуатационные нагрузки, которая действует на площадь основания. Расчет нагрузок на фундамент необходимо производить после геологических изысканий участка. Зная тип и особенности грунта, можно соотнести рассчитанную нагрузку с допустимым давлением на конкретный тип грунта.

Для того, чтобы разобраться в методике расчета, рассмотрим пример.

Исходные данные для расчета нагрузки на фундамент

В качестве источника нагрузки на грунт возьмем двухэтажный дом 6 × 8 метров с внутренней силовой стеной.

Конструктивные элементы дома Площадь элементов
Площадь кровли 70 м²
Площадь чердачного перекрытия 50 м²
Общая площадь перекрытия первого и второго этажа 100 м²
Площадь внешних стен 160 м²
Площадь внутренних силовых стен 50 м²
Общий периметр фундамента 34 м

В зависимости от конкретной планировки дома, конструкции фундамента и крыши, площади элементов будут различаться.

Каждый проект дома необходимо тщательно анализировать и просчитывать элементы. Представленные расчеты носят рекомендательный характер и служат для раскрытия методики анализа.

Для расширения области расчетов рассмотрим два варианта перекрытий – на деревянных лагах и с бетонными пустотными плитами.

Расчет нагрузки на фундамент

Расчет веса каждого элемента производится с учетом параметров строительных материалов, из которых состоят эти элементы:

  1. 1 м² кровли с асбоцементными листами весит 50 кг. Соответственно, если площадь рассматриваемой крыши 70 м², то ее вес равен 70 × 50 = 3500 кг = 3,5 т.
  2. Вес 1 м² чердачного перекрытия из дерева 150 кг, соответственно общий вес 50 × 150 = 7500кг = 7,5 т
  3. Вес 1 м² бетонного чердачного перекрытия 350 кг, соответственно общий вес 50 × 350 = 17500 кг = 17,5 т.
  4. Вес 1 м² межэтажного перекрытия из дерева 200 кг, соответственно общий вес 100 × 200 = 20000кг =
    20 т
  5. Вес 1 м² бетонного межэтажного перекрытия 400 кг, соответственно общий вес 100 × 400 = 40000 кг = 40 т.
  6. 1 м² внешней стены весит 250 кг. Соответственно, если площадь внешних стен 160 м², то общий вес равен 160 × 250 = 40000 кг = 40 т.
  7. 1 м² внутренней стены весит 240 кг. Соответственно, если площадь внутренних силовых стен 50 м², то общий вес равен 50 × 240 = 12000 кг = 12 т.
  8. Примерный вес погонного метра ленточного фундамента 1700 кг. Учитывая, что периметр фундамента 34 м, то его общий вес равен 34 × 1700 = 57800 кг = 57,8 т.
  9. Вес полезной нагрузки (люди, оборудование, мебель) 26 т.
  10. Вес снегового покрова 100 кг / м² кровли. Общий вес равен 50 × 100 = 5000 кг = 5 т. При расчете используется не площадь кровли, а площадь ее проекции (то есть площадь чердачного перекрытия). Также, величину снеговой нагрузки необходимо брать в зависимости от региона проживания.

Таблица определения снеговой нагрузки местности

Снеговой район I II III IV V VI VII VIII
Вес снегового покрытия Sg (кгс/м2) 80 120 180 240 320 400 480 560

Карта зон снегового покрова территории Российской Федерации:

Подсчитаем общий вес дома:

  • Вес дома с деревянными перекрытиями 171 т.
  • Вес дома с бетонными перекрытиями 201 т.

Для определения расчетной нагрузки увеличим общий вес на 30% и получим:

  • Вес дома с деревянными перекрытиями 220 т.
  • Вес дома с бетонными перекрытиями 260 т.

Теперь, зная тип грунта, можно определить и проанализировать площадь подошвы фундамента.

Важно помнить, что тип и глубина заложения фундамента должны определяться после проведения геологических изысканий. Вы должны четко представлять, какой тип грунта имеется на участке, каков уровень грунтовых вод и какова глубина промерзания грунта.

Таблица допустимого давления на грунт, кг/см²:

Грунт Глубина заложения фундамента, м
1 — 1,5 2 — 2,5
Щебень, галька с песчаным заполнением 4,5 6,0
Дресва, гравийный грунт из горных пород 4,0 5,0
Песок гравелистый и крупный 3,2 5,5
Глина твердая 3,0 4,2
Щебень, галька с глинистым заполнением 2,8 4,2
Песок средней крупности 2,5 4,5
Песок мелкий маловлажный 2,0 3,5
Суглинок 1,7 2,0
Глина пластичная 1,6 2,0
Супесь 1,5 2,5
Песок мелкий очень влажный 1,5 2,5

Возьмем для примера песок средней крупности с допустимым давлением на грунт 2,5 кг/см² = 25 т/м².

Получаем:

  • 220 т / 25 т/м² = 8,8 м² допустимая площадь подошвы фундамента дома с деревянными перекрытиями.
  • 260 т / 25 т/м² = 10,4 м² допустимая площадь подошвы фундамента дома с бетонными перекрытиями.

Площадь подошвы = длина фундаментной ленты × ширину ленты.

Зная периметр (длину) фундамента (в нашем случае 34 метра), можно определить минимально допустимую толщину ленты:

8,8 м² / 34 м = 0,26 м = 26 см (для дома с деревянными перекрытиями).

10,4 м² / 34 м = 0,31 м = 31 см (для дома с бетонными перекрытиями).

Допускается, если толщина ленты будет больше рассчитанных значений. Изменение в меньшую сторону недопустимо.

Спорная методика расчета нагрузки на фундамент

Методики расчета во многих источниках практически одинаковые. Но иногда попадаются некоторые противоречивые особенности. Цитата:

«Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.»

По такой же методике, где во внимание берутся только две стороны фундамента, предлагается просчитывать снеговые нагрузки и нагрузки от перекрытий. Но это не совсем верно:

  • Кровельная нагрузка (удельный вес материала) используется для определения оптимального шага и сечения стропил, обрешетки.
  • Нагрузка может распределятся на те участки стены или мауэрлат, где закреплены стропильные ноги, но далее, благодаря армированному поясу, стенам и фундаменту, она равномерно распределяется по всей подошве фундамента.

Поэтому, при определении нагрузок на фундамент, в том числе ветровых, снеговых и от перекрытий, нужно учитывать всю площадь опирания на грунт.

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Свайный фундамент может выручить в тех обстоятельствах, когда никакой другой тип основы под строящееся здание невозможен или же становится чрезвычайно сложным и невыгодным. Сваи, заглублённые ниже уровня промерзания грунта и достигшие плотных его слоев, способны выдержать очень серьезную нагрузку. Безусловно, это требует правильных расчётов их несущей способности и, исходя из этого и общей нагрузки – количества и схемы расстановки.

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Это, кстати, касается и столбчатого фундамента – возможности опор не безграничны, и чрезвычайно важно правильно распределить нагрузку на них. Значит, необходимо каким-то образом оценить, какую же весовую и эксплуатационную нагрузку будет оказывать планируемое к постройке здание на подобное основание. Быстро и с достаточной степенью точности это поможет сделать калькулятор расчета нагрузки на свайный или столбчатый фундамент.

Ниже будут приведены необходимые пояснения по порядку проведения расчетов.

Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Перейти к расчётам

 

Укажите запрашиваемые значения и нажмите «Рассчитать суммарную нагрузку на свайный фундамент»

СТЕНЫ ДОМА
Площадь стен указывается суммарно, при желании - можно с вычетом оконных и дверных проемов.
(Доступно введение двух вариантов, например, для несущих внешних и внутренних стен. Если вариант не используется, оставьте значение площади по умолчанию - 0)

 

Стены, тип №1

Материал стен

- кирпичная кладка в полкирпича (120 мм)- кирпичная кладка в 1 кирпич (250 мм)- кирпичная кладка в 1.5 кирпича (380 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм- стены из сэндвич-панелей толщиной 150 мм, с утеплением из минеральной ваты- стены из сэндвич-панелей толщиной 150 мм, с утеплением из пенополистирола или пенополиуретана

Площадь стен, м²

 

Стены, тип №2

Материал стен

- кирпичная кладка в полкирпича (120 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм- каркасные перегородки из гипсокартона- перегородки из сэндвич-панелей толщиной 50-80 мм, с утеплением из минеральной ваты- перегородки из сэндвич-панелей толщиной 50- 80 мм, с утеплением из пенополистирола или пенополиуретана

Площадь стен, м²

ПЕРЕКРЫТИЯ
Если в перекрытии есть проем, например, для межэтажной лестницы, то его следует исключить из общей площади
(Доступно введение двух вариантов, например, для межэтажного и чердачного перекрытия. Если вариант не используется, оставьте значение площади по умолчанию - 0)

 

Перекрытие, тип №1 (межэтажное)

Тип перекрытия

- перекрытие межэтажное или цокольное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

 

Перекрытие, тип №2 (чердачное)

Тип перекрытия

- перекрытие чердачное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная

Площадь перекрытия, м²

СТРОПИЛЬНАЯ СИСТЕМА И КРОВЛЯ
При выборе типа кровли автоматически будет учитываться и средний вес стропильной системы с обрешеткой.
Одновременно к весу крыши будет добавлено ориентировочное значение снеговой нагрузки, в зависимости от региона строительства и крутизны скатов

Общая площадь кровли, м²

Тип кровли

- листовая сталь, профнастил, металлочерепица- мягкая полимер-битумная кровля в два слоя- абесто-цементный шифер- керамическая черепица

Укажите зону, в соответствии с картой-схемой

IIIIIIIVVVIVII

РОСТВЕРК
Если для обвязки свай используется деревянный брус, то его можно просто учесть в площади стены - большой ошибки не будет.
Ростверк из металлопроката или железобетона лучше принять в расчет дополнительно

Длина ростверка (учитывая внешний периметр и внутренние перемычки), метров

Материал ростверка:

Пояснения по проведению расчетов

Безусловно, предложенный алгоритм не претендует на профессиональную точность, но при планировании небольших домов и хозяйственных построек на загородном участке вполне может помочь оценить складывающуюся картину.

Нагрузка, выпадающая на свайный фундамент, в первую очередь включает массу самой постройки, планируемой к возведению.

В калькуляторе предусмотрено внесение площадей стен и указание материала их изготовления. При желании, чтобы получить более корректный результат, можно исключить из площади оконные и дверные проемы. Подсчет площадей стен необходимо провести отдельно, согласуюсь с имеющимся планом или хотя бы наметками на будущее строительство. Правильно рассчитать площадь поможет специальная публикация портала.

Расчет площадей – быстро и точно

Даже простейшие геометрические формулы иногда подзабываются, и это не говоря о более сложных случаях. Ничего страшного: откройте по ссылке статью, специально посвященную расчету площадей – там изложен порядок вычислений, размещены удобные калькуляторы.

Цены на винтовые сваи

винтовые сваи

Внешние стены и внутренние капитальные перегородки могут отличаться и толщиной, и материалом изготовления. Поэтому пользователю предоставляется возможность внесения двух вариантов стен. Если такой необходимости нет, то просто в поле ввода площади оставляется значение «0».

Далее, следуют поля ввода параметров перекрытий, где также предусмотрены два возможных варианта, например, для пола первого этажа и для чердачного перекрытия. В программу расчета уже внесены необходимые поправки на эксплуатационные нагрузки на перекрытия – вес мебели и других предметов обстановки, динамическое воздействие от находящихся в доме людей и т.п.

Следующий блок ввода данных – это параметры крыши. При выборе типа кровли сразу будет учтена и средняя масса стропильной системы. Кроме того, на кровлю зимой оказывается немалая нагрузка от выпавшего снега. Чтобы учесть этот фактор, необходимо указать зону своего региона по уровню снеговой нагрузки (по предложенной карте-схеме), и крутизну скатов кровли.

Карта-схема для определения своей зоны по среднестатистическому уровню снеговой нагрузки на кровлю

Сваи или столбы соединяются брусом обвязки либо ростверком. Если применяется деревянная обвязка, то не будет большой ошибкой просто включить ее в площадь стен. Но в том случае, когда устраивается ростверк из металла или даже железобетонной ленты – имеет смысл принять его во внимание дополнительно. При выборе этого пути расчета откроются дополнительные поля ввода данных – длины ростверка и материала его изготовления.

Итоговый результат будет выдан в килограммах и тоннах. Получив это значение и зная несущий потенциал опоры, несложно будет определиться и с количеством свай или столбов.

Как оценивается несущая способной винтовых свай?

Этот параметр зависит от особенностей грунта на предполагаемой глубине залегания винтовой части опоры и от размерных параметров самой сваи. Подсчитать несущую способность винтовой сваи поможет специальный калькулятор, к которому ведет указанная ссылка.

как правильно сделать своими руками, устройство и самостоятельное строительство

Как оформить и зарегистрировать частный дом в собственность

Описание ленточного фундамента под дом

Ленточный фундамент является универсальным. Такой тип фундамента подойдет для домов с любой конструкцией стен. В поперечном сечении ленточный фундамент дома образует прямоугольник, расположенный вертикально. Верхняя часть этого прямоугольника должна учитывать уклон строительного участка и выступать своим обрезом примерно на 100 мм над плоскостью прилегающей грунтовой поверхности. К тому же верхний обрез фундамента, в зависимости от конструкции стен дома, может быть шире толщины стены.

При строительстве жилого дома в 1-3 этажа поперечные размеры ленточного фундамента обычно сильно не отличаются. Это можно объяснить тем, что нагрузки от дома на грунт, незначительны, в то время как площадь опорной подошвы фундамента всегда будет больше необходимой по расчету примерно в 2-3 раза.

Так, в зависимости от материала, используемого в создании ленточного фундамента, средняя ширина для бутовых фундаментов 600 мм; для бетонных или железобетонных и бутобетонных 400-600 мм; для фундаментов, изготовленных из кирпича — это 500-550 мм. Такая ширина основания ленточного фундамента обеспечивает перевязку вертикальных швов камней и удобна в работе, уменьшая лишние трудозатраты.

Если грунт на участке строительства слабый или неоднородный, то вероятнее всего, давление дома своим весом на такой грунт будет превышать нормативное (для средней полосы России это 1-1,5 кг/см²). В таком случае необходимо увеличить ширину подошвы фундамента. Сделать это можно созданием уступов по высоте фундамента через каждые 300-600 мм. Кроме того, можно в нижней части фундамента создать «подушку», подложив железобетонную плиту или утрамбовать крупный просеянный песок, с песчинками размером 1-2 мм, слоем толщиной 200-300 мм.

Вес дома

Чтобы понять, фундамент какого типа и с какими размерами вам нужен – прежде всего необходимо определиться с весом вашей будущей постройки.

Для определения примерного веса необходимо воспользоваться приведенными таблицами.

Таблица для определения веса дома

Произведем примерный расчет будущей конструкции. Например, мы задались целью построить одноэтажное строение размером 8 на 5 метров. В доме будет одна внутренняя стена, высота дома по наружной стене до крыши будет составлять три метра. Итак, общая длина стен нашего строения составит 18 метров (13 метров наружные стены и 5 – внутренняя). Общая площадь стен по одной поверхности при высоте в три метра составит 54 квадратных метра.

Так как в доме будет иметься один этаж, то нам также необходимо произвести расчет площади пола (40 квадратных метров) и чердачного перекрытия – те же 4- квадратных метров.

Площадь кровли будет зависеть от ее конструкции – двускатной, односкатной или фигурной. В случае крыши со катом определяем для себя высоту фронтона, а затем с использованием школьных геометрических формул определяем площадь крыши и ее лицевой части – фронтона.

Каждую вычисленную площадь мы умножаем на приведенный в таблице вес, выбранный в зависимости от используемого материала. При расчете берите крайний, максимальный вес из указанного в таблице – так вы минимизируете вероятность ошибки.

Видео — расчет фундамента под кирпичный дом

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

Справочная таблица для определения глубины заложения фундамента по регионам

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Разновидности и особенности фундаментных оснований

  • вес и площадь будущего здания;

  • технические характеристики;

  • ландшафтный рельеф местности;

  • глубина нахождения грунтовых вод (ГВ) и степень промерзания.

Столбчатый

Предполагается установка специальных свай во всех углах, областях пересечения стен и прочих местах, где предполагается высокая нагрузка. Применим для относительно лёгких строений, надежен, экономичен и не требует дополнительных гидроизоляционных работ. Столбы располагаются на расстоянии м. Преимущественно изготавливаются из бетона, камня или кирпича. Свободное пространство между ними утрамбовывается щебнем или песком. Подходит фундамент для деревянных или каркасных коттеджей. Этот вид основания исключает наличие подвалов и цокольных помещений. Идеален на не предрасположены к движению и пучению грунтах.

Ленточный

Наиболее часто используется на частных строительных объектах. Большой расход сырья, массивность и простота укладки – это основные его характеристики. По сути это ж.б. полоса, установленная по всему периметру. Монтируется для всех типов домов, включая проекты, предполагающие гараж. Устройство базы делают на расстоянии 20 см. от границы промерзания земли, но не глубже 0.5 м. Толщина подбирается индивидуально – зависит от площади и толщины стен будущего жилища.

Плитный

Предполагается штабелирование монолитной железобетонной платформы по всей площади строения. За счет колоссальных земляных работ и большого расхода материала, считается чуть ли не самым дорогостоящим каркасом. В основном применяется для небольших дач, когда основание дополнительно является и полом. Совместим с любой почвой и расстоянием залегания ГВ.

Свайно-винтовой

Незаменим в строительстве малоэтажек, когда наблюдается повышенная подвижность и пучинистость грунта. Также, подходит в местности с неустойчивым ландшафтом. Изначально подобные конструкции использовались для крепежа высоковольтных станций, но практика показала, что и при возведении домов технология не утрачивает своей функции. Механизм установки выглядит так – стальную трубу буквально вкручивают на глубину не менее 1.5 м. Стволы столбов бетонируются, а сверху обрабатывается антикоррозийным составом. Отличаются крайне высокой несущей способностью. К основным преимуществам относят: возможность совершать монтаж в любое время года и ненужность копать траншеи. К тому же не потребуется выравнивание участка.

Комбинированный

Этот вид характеризуется умелым сочетанием разных типов, форм и материалов. Как правило, применяют с целью финансовой экономии или для усиления несущих свойств. Схемы возведения могут быть разными, но чаще используются следующие:

  • столбы обвязывают ж.б. лентой;

  • разделяют монолитные сваи кирпичной крошкой;

  • платформу укладывают не на песок, а на сваи;

  • изначальная база ленточная, но сверху делают каменные блоки.

Как построить фундамент самостоятельно: пошаговое руководство

  1. Определите глубину залегания почвенных вод и состав грунта. Для этого необходимо выкопать яму однометровой глубины. Отсутствие в ней воды означает, что почвенные воды залегают глубоко. Если грунт представляет собой смесь гравия, камня и песка, можно остановиться на простом ленточном основании, заглубленном на полметра. В случае наличия воды в яме, фундамент нужно заглублять на 0,5-1,2 м.

    Перед устройством основание узнайте уровень залегания грунтовых вод

  2. Разметьте участок, снимите плодородный слой грунта. По периметру будущего здания выройте траншею нужной глубины, дно выровняйте с помощью песка.

    Яма для «ленты» может быть разной глубины

  3. Перед тем, как построить фундамент для дома, сделайте опалубку из фанерных листов или досок. Затем можно приступать к заливке. Для этого используют цементную смесь с подходящим наполнителем. Для ее приготовления берут цемент, щебенку и крупнозернистый песок в пропорции 1:5:3. Компоненты смешивают и заливают водой так, чтобы получилась сметанообразная консистенция. Чем гуще раствор, тем прочнее будет фундамент.

    Опалубка для основания дома выполняется из досок

  4. Кладку основания из камней, блоков или кирпичей делайте на цементный раствор. Начинать ее нужно от песчаной подушки. Ширина на 20 см толще стен дома. Фундамент армируют металлическими стержнями, скрепленными проволокой.
  5. Сделайте гидроизоляцию основания. На уровне грунта уложите в траншею два рубероидных слоя, затем продолжайте возводить фундамент до нужной высоты. Для улучшения гидроизоляции подземную часть основы промазывают в несколько слоев горячим битумом, после чего траншею засыпают. На данном этапе нужно выровнять фундамент посредством уровня. При необходимости делают вводы для канализации и водопровода.

    Для качественного устройства фундамента необходимо сделать гидроизоляцию подземной части основания

  6. Выше гидроизоляционного слоя укладывайте рядами блоки или кирпичи. Чтобы воспрепятствовать накоплению сырости в подполовом пространстве необходимо в противоположных стенках основы оставить вентиляционные отверстия.

    После утепления и гидроизоляции прокладываем несколько цокольных рядов кирпича

  7. После завершения укладки фундамента снова сделайте гидроизоляцию посредством рубероида либо другого сходного материала.

Также можно посмотреть видео о том, как сделать фундамент под дом. Ниже мы рассмотрим особенности возведения оснований для самых популярных типов зданий.

Порядок работ по устройству фундаментной ленты

Заливка фундамента:

ЭтапыКомментарий

Расчистка

Территорию очищают от старых построек, ненужных кустарников и деревьев, полностью снимают плодородный слой грунта.

Геодезические работы

Если в доме предусмотрен цокольный этаж, фундаментная лента сооружается в котловане. В домах без подвалов, особенно на фундаменте мелкого заложения, разрабатывают не котлован, а траншеи.

И в том, и в другом случае разбивка контура выполняется в соответствии с чертежом, в котором прописаны размеры фундаментов.

Для этого сначала определяют основные оси здания и закрепляют их на обноске. Затем выносят проекцию контуров опорной части, закрепляя её забивными стульчиками с натянутыми по ним двойными рядами бечёвки.

Именно по ним и будет ориентироваться экскаваторщик.

Нарезка траншей

Копать начинают от угла здания, постепенно продвигаясь по контуру будущих стен. Глубину контролируют, время от времени опуская в выработку вехи.

Иногда при копке глубоких траншей приходится укреплять щитами осыпающиеся стенки.

Устройство насыпных слоёв

Толщина насыпных слоёв тоже определяется расчётом. При строительстве одноэтажного частного дома предусматривается подушка из крупнозернистого песка высотой 15 см, насыпаемая слоями по 5 см, с обязательной проливкой и утрамбовкой каждого.

На нестабильных грунтах поверх песка насыпают ещё и 10 см щебня — либо эти материалы просто смешивают, так же послойно уплотняя.

Установка опалубочных щитов

После того, как дно траншеи полностью подготовлено: дно отсыпано и утрамбовано, монтируют опалубку.

На картинке инвентарная, многоразового использования. Одноразовая сбивается из обрезной доски, соединяемой брусками или стальными уголками.

Чтобы стенки не деформировались, их укрепляют подпорками.

Рекомендуем прочесть: как залить ленточный фундамент без опалубки.

Армирование

На следующем этапе из арматурных стержней толщиной 10-12 мм собирают пространственный каркас, конструкция которого определяется расчётом.

Чтобы под ним образовался защитный слой бетона, каркас устанавливают на специальные подставки-стульчики.

Бетонирование

Далее внутрь опалубки заливают бетонный раствор класса В20. Как и в случае с насыпными слоями, делается это послойно, с уплотнением бетона путём штыкования или вибрирования.

Верх заглаживают правилом или кельмой, выравнивая по маякам на опалубке, или торцам вдавленных штырей нужной длины. Затем поверхность железнят сухим цементом и оставляют ленту для затвердевания.

Основные методы как рассчитать нагрузку на фундамент

Работы начинаются со сбора данных, предварительного выбора типа фундамента и глубины его заложения. Последняя характеристика подбирается исходя из уровня промерзания грунта, типа и однородности почвы и высоты залегания грунтовых вод на участке. Полученная предварительная высота фундамента в дальнейшем учитывается при расчете нагрузки от этой конструкции на грунт и при проверке его самонесущих способностей и прочности.

В зависимости от характера исходных данных выделяют два основных способа сбора и расчета нагрузок:

  • Точный, выбираемый при наличии на руках подробного проекта с указанными габаритами и материалами всех строительных конструкций в доме.
  • Укрупненный, с подбором приблизительного веса конструкций по нормативам и таблицам.

На этапе расчета фундамента для дома второй способ выбирается чаще, сбор нагрузок ведется по приблизительным эскизам, при необходимости – с корректировкой толщины или материала конструкций, или выборе другого типа кровли, перекрытия или самого основания.

Помимо этого, способ расчета также зависит от типа выбираемого фундамента. В частности:

  • При расчете нагрузок на монолитную ленту, плитный фундамент площадь подошвы может определяться исходя из нагрузки на погонный метр (а именно – путем деления суммы нагрузок на длину ленты и сравнения полученной величины с несущими способностями грунта) или методом грузовых площадей (усложненным и редко используемым, с расчетом нагрузки на определенный участок).
  • При расчете нагрузки на плиту общую нагрузку просто делят на площадь основания.
  • Сечение и количество свайных и столбчатых, фундаментов ТИСЭ с ростверком, чаще всего задается заранее, а расстояние между опорами рассчитывается путем деления общих нагрузок на длину несущих стен. При чрезмерном отклонении расчетной величины от предварительной шаг или сечение опор меняют и расчет проводят повторно.

Условно при расчете все нагрузки могут приниматься как равномерно распределяемые или воздействующие на определенные несущие зоны фундамента. Первый способ признан более простым и применяется чаще. Второй – требует наличия точной конструктивной схемы дома (вплоть до указанных колонн, лестниц, печей и тяжелой мебели) и знания ряда сложных формул.

Покупать бетон или делать самостоятельно

Для самостоятельного приготовления бетонной смеси потребуются компоненты:

  • портландцемент или связующее вещество на шлаковой основе;
  • промытый песок;
  • обогащенный щебень;
  • специальные наполнители, обеспечивающие эластичность раствора после затвердевания;
  • вода.

Застройщик может приобрести компоненты и замешать раствор самостоятельно, но для приготовления большого объема смеси необходим миксер с приводом от электрического мотора или дизельного двигателя. Поскольку при заливке фундамента необходимо обеспечить непрерывную подачу раствора, то целесообразнее приобрести готовую смесь.

Жидкий материал доставляется в миксере, установленном на 3- или 4-осных грузовых шасси. Конструкция бетономешалки позволяет направлять струю бетона в необходимую зону, снижая незапланированный расход материала.

Самостоятельное затворение смеси допускается при обустройстве столбчатого фундамента, имеющего небольшой объем опор (в пределах 30-60 л на каждую). Для смешивания компонентов раствора и воды потребуется бетономешалка, оснащенная баком емкостью до 0,1 м³. Для привода барабана используется электрический двигатель, поэтому необходимо заранее провести питание на участок.

Марка полученного бетона зависит от пропорций компонентов, рецептуры распространенных смесей приведены в таблице (указано соотношение основных ингредиентов).

МаркаЦементПесокЩебеньВыход бетона из 10 л цемента, лТип цемента
20012,84,854М400
25012,13,943М400
30011,93,741М400
40011,22,731М400
20013,55,662М500
25012,64,550М500
30012,44,347М500
40011,63,236М500

Полезное видео:

Как подсчитывается ширина подошвы?

Рекомендуемые прямоугольные поперечные сечения ленты фундамента.2=5,

Отсюда получаем Х1=0,17 м, а Х2=7,3 м. В нашем случае можно использовать значение Х1, равное 0,17 метрам. Это и будет минимально допустимая ширина для ленты. Но оно ориентировочное, зависящее от того, какой толщины стены заложены в самом проекте. Допустим, что стены имеют толщину в 300 мм, а ширина ленты должна быть больше на 100 мм, значит получаем: 100+300= 400 мм. Теперь определяем запас прочности: 0,4/0,17*100-100=135%.

Высота, ширина и другие параметры ленты зависят и от того, какая арматура будет использована. Обычно берут прутья с диаметром в 12, 14, 16 мм. Чтобы понять, какой материал необходим, надо определить поперечное сечение ленты, процент, который ширина подошвы отводит на арматурный каркас. От полученного значения будут зависеть такие показатели, как высота ленты (прутья не должны выступать из бетона), глубина заложения (этот параметр оказывает прямое влияние на то, как будет выполняться копка котлована).

Чтобы рассчитать площадь сечения ленты, допустим, что высота ее равна 80 см, тут все зависит от проекта, глубина определяется по типу грунта и другим показателям. Площадь поперечного сечения будет равна: 40*80=3200 кв. см. Арматура занимает 0,001 часть от этой площади, какой бы ни была глубина, значит имеем: 3200*0,001=3,2 кв. см. Далее используем табличные данные, которые показывают, какую площадь сечения имеют отдельные прутки. В нашем случае, если глубина составляет 80 см, можно использовать четыре прутка в поясе с диаметром каждого в 12 мм. Полученная ширина фундамента позволяет выполнить правильную армировку основания.

Чтобы основание для двухэтажного дома было надежным, перед началом строительства, до разметки и копки котлована, необходимо провести расчеты. Это касается не только ширины самого основания, но и таких параметров, оказывающих на нее влияние, как общие нагрузки от строения. Для этого необходимо использовать многочисленные справочные данные, которые помогут получить точные значения требуемых параметров.

Конструкции

Фундаменты бывают ленточные, столбчатые, монолитные в виде железобетонной плиты и свайные.

Ленточный фундамент – подробная схема.

Ленточный имеет большую несущую способность, его возводят для построек из камня, кирпича и бетона. Такой фундамент можно делать при строительстве подвала и цокольного этажа. Его целесообразность должна обозначаться геологическими особенностями земельного участка. Ширина напрямую зависит от толщины стен. Зачастую он бывает монолитным из бутобетона, железобетона, и сборным (из блоков и плит).

Бутобетон – это смесь из песка, цемента и крупных камней. Он используется для постройки зданий, располагающихся на скалистых или песчаных основаниях.

Во избежание возникновения трещин или разрыва, не рекомендуется делать ленточный фундамент из бутобетона на глинистом участке.

Железобетон – это смесь щебенки, цемента и песка, которая армируется специальной сеткой или арматурой. Этот материал доступен, прочен, наиболее подходит для песчаной почвы.

Ленточный из блоков и плит очень прочный и универсальный, подходит для многих типов почвы и разных видов построек.

Схема столбчатого фундамента.

Столбчатый можно делать для легких деревянных и каркасных объектов на плотной почве с низким уровнем грунтовых вод. Располагают столбики под углами здания и на пересечениях внутренних и наружных стен. Сверху на фундамент укладывают рандбалки, на них возводят стены.

При высоком уровне грунтовых вод и пучинистых почвах нужно делать монолитную плиту, предварительно утрамбовав песчаное основание. Она может быть сплошной и решетчатой с обязательной гидроизоляцией. Монолитную плиту еще называют плавающим фундаментом.

Если на участке присутствуют залежи торфа или его подтапливает в весенний период, то нужно делать фундамент на сваях, по верху которых устраивают монолитный железобетонный пояс. Для свайного фундамента не нужно делать гидроизоляцию, и он не подвержен пучению в зимний период.

Глубина заложения

Этот показатель зависит от того, насколько глубоко промерзает грунт и от нахождения подземных вод. Если почва промерзает гораздо выше расположения грунтовых вод, то фундамент может быть неглубоким, так как почва считается сухой.

Сырая почва имеет близко расположенные уровни промерзания и нахождение подземных вод. Для сухой почвы минимальный уровень залегания – 70 см, для влажной – 1,2 м. Определение нахождения подземных вод

Для этого исследования на территории будущей постройки формируется колодец глубиной 3 метра. Если глубокая яма уже имеется, то по ней можно определить уровень. Лучше всего заниматься исследованием грунтовых вод весной или осенью, когда их уровень самый высокий.

Также с помощью простых манипуляций можно узнать состав почвы. Для этого сначала необходимо снять верхнюю плодородную почву, именно под ней будет спрятан грунт, на который будет оказывать давление фундамент. Кирпичи и фундамент

Таким вопросом чаще всего озадачиваются неопытные каменщики. Очень сложно подгонять фундамент под кирпичи, чтобы они оставались целыми. Гораздо проще сделать наоборот. После того, как размеры фундамента будут определены, нужно измерить длину каждого кирпича и примерную ширину шва. От этих данных и нужно отталкиваться. Если не хочется резать кирпич, то можно вынести его за край на 3 или 5 см.

Определение характеристик грунта

На начальном этапе следует определить характеристики почвы на участке строительства. Для этого необходимо выкопать несколько ям в различных местах и взять пробы грунта.

Различают почвы следующих типов:

  • В состав лессовидного грунта входит глина с большим содержанием пылевидных элементов. Земля имеет рыхлую структуру;
  • Биогенные почвы состоят из песка и торфяника;
  • Глинистый грунт включает в себя песок и глину. На её несущую способность оказывает большое влияние процентное содержание влаги. Сухой грунт может выдержать большое давление;
  • Скальная почва характеризуется жёсткой структурой;
  • Полускальный грунт отличается от скальной породы отсутствием прочной связи между составляющими элементами;
  • Песчаная почва состоит из глины, кварца и различных минералов.

Расчет материалов для фундамента (калькулятор) – определяем потребность в цементе

При подготовке бетонного раствора в качестве вяжущего вещества используется цемент различных марок. От характеристик и количества вводимого в бетонную смесь портландцемента зависит прочность, надежность и срок эксплуатации строительных конструкций.

Используя справочные данные, можно самостоятельно определить количество цемента для приготовления бетонного раствора. Важно учитывать пропорцию, в соответствии с которой, смешивается песок, цемент и щебенка. Это соотношение составляет 3:1:5. Бетонный раствор формируется из 9 частей, одну из которых составляет портландцемент.

На основании этого соотношения определяется количество различных марок цемента на один куб бетона:

  • М100 используется в количестве 160–200 кг;
  • М150 необходимо 200–220 кг;
  • М200 добавляется по 240–280 кг;
  • М250 вводится по 300–330 кг.

С возрастанием марки портландцемента увеличивается его количество в кубометре бетонного состава и составляет:

  • М300 – 320–380 кг;
  • М400 – 400–420 кг;
  • М500 – 510–530 кг.

Эта информация позволяет самостоятельно определить потребность в цементе с высокой степенью точности. Существует и специальная программа в режиме онлайн, которая оперативно выполнит вычисления после введения требуемого объема готовой бетонной смеси, марки бетона и вида используемого цемента.

Расчет материалов для фундамента (калькулятор) – определяем потребность в цементе

При подготовке бетонного раствора в качестве вяжущего вещества используется цемент различных марок. От характеристик и количества вводимого в бетонную смесь портландцемента зависит прочность, надежность и срок эксплуатации строительных конструкций. Выполняя расчет материала на фундамент, калькулятор, представляющий собой специальную программу, обрабатывает комплекс исходных данных и предоставляет информацию о потребности в цементе для фундаментного основания.

Калькулятор материалов для монолитной фундаментной плиты

Используя справочные данные, можно самостоятельно определить количество цемента для приготовления бетонного раствора. Важно учитывать пропорцию, в соответствии с которой, смешивается песок, цемент и щебенка. Это соотношение составляет 3:1:5. Бетонный раствор формируется из 9 частей, одну из которых составляет портландцемент.

На основании этого соотношения определяется количество различных марок цемента на один куб бетона:

  • М100 используется в количестве 160–200 кг;
  • М150 необходимо 200–220 кг;
  • М200 добавляется по 240–280 кг;
  • М250 вводится по 300–330 кг.

С возрастанием марки портландцемента увеличивается его количество в кубометре бетонного состава и составляет:

  • М300 – 320–380 кг;
  • М400 – 400–420 кг;
  • М500 – 510–530 кг.

Эта информация позволяет самостоятельно определить потребность в цементе с высокой степенью точности. Существует и специальная программа в режиме онлайн, которая оперативно выполнит вычисления после введения требуемого объема готовой бетонной смеси, марки бетона и вида используемого цемента.

Характеристики

К плюсам ленточных фундаментов в первую очередь относят их не слишком высокую стоимость. Цена на такую конструкции при условии правильного проектирования будет низкой, какие бы она ни имела размеры. Ленточный фундамент для дома стоит выбрать и потому, что в этом случае в последующем можно будет обустроить подвальное помещение или погреб. Плюсами таких оснований являются также:

  • надежность и долговечность;
  • максимально равномерное распределение нагрузки от стен дома;
  • универсальность;
  • простота возведения.

Предлагаем ознакомиться: Как самому сделать фундамент под баню Минусов у фундаментов этой разновидности практически не имеется. К недостаткам конструкций этого типа можно отнести разве только то, что их нельзя возводить на слабых грунтах.

Способы разметки фундамента без нивелира

Разметка фундамента своими руками может выполняться разными методами, но все они имеют общие черты. Сначала обозначают первый угол, служащий опорой для дальнейших манипуляций. Место для него выбирают с учетом норм, регламентирующих дистанцию между зданием и ограждением, дорогой, другими строениями. Функцию кольев могут выполнять пруты арматуры. Они должны быть достаточно длинными и возвышаться над землей на 0,2 м, будучи забитыми в почву.

Золотой треугольник

В начале выбирается расположение длинной стены. Ее можно сделать параллельной какому-либо объекту (например, ограждению участка) и обозначить границы бечевой и кольями. Затем перпендикулярно ей делают еще одну конфигурацию из тех же элементов. Две линии бечевы должны пересекаться – в этой точке их соединяют скотчем. От нее отсчитывают 3 метра на одной веревке и 4 на другой (обозначающей длинную стену). Делают отметки зажимами или изолентой. При идеально прямом угле расстояние между ними должно быть 5 м. Его можно измерить строительной рулеткой. Если расстояние отличается, вторую бечеву перемещают до достижения соответствия треугольнику Пифагора. Затем от точки пересечения веревок откладывают длины сторон фундамента и делают отметки. Перпендикулярно последним натягивают еще 2 бечевы. На каждой из них откладывают длину параллельной ей стороны фундамента и делают метку. При правильном выполнении операций 2 метки должны совпасть. Проверить корректность работы можно, измерив диагонали.

Построение паутины

При расчете используется теорема Пифагора Разметка участка под строительство этим способом предполагает нарезание кусков бечевы с рабочими длинами, равными сторонам фундамента и его диагоналям (оставляются также запасы на скрепление). Их соединяют конвертом и скрепляют места стыка. Диагонали в точке пересечения соединять не требуется. Одну из длинных сторон натягивают и фиксируют кольями. Аналогично поступают с короткой. Затем натягивают объединяющую их диагональ. Аналогично поступают с остальными сторонами.

Пересечение кривых

От верхушки опорного угла по его стороне проводят трассировку первой стенки. От места стояния прутика в оба бока отсчитываются одинаковые расстояния и ставятся отметки. Последние будут серединами окружностей с одинаковыми диаметрами. Точка пересечения дужек оказывается местом, откуда перпендикулярный отрезок направляется к верхушке угла.

Длина диагонали прямоугольника, находящегося в основании дома, легко ищется по теореме Пифагора. На уже размеченном периметре проверку можно провести с помощью строительной рулетки. При этом длины двух диагоналей должны получиться равными друг другу и соответствующими теореме Пифагора, для оценки этого повторно измеряются стороны.

Краткое описание лазерного нивелира

Нивелир лазерный – это один из приборов, которые относятся к большой группе измерительных средств.

Основное назначение нивелира – определение разности высот одного места на поверхности относительно другого места и построение плоскостей: вертикальных, горизонтальных и любых промежуточных в виде линии – следа лазерного луча. Кроме того такой прибор может строить точечные проекции – давать точку на поверхности.

Чаще всего используются самовыравнивающиеся перекрестные нивелиры, которые строят две перпендикулярные плоскости – горизонтальную и вертикальную. Их можно повернуть и установить в любом направлении. Горизонтальная плоскость постоянно подстраивается элементами автонивелирования.

Основными характеристиками лазерного нивелирования являются:

  • точность измерения, профессиональные приборы дают погрешность до 3 мм на 10 м, а бытовые до 0,5 мм на дальности 1 метр;
  • дальность измерения: в бытовых до 10 м, профессиональные – 30 м и более;
  • число проектируемых плоскостей – обычно две или более и т. п.

Но нивелир – это, прежде всего измерительный инструмент.

Он хорошо поможет вам, только если вы умеете правильно его использовать.

Взяв его во временное пользование, т. е. в аренду, не ждите, что он будет работать сам.

Если вы не знаете, что такое юстировка – не берите прибор в аренду.

Начиная работу с ним, проверьте точность измерений, не сбиты ли настройки, т. е. проверить все описанные в его паспорте характеристики. Все операции по проверке – в описании к прибору.

На разбивке фундамента нет работ, которые нельзя провести без нивелира. Поэтому обычный водяной уровень, правильно использованный, вполне может его заменить. Хотя лазерный нивелир ускоряет и упрощает работу на стройке.

Как рассчитать нагрузку на фундамент?

На чтение 5 мин Просмотров 1.3к.

При проведении строительных работ по возведению сооружений различного типа достаточно важно выполнить расчет нагрузки, оказываемой на фундамент.

Этот показатель необходим для того, чтобы спроектировать фундамент: геометрические размеры, тип, площадь подошвы и многие другие моменты. Результатом проводимого расчета становится показатель нагрузки на квадратный метр грунта.

Расчет нагрузки на фундамент

Типы нагрузок

В независимости от того, какое сооружение, оно так или иначе оказывает давление на основание грунт. В результате этого происходит проседание и последующая деформация важных несущих конструкций. Расчет оказываемого давления проводится с учетом того, какие есть их разновидности.

Различают следующие силы, которые воздействую на основание:

  1. Статическая – вес основной конструкции и многих других ее элементов определяют давление, которое появляется.
  2. Динамическая – еще один тип нагрузки, которую также учитывают при расчете. Возникает дополнительное давление на основаниепри различных колебаний, которые возникают по причине работы различных устройств.

При умеренном климате следует учитывать и нагрузку, которая возникает при выпадении большого количества осадков. Примером назовем снег на крыше – он может создавать сильное давление на основание.

Еще при выполнении расчетов следует учитывать давление, которое оказывается предметами в доме. Этот показатель также следует учитывать.

Совокупность этих показателей и определяет то, какое давление будет оказываться на фундамент.

Есть довольно много формул расчета оказываемой нагрузки на дно. Зачастую при расчете требуется следующая информация:

  1. Глубина залегания грунтовых вод и тип почвы.
  2. Регион, в котором проводятся строительные работы.
  3. Планировка зданий, тип кровли и используемого материала при создании стен, этажность.
  4. Материалы, из которых изготавливаются важные элементы конструкции.

Примером можно назвать следующие входные данные:

  • Здание одноэтажное.
  • При возведении несущих конструкций используют полнотелый кирпич, толщина которых составляет 40 см.
  • Габариты дома составляют 10 на 8 метров.
  • Перекрытие подвала представлено железобетонными плитами.
  • Перекрытие первого этажа представлено железобетонными балками, поверх которых укладываются деревянные доски.
  • Крыша представлена двускатной конструкцией. Материал представлен металлочерепицей, уклон составляет 25 градусов.
  • Тип грунта суглинки, пористость которых составляет 0,5
  • Предполагается создать фундамент из мелкозернистого фундамента, толщина будет равна толщине стен.

Рассчитывается несколько показателей. Примером можно назвать определение площади основания. Она определяется с учетом несущей способности грунта.

Формула расчета

Сама формула, по которой определяется площадь основания, выглядит следующим образом:

S > Уn · F / (Уc · R0)

В данной формуле используется коэффициент условий работ (Уc), а также коэффициент надежности (Уn), который в данном случае 1,2. Важным показателем можно назвать нагрузку (F), представленная сочетанием показателей веса дома и веса фундамента, а также других нагрузок.

В формуле R0указывает расчетное сопротивление грунта под основанием фундамента. Кроме учитывается площадь основания, которая обозначается буквой S.

При использовании данной формулы получают расчетный показатель площади основания, которого должно быть достаточно. На практике берется большее значение для обеспечения запаса прочности. Вся необходимая информация, касающаяся табличных данных, берется их таблиц. Примером назовем коэффициент условной работы, который зависит от типа грунта.

Вес конструкции зависит от площади конструкции, а также плотности используемого материала. Зная площадь основания и плотность, к примеру, используемого бетона, вычисляется оказываемое давление.

Глубина залегания зависит от уровня залегания грунтовых вод и промерзания почвы. При этом для каждого типа фундамента показатель глубины залегания существенно отличается.

Расчет нагрузки на грунт представляет собой сочетание нескольких показателей:

  1. Давление, оказываемое стенами. Рассчитывается она путем перемножения показателя объема стен и удельного веса, который берется из таблицы. Полученный результат делят на длину всех сторон периметра и умножают на показатель толщины.
  2. Стоит учитывать тот момент, что на грунт оказывает влияние и вес фундамента. Он представлен произведением объема конструкции на удельную плотность. Для того чтобы рассчитать нагрузку на один квадратный метр грунта, следует разделить полученный результат на площадь основания.
  3. Кровля также оказывает давление на основание. Провести расчет этого показателя достаточно сложно, так как давление распределяется между сторонами фундамента, на которые опираются стропила. В случае двускатной крыши это обычно две противоположные стороны. Оказываемое давление определяется следующим образом: проекция крыши, которая отнесена к площади нагруженной стороны фундамента, умножается на удельный показатель веса материала.
  4. При проведении расчетов учитывается и нагрузка, которая оказывается снегом. Площадь снежного покрова зависит от площади кровли. Оказываемое воздействие заключается в делении площади снежного покрова на площадь нагруженных сторон фундамента, после чего результат умножается на удельную снеговую нагрузку.

В целом расчеты довольно сложны и точно существенно теряется в случае выбора коэффициентов. Также не стоит забывать о допущении математических ошибок. Именно поэтому следует использовать онлайн-калькуляторы, которые в последнее время пользуются большой популярностью.

Онлайн калькулятор нагрузки

Рассчитать рассматриваемый показатель можно путем использования специальных онлайн-калькуляторов. Примером можно назвать сервис: http://prostobuild.ru/onlainraschet/204-raschet-nagruzki-na-fundament.html или http://www.gvozdem.ru/stroim-dom/kalkulyatory/sbor-nagruzok-na-fundament.php.

Особенностями второго онлайн-калькулятора назовем следующие моменты:

  1. Программа учитывает планировку сооружения и тип используемых материалов при строительстве.
  2. Рассматриваются все нагрузки, который оказываются на основание. Данный онлайн-калькулятор позволяет рассчитывать нагрузку стен, кровли, отделочных и других материалов.

На рассматриваемом сервисе есть поля, в которых указывается важная информация, а также таблицы с важной информацией, нужные формулы и многое другое.

Советы по расчетам

Вышеприведенная информация определяет то, что расчеты довольно сложны. При получении не круглых чисел рекомендуется брать значения с запасом, так как нужно создавать фундамент с запасом.

Также после появления онлайн-калькулятора не рекомендуется вычислять нужные показатели самостоятельно по формулам, так как подобным образом можно избежать погрешностей и других проблем.

В заключение отметим, что все строительные работы по возведению сооружений и созданию оснований предусматривают выполнение расчетов. Если этого не проводить, то есть вероятность сильной просадки, что станет причиной повреждения несущих и других конструкций.

От профи: расчет веса дома и опорной площади фундамента (ленточного)

Доброго здоровья желаю всем, кто читает сейчас эту статью. Меня зовут Ростислав, мне 37 лет, и я – строитель с двенадцатилетним стажем. Сегодня хочу с Вами поговорить о начале начал всех строительных робот — о фундаменте. В этой статье я расскажу о том, как просчитать вес дома и, соответственно, количество материалов, которые необходимо израсходовать на возведение фундамента, а также разобрать все допустимые ошибки при устройстве опорной части (опорной площади) ленточного фундамента. От этого будет зависеть толщина и размер подошвы ленточного фундамента. Также речь пойдет о расчете силы сопротивления грунта и точки промерзания. Все эти расчеты необходимы для определения несущей способности Вашего фундамента.

В нашем журнале последние время очень много вопросов по этому поводу: как построить, как просчитать. Итак, давайте разбираться.

Одной из основополагающих характеристик качественного фундамента является правильный расчёт опорной части фундамента, то есть фундамент должен качественно и полноценно передавать нагрузки из постройки на грунт. Если опорная часть рассчитана некорректно, то вес дома будет превышать сопротивление грунта и, соответственно, постройка своим весом будет продавливать грунт под собой. При этом усадка постройки будет происходить неравномерно, и вследствие этого будут появляться трещины на фундаменте, что может повлечь за собой трещины на кладке и приведёт к аварийности постройки. Поэтому для того, чтобы исключить возможные неприятности, необходимо  серьёзно подойти к вопросу расчёта и обустройства площади опоры фундамента. Также не стоит забывать что, сам по себе правильный расчёт — это ещё не гарантия качественного фундамента.

Опорная площадь фундамента это, проще говоря, площадь дна траншеи, выкопанной под заливку фундамента.

О качественном фундаменте можно говорить тогда, когда у нас есть расчёт, правильное устройство и правильная эксплуатация.

К примеру, мы сделали правильный расчёт и правильную опалубку и армировку, а миксер или строители залили бетон низшей марки крепости и, соответственно, фундамент при нагрузке не выдержит. Или наоборот, привезли отличный бетон, сделали хорошую армировку и опалубку, но опорную площадь не просчитали или сделали на порядок меньше, чем требует нагрузка. В результате дом просто со временем уходит в землю.

Итак, для расчёта опорной части нам требуются соотношение таких показателей, как: 1. Вес дома, то есть та сила, с которой дом будет давить на фундамент. 2. Сила сопротивления грунта.

Пошаговый расчет веса дома и опорной площади ленточного фундамента

Расчет веса дома

Если пролистать интернет, чтобы узнать показатели этой величины, то можно запутаться в значениях разных показателей. Мы же суммировали эту информацию и распределили все строения на три типа:

  • 1 тип. Тяжёлый — это постройки из кирпича, шириной в 1.5 кирпича, ракушняк, и газопеноблочные строения с обкладкой лицевым кирпичом;
  • 2 тип. Средней тяжести — это дома, построены из кирпича, шириной в 1 кирпич, а также газопеноблочные строения с оштукатуренными стенами;
  • 3 тип. Лёгкие — это дома, которые построены из бруса, а также каркасные строения.

Для того чтобы узнать вес дома, нужно посчитать квадратуру всех стен и простенков постройки и умножить её на коэффициент. Для каждого типа имеется свой коэффициент. Для первого типа, тяжёлые постройки, сумму общей площади всех стен надо умножить на 2.4 тонны. Для второго типа — средней тяжести, множим на 2 тонны. И третий тип — легкие, умножаем на 1.7 тонны. Получаем величину тонна/метр квадратный.

Заранее надо понимать, что вес кровли мы не учитывали, так как кровля может быть разная, одно-двухскатная, или ломаная, а также различие кровельных материалов, поэтому, мы заранее просчитываем толщину простенков такую же, как и несущих стен, компенсируя вес кровли. В случае, если кровля заложена в проекте из бетонных плит, то есть парапетная, то квадратура кровли суммируется к квадратуре стен. При просчёте квадратуры, так же, не отнимаются оконные и дверные проёмы, это увеличивает значение площади опоры на небольшое значение. А также, если постройка имеет два, или более этажа, то квадратура считается по всей постройке, включая бетонные межэтажные перекрытия.

Полученное значение переводим из тонна/метр квадратный на килограмм/ сантиметр квадратный, то есть, умножаем значение на 1000. Так мы получаем силу давления постройки на сантиметр квадратный грунтового основания.

Также помочь в расчете материалов и объемов стен вам может этот калькулятор.

Сила сопротивления грунта

У каждого вида грунта есть своя плотность. Плотность — это сопротивление давления на сантиметр квадратный. Грунт имеет свои разновидности. На каждом строительном участке, грунт может быть абсолютно разным. Это означает, что если у Вашего соседа один вид грунта, то у Вас на участке может быть совершенно другой вид грунта. Для максимально точного определения вида, можно заказать геологическое исследование Вашего участка, но это можно сделать и своими силами. Просто, с помощью лопаты, нужно выкопать яму, на глубину низа заливки фундамента, эта глубина должна быть не менее глубины точки промерзания грунта (что такое точка промерзания грунта, и почему именно так, я объясню ниже) и взять пробы грунта. Такое действие нужно провести в нескольких местах, по периметру планируемого фундамента. Да, мероприятие трудозатратное, но, это спасёт нас от непредвиденных разочарований в дальнейшем проведении работ.

После того как, мы взяли пробы грунта, нам нужно определиться, что за грунт у Вас на участке.

Грунты разделяют на три класса: скальные, дисперсионные и мерзлые.

  • 1. Скальные грунты — магматические, метаморфические, осадочные, вулканогенно-осадочные, элювиальные и техногенные породы обладающие жесткими кристаллизационными и цементационными структурными связями.
  • 2. Дисперсионные грунты — осадочные, вулканогенно-осадочные, элювиальные и техногенные породы с водноколлоидными и механическими структурными связями. Эти грунты делятся на связные и несвязные (сыпучие).
  • 3. Мерзлые грунты — это те же скальные и дисперсионные грунты, дополнительно обладающие криогенными (ледяными) связями. Грунты, в которых присутствуют только криогенные связи называются ледяными.

Скальный грунт обладает достаточной способностью для строительства сооружений без фундамента. Этот грунт сам выступает в роли фундамента.

На мерзлых грунтах строительство бессмысленно, так как это сезонный фактор. Вечномерзлые грунты обладают несущей способностью скальных грунтов и могут быть использованы в качестве фундаментов.

Средний класс, Дисперсионные грунты, самый распространённый вид грунта, и имеет разные составляющие. Грунты этого класса имеют самое широкое распространение на поверхности земной коры, именно с ними практически постоянно связано строительство самых разнообразных объектов.

Дисперсные грунты обладают механическими и водноколлоидными связями. В них основной массой является органический материал, который представляет собой «скелетную» часть грунта. Состав можно определить как визуально, так и в лаборатории. Песчаный, или глиняный состав имеет ярко выраженный желтоватый цвет, супесь имеет 3-10%глины от песка, суглинок имеет примерно 50% глины и песка, а чернозём и торф отличаются чёрно-бурым цветом, и имеют органические составляющие.

Окончательным этапом геологических исследований (как лабораторных, так и упрощенных) должно стать исследование прочности грунтов на участке. Она будет определять геометрические размеры фундамента и материалы, использованные для изготовления (например, арматура для железобетонных конструкций).

В зависимости от того, какие виды грунтов залегают на участке, меняется несущая способность основания. Для расчетов чаще всего необходимо значение, которое показывает максимальную нагрузку в кг на 1 см2 площади. Классификация грунтов по прочности приведена в таблице.

Тип грунта Расчетная несущая способность
для фундаментов мелкого заложения (1 — 1,5 м) для фундаментов глубокого заложения (2—2,5 м)
Щебень и галька 4,5 кг/см2 6 кг/см2
Щебень и галька с включением глинистых частиц 2,8 кг/см2 4,2 кг/см2
Дресва и гравий 4 кг/см2 5 кг/см2
Песок гравелистый и крупной фракции 3,2 кг/см2 5,5 кг/см2
Твердые глины 3,0 кг/см2 4,2 кг/см2
Пластичные глины 1,6 кг/см2 2 кг/см2
Песок средней фракции 2,5 кг/см2 4,5 кг/см2
Песок мелкой фракции (с невысокой влажностью) 2 кг/см2 3,5 кг/см2
Песок мелкой фракции (с высокой влажностью) 1,5 кг/см2 2 ,5 кг/см2
Суглинки 1,7 кг/см2 2 кг/см2
Супеси 1,5 кг/см2 2,5 кг/см2

Как показано в таблице, самая большая сила сопротивления грунта имеет скальная порода, на основе щебня, а самой низкой супеси и песок мелкой фракции.

Пример подсчета опорной площади или правильная толщина подошвы фундамента

В общем, имея уже эти показатели, просчитаем опорную площадь ленточного фундамента.

Например: предполагаемая постройка будет построена из Газоблока с оштукатуренными стенами (второй тип), общая квадратура стен равна 200 метров квадратных. Умножаем 200м2 на 2 тонны, получаем 400т/м2. Переводим на кг/см2. 400 умножаем на 1000, получаем 400 000кг /см2. Далее, на глубине исследования в 1.5 метра, мы обнаружили что имеем, к примеру, Песок средней фракции, который имеет, согласно таблицы, несущую способность 2.5кг/см2. Делим 400 000 на 2.5, и получаем 160 000см2 необходимой опорной площади фундамента в нашем случае.

Этот расчет показывает минимальное цифровое значение опорной площади фундамента, то есть, если показатель будет меньше расчётного, то Вам не избежать проблем с дальнейшем строительством и эксплуатацией постройки.

Идеально будет если площадь опоры фундамента будет превышать расчетную на 20-40% — это золотая середина, которая позволит Вам не перерасходовать материал и обеспечит уверенность в надёжности постройки. При копке траншеи под ленточный фундамент, надо учитывать также что, ширина траншеи и опалубки должна превышать ширину материала, которым будут выкладываться стены как минимум на 10см. К примеру, стены будут выкладываться из Газоблока со штукатуркой и будут иметь ширину 30см, значит ленточный фундамент нужно делать не менее 40см. и, продолжая наш пример по расчёту, если опорная площадь нашего ленточного фундамента должна быть не менее 160 000см2, а ширина заливки 40 см, то мы можем узнать минимальную длину нашего фундамента.

160 000/40/2.5/100=16 м/п где:

160 000 – расчётная площадь ленточного фундамента;

40 – ширина подошвы фундамента;

2.5 – количество частей по 40см на 1 метре;

100 – количество сантиметров в 1 метре.

Итак, для нашей постройки, нужен ленточный фундамент шириною 40 см. и длиною по периметру не менее 16 метров погонных. Добавляем 20% и имеем 19,2 метра фундамента с запасом прочности.

Теперь разберёмся с глубиной ленточного фундамента. Основным показателем глубины фундамента есть точка промерзания грунта. Очень частой ошибкой является пропуск этого показателя.

Точка промерзания грунта это нижняя высота грунта, где влажность кристаллизируется в холодное время года. Согласно СНиП 2.02.01-83 глубина промерзания грунта рассчитывается по формуле:

h=√М*k, а точнее – корень квадратный из суммы абсолютных среднемесячных температур (зимой) в определенном регионе. Полученное число умножают на k – коэффициент, который для каждого типа почвы имеет различное значение:


  • суглинки и глина – 0,23;
  • супеси, мелкие и пылеватые пески – 0,28;
  • крупные, средние и гравелистые пески – 0,3;
  • крупнообломочный грунт – 0,34.

Ну, или можно самому определиться. В интернете есть топографические карты точек промерзания. Мы убедимся что, чем северней регион постройки, тем больше точка промерзания грунта. Но даже в южных регионах она не менее 80см. Поэтому, заведомо нужно учитывать что, глубина траншеи ленточного фундамента должна быть не менее минимального показателя. Под действием минусовых температур, влага, которая имеется в грунте, кристаллизируется и грунт увеличивается в объёме, что начинает давить на залитый фундамент. Для того чтоб избежать этого давления, низ фундамента должен быть ниже точки промерзания на 10 — 15см.

И ещё один важный момент в постройке ленточного фундамента: при копке траншеи учитываем глубину песчаной подушки 5-10 см. То есть до высоты заливки ниже точки промерзания, добавляем высоту песчаной подушки, которая насыпается перед постройкой опалубки. Песчаная подушка выполняет роль амортизатора пучения грунта в период непредвиденных погодных условий. Также после разборки опалубки, нужно раскопать по бокам фундамент и засыпать песком. Ширина засыпки должна быть в диапазоне 10 – 20 см, с послойным трамбованием. Или утеплить стенки фундамента с помощью плотного пенопласта. Согласен, этот процесс трудоёмкий, но выполнив его, мы убережём нашу постройку от влияния окружающей среды, и перепадов температур.

Вот так выглядит правильно построенный фундамент. Материалы типа бетона и арматуры для вашего фундамента можно рассчитать у нас в калькуляторе

В следующей статье мы разберемся, как правильно армировать фундамент и как построить надёжную опалубку. Все вопросы и дополнения оставляйте в комментариях.


Рекомендуем вам еще:

Делаем расчет столбчатого фундамента своими руками

В статье «Расчет фундамента» мы говорили о том, что нужно учитывать при расчете основания, независимо от того, какой конкретно объект предполагается на нем возводить. Сегодня же мы постараемся подробно описать процесс расчета столбчатого фундамента. Воспользовавшись представленной информацией, вы сможете без труда своими руками учесть все нюансы и определиться с оптимальным выбором столбчатого основания, в том числе, прикинуть предстоящие расходы на строительство дома.

Оцениваем нагрузку от дома

Если вы самостоятельно решаете вопросы строительства загородного дома, то уже на этапе проектирования постройки знаете, из каких строительных материалов будете возводить здание. А это значит, что уже сейчас можно оценить вес надземной части постройки, просуммировав нагрузки от всех конструкций здания и добавив к ним сезонные нагрузки, а также нагрузки от объектов, которые впоследствии будут размещены внутри сооружения.

Исходя из полученных данных, оцениваются размеры железобетонной обвязки – высокого ростверка, который послужит рамой, равномерно распределяющей нагрузки на все опоры. Он же будет при необходимости передавать неравномерную деформационную нагрузку от столбчатого фундамента. Рассчитывается объем обвязки и ее массу при условии, что средний объемный вес железобетона равен 2400 кг/м3.

Суммируем все вышеперечисленные нагрузки F (по сути, проводим расчет нагрузки на фундамент), и остается только определиться с характером грунта и общим количеством опор.

Оцениваем характер грунта

Если расчет столбчатого фундамента осуществляется своими силами, то проведение лабораторных исследований показателей грунта не предполагается. Поэтому пойдем по бюджетному пути – будем проводить оценку на глаз. Для этого на месте предполагаемого строительства дома выкапываем шурф (яму) глубиной ниже глубины промерзания грунта (ГПГ). ГПГ можно узнать в справочном пособии или в статье, о которой мы говорили в самом начале повествования. Предположим, что ГПГ составляет 1,5 м. Выкапываем шурф глубиной 1,8 м. и отбираем пробы грунта и пытаемся скатать из него небольшой шарик. Оцениваем характер грунта следующим образом:

  • если шарик не скатывается, и вы визуально определили песчаный слой дна шурфа, то в зависимости от крупности песка, расчетное сопротивление грунта (далее – R) принимает значение от 2 (для очень мелкого, пылеватого) до 3 (для среднего) и 4,5 (для крупного песка)*;
  • если шарик рассыпается при сдавливании, велика вероятность, что грунт – супесь (R=3)*;
  • если шарик при сдавливании не рассыпается и по краям лепешки не образуются трещины, то перед нами глина (R=3-6)*;
  • шарик из грунта не рассыпается при сдавливании, но по краям образуются трещины, грунт – суглинок (R=2-4)*

*Значение R зависит также от влажности грунта и коэффициента пористости. Ориентировочные значения расчетного сопротивления грунта представлены в таблице ниже. Следует учитывать, что представленные значения актуальны при заглублении фундамента на 1,5…2 метра. Если же вы планируете возводить мелкозаглубленный фундамент, то расчетное сопротивление грунта будет уже другим: R=0,005R0(100+h/3), где R0-табличная величина, h – глубина (см), на которую планируется закладывать фундамент.

Итак, получили значение R. Определяем параметры и количество опор-столбов.

Расчет количества опор столбчатого фундамента

Количество столбов во многом зависит от площади основания каждого из них. Предположим, что вы выбрали к установке буронабивные сваи диаметром 300 мм. с расширением в нижней части (башмаком) в 500 мм (50 см). Площадь подошвы каждой опоры S будет равна pi×D2/4= 3,14×50×50/4=1960 см2.
Предположим, что нагрузка F = 100000 кг, R=4, тогда необходимо решить простое уравнение с одной неизвестной типа: R=F/(S×n), где n – количество опор. В нашем случае получаем n = 13 шт. Но ведь сами опоры также будут оказывать воздействие на грунт, поэтому их также необходимо включить в нагрузку. Проводим поправочные вычисления. Пусть длина столба составляет 2 м, диаметр оставляем тем же – 0,3 м. Объем одной опоры составит: 2×3,14×0,3×0,3/4=0,14 м3. Принятый средний объемный вес железобетона равен 2400 кг/м3, тогда масса одной опоры составит: 0,14×2400=336 кг (340 кг). Тогда масса 13 опор составит, соответственно, 4500 кг. Умножаем эту величину на коэффициент надежности 1,3, суммируем с F и подставляем в уравнение выше: 4=105850/(1960n). n=14 – количество опор, которые потребуется установить в нашем случае. Перед строительством столбчатого основания советуем ознакомиться с информацией по армированию железобетонных опор, которая представлена в этой статье. Также неплохо прочитать статью о расчете бетона для фундамента, изучив которую вы сможете определиться с количеством и качественными показателями бетонной смеси для основания своего дома.

Как видите, рассчитать количество столбов для столбчатого фундамента не так-то и сложно.

Загрузка...

Не удается найти страницу | Autodesk Knowledge Network

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}}*

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}}/500 {{l10n_strings.TAGS}} {{$item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}  

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}  

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} Калькулятор максимального давления почвы

| Расчет максимального давления почвы

Формула максимального давления почвы

max_soil_pressure = (2 * Осевая нагрузка) / (3 * Длина опоры * ((Ширина опоры / 2) -Эксцентриситет нагрузки))
q м = (2 * P) / (3 * L * ((B / 2) -e))

Что такое давление почвы?

Давление почвы также известно как давление почвы.Давление определяется как внешняя нагрузка, прикладываемая к телу, вызывающая напряжение, которое измеряется в единицах силы на единицу площади. Точно так же давление грунта выражается как усилие, прикладываемое массой грунта (засыпка) к подпорной стене в боковом направлении по всей ее глубине.

Как рассчитать максимальное давление почвы?

Калькулятор максимального давления почвы использует max_soil_pressure = (2 * Осевая нагрузка) / (3 * Длина опоры * ((Ширина основы / 2) -Эксцентриситет нагрузки)) для расчета максимального давления почвы, формулы максимального давления почвы. определяется как интенсивность нетто-нагрузки, которая считается предельной несущей способностью на основе количества, ожидаемой осадки и способности конструкции выдерживать эту осадку.Максимальное давление почвы и обозначается символом q м .

Как рассчитать максимальное давление почвы с помощью этого онлайн-калькулятора? Чтобы использовать этот онлайн-калькулятор для максимального давления почвы, введите осевую нагрузку (P) , длину опоры (L) , ширину опоры (B) и эксцентриситет нагрузки (e) и выполните расчет. кнопка. Вот как можно объяснить расчет максимального давления почвы с заданными входными значениями -> NaN = (2 * 98.0664999999931) / (3 * 4 * ((2/2) -1)) .

Фактическая нагрузка на почву по сравнению с максимальной несущей способностью почвы?

от Марка
(Побережье Нью-Джерси)

Отличный сайт, здесь выучили тонну для опор / нагрузок / psf и т. Д. Когда я использую калькулятор нагрузки, я получаю числа для притока и их фактические нагрузки по сравнению с максимальной нагрузкой.Средняя зона обрезает ее вплотную (2725

Мое решение состояло бы в том, чтобы использовать более крупную опору в средней части, чтобы уменьшить фактическую нагрузку (2725 фунтов на квадратный фут) до 1575. Это, конечно же, еще примерно на 10 мешков с бетоном, которые мне нужно поднять. , чего я бы хотел избежать, если придется.

Комментарии редактора

У вас есть правильная идея. Рад, что калькулятор нагрузки на колоду полезен.

У вас все еще почти на 300 фунтов на квадратный фут меньше максимального, так что вы в полной безопасности. Однако средние опоры любой палубы почти всегда несут более тяжелую нагрузку, учитывая, что площадь притока больше.

Просто любопытно, потому что вы указываете, что почва в вашем районе способна выдерживать 3000 фунтов на квадратный дюйм. Это довольно много. За все свои годы я обычно видел 2000 psf как почти максимум. Есть ? значки, которые вы можете щелкнуть для каждого компонента расчета, чтобы объяснить, какие числа вводить.

Нет ничего плохого в том, чтобы добавить еще одну опору посередине или увеличить площадь существующей опоры для дальнейшего распределения нагрузки. Как видите, это имеет большое значение.Я бы сделал это.

Много лет назад я построил палубу размером примерно 25 на 20 футов, и это было в районе, который был в основном илистым. Так что компрессия была ниже, чем я думал. Полтора года спустя мне пришлось вернуться к заказчику и вырыть еще одну опору в середине палубы, чтобы поддержать ее, поскольку она провалилась примерно на полтора дюйма в середине палубы.

Пришлось удалить доски настила и использовать экскаватор-моллюск, чтобы хирургическим путем выкопать еще одну яму глубиной 4 фута, залить цементом и повторно выровнять центральную балку.Это сработало просто отлично.

Но это был урок из первых рук, который я никогда не забывал.

Вычислительные модули

> Фундаменты> Фундаментная опора, заложенная в грунт

Нужно больше? Задайте нам вопрос

Этот модуль определяет фактическое давление грунта и необходимую глубину для опор столбов, в первую очередь поддерживающих боковые нагрузки. Такие опоры обычно называют «опорами флагштока». Нажмите здесь, чтобы посмотреть видео:

Поскольку приложенный верхний момент создает боковое давление грунта, которое обычно определяет конструкцию, эти опоры обычно имеют соотношение глубины / ширины 2: 1 и выше.

Ящики с боковой фиксацией и без нее допускаются у поверхности земли. Оценка фактического и допустимого давления производится в соответствии с разделом IBC, озаглавленным «Встроенные столбы и столбы».

Вкладка общих данных

Форма опоры стойки

Используйте этот раздел, чтобы указать, будет ли опора круглой или прямоугольной (предполагается, что квадратная).

Ширина / диаметр опоры

Введите ширину или диаметр опоры.Ширина измеряется перпендикулярно направлению силы. Если столб задан как прямоугольный, модуль умножит значение, введенное для ширины основания 1,41, чтобы определить эквивалентный размер ширины для расчетов.

Ограничение на поверхности земли

Укажите, является ли основание свободным у поверхности земли или ограничено и не может перемещаться. Сдерживаемая опора указывает на то, что бетонная плита или другой жесткий элемент препятствует перемещению опоры опоры на поверхность земли, но не препятствует вращению.При указании фиксированной опоры вы должны убедиться, что конечная сила, необходимая для обеспечения фиксации, действительно может быть развита удерживающей конструкцией.

Когда присутствует ограничение поверхности земли, значение бокового давления в нижней части столба будет определять конструкцию.

Режим работы

Этот параметр позволяет выбрать один из двух следующих режимов работы:

Расчет минимальной глубины: в этом режиме модуль выполняет итерацию для определения минимальной глубины заделки, необходимой для того, чтобы фактическое поперечное давление почвы было ниже допустимого давления почвы.

Найти боковое давление для заданной глубины: в этом режиме модуль вычисляет боковое давление на землю, вызванное указанным размером полюса, глубиной заделки и приложенными нагрузками. Когда выбран этот параметр, появится поле ввода Глубина укладки опоры, как показано ниже:

Предел допустимого давления

Предусмотрены два варианта, указанные ниже:

Только ограничение на «Макс.Пассивный »: решает проблему с конструкцией, которая позволяет пассивному давлению приближаться к значению, указанному в поле« Допустимое боковое пассивное давление »ниже (ограничено значением, указанным в поле« Предел максимального бокового давления »).

Пример: Предположим, что допустимое боковое пассивное давление составляет 200 фунтов на квадратный дюйм / фут с верхним пределом 3000 фунтов на квадратный дюйм.

Когда выбрана опция «Ограничить только по макс. Пассивному», решение будет развиваться следующим образом:

• Программа начнется с небольшой предполагаемой глубины и вычислит 1/3 глубины заделки.

• Затем он рассчитает допустимое боковое пассивное давление для этой 1/3 глубины заделки.

• Затем программа сравнит это рассчитанное допустимое значение бокового пассивного давления с заданным верхним пределом допустимого пассивного давления и выберет меньшее из двух.

• Формула IBC затем используется для определения фактического давления для предполагаемой глубины заделки.

• Если фактическое давление выше допустимого, программа увеличивает длину и повторяет описанный выше процесс.

• Для иллюстрации предположим, что итерации достигли точки, в которой глубина внедрения теперь составляет 42 фута.

• Программа рассчитает 1/3 глубины заделки как (42 фута / 3) = 14 футов.

• Затем он рассчитает допустимое боковое пассивное давление (200 фунтов на квадратный дюйм / фут * 14 футов) = 2800 фунтов на квадратный дюйм.

• Затем программа сравнит это рассчитанное допустимое значение бокового пассивного давления с заданным верхним пределом допустимого пассивного давления и определит, что 2800 фунтов на квадратный дюйм <3000 фунтов на квадратный дюйм, поэтому она будет использовать 2800 фунтов на квадратный дюйм в качестве допустимого бокового пассивного давления.

• Когда программа находит глубину заделки, для которой фактическое давление ниже допустимого давления, она немного округляет глубину заделки и сообщает это значение.

Предел использования 12 футов (на каждый контейнер IBC): решает проблему для конструкции, в которой достигается пассивное давление, не превышающее допустимое боковое пассивное давление, где допустимое боковое пассивное давление рассчитывается на основе 1/3 глубины заделки, но не для превышает 12 футов (и ограничивается значением, указанным в поле «Предел максимального бокового давления»).

Пример: Предположим, что допустимое боковое пассивное давление составляет 200 фунтов на квадратный дюйм / фут с верхним пределом 3000 фунтов на квадратный дюйм.

Когда выбрана опция Использовать предел 12 футов (на IBC), решение будет развиваться следующим образом:

• Программа начнется с небольшой предполагаемой глубины и вычислит 1/3 глубины заделки.

• Затем он сравнивает глубину заделки 1/3 с 12 футами и основывает расчет допустимого бокового пассивного давления на меньшем из двух.

• Затем программа сравнит это рассчитанное допустимое значение бокового пассивного давления с заданным верхним пределом допустимого пассивного давления и выберет меньшее из двух.

• Формула IBC затем используется для определения фактического давления для предполагаемой глубины заделки.

• Если фактическое давление выше допустимого, программа увеличивает длину и повторяет описанный выше процесс.

• Для иллюстрации предположим, что итерации достигли точки, в которой глубина внедрения теперь составляет 42 фута.

• Программа рассчитает 1/3 глубины заделки как (42 фута / 3) = 14 футов.

• Затем он сравнит глубину заделки 1/3 с 12 футами и определит, что 14 футов> 12 футов, поэтому расчет допустимого бокового пассивного давления будет основан на 12 футах.

• Затем он рассчитает допустимое боковое пассивное давление (200 фунтов на квадратный дюйм / фут * 12 футов) = 2400 фунтов на квадратный дюйм.

• Затем программа сравнит это вычисленное допустимое значение бокового пассивного давления с указанным верхним пределом допустимого пассивного давления и определит, что 2400 фунтов на квадратный дюйм <3000 фунтов на квадратный дюйм, поэтому она будет использовать 2400 фунтов на квадратный дюйм в качестве допустимого бокового пассивного давления.

• Когда программа находит глубину заделки, для которой фактическое давление ниже допустимого давления, она немного округляет глубину заделки и сообщает это значение.

Допустимое боковое пассивное давление

Допустимое боковое пассивное давление, которое может выдержать почва. Это значение вводится в фунтах на квадратный фут на фут глубины заделки.

Максимальный предел бокового давления

Это значение используется для определения верхнего предела допустимого бокового пассивного давления, чтобы оно не увеличивалось неконтролируемым образом при увеличении глубины заделки.Это значение вводится в фунтах на квадратный фут.

Вкладка "Прикладные нагрузки"

Этот модуль позволяет приложить многие типы нагрузок к опорному основанию, заделанному в грунт.

Боковые сосредоточенные нагрузки

Модуль

позволяет приложить одну сосредоточенную нагрузку с различными типами нагрузки на заданном расстоянии от поверхности почвы.

Боковые распределенные нагрузки

Вы можете приложить к столбу равномерную боковую нагрузку, указав величину нагрузки, а также начальное и конечное положения.

Прикладные моменты

Можно применить сосредоточенный момент. Ввод «высоты» не требуется, потому что это чисто вращательная сила.

Вертикальная нагрузка

Вы также можете применить вертикальную нагрузку, чтобы модуль мог рассчитать вертикальную опорную нагрузку на опору для каждой комбинации нагрузок.

Вкладка комбинаций нагрузок

Используйте эту вкладку, чтобы указать комбинации нагрузок, которые должен анализировать модуль.

Вкладка результатов

На вкладке результатов представлена ​​сводка расчетов.

В таблице указаны результирующие силы, моменты и требуемая глубина для каждой комбинации нагрузок.

Область контрольных значений предоставляет информацию для наиболее тяжелой комбинации нагрузок.

Вкладка 3D

Вкладка 2D

Калькулятор оценки азотной нагрузки

| Управление природными ресурсами

Калькулятор оценки азотной нагрузки (Excel)

Калькулятор оценки нагрузки нитратов-N разработан для расчета оценок, основанных на системах возделывания, землепользовании и внедрении практики снижения содержания нитратов.Пользовательский интерфейс позволяет координаторам водосбора и другим специалистам по охране окружающей среды создавать оценки нагрузки в масштабе водосбора и поля.

Калькулятор оценки азотной нагрузки основан на данных и исходных данных, используемых для расчета оценок нитратной нагрузки в Научной оценке стратегии сокращения количества питательных веществ штата Айова. Пользовательский интерфейс позволяет координаторам водосборов и другим специалистам по охране окружающей среды создавать оценки нагрузки в масштабе водосбора и поля для поддержки постановки целей и построения сценариев с фермерами и другими заинтересованными сторонами.

Руководство по калькулятору оценки азотной нагрузки

Начало работы

После загрузки калькулятора и открытия его в Microsoft Excel выберите MLRA из раскрывающегося меню, которое соответствует местоположению оцениваемого водосбора или поля. Если неизвестно, карта доступна в правом поле таблицы калькулятора. При выборе MLRA загружается информация о почвах, климате и другом ландшафте для создания оценки нагрузки для конкретного региона.

Землепользование в водоразделе или полевом масштабе

Введите общую площадь водораздела или поля в акрах, включая долю земли, предназначенную для использования в сельском хозяйстве и несельскохозяйственном использовании.

Управление азотом

Введите среднюю норму внесения азота на акр для осенних, весенних предпосевных работ и / или бокового внесения кукурузы / сои, кукурузы / кукурузы и акров расширенного севооборота в водоразделе или поле. В калькуляторе нет возможности включить несколько разных сроков внесения азота, методов и т. Д. На одном и том же акре, поэтому необходимо будет оценить репрезентативное среднее значение для метода внесения и нормы.

Если средняя норма внесения недоступна, вторая вкладка электронной таблицы, обозначенная «napptables», включает среднюю рассчитанную норму азота для каждого MLRA, которая основана на продажах удобрений и поголовьях животных.

Покровные культуры

Акров покровных культур вводятся со средней нормой азота, примененной к этим акрам. Акры с внесенными покровными культурами необходимо будет исключить из категорий сроков и методов внесения азота, чтобы избежать ошибок в расчетах.

Практика на краю поля

Введите край поля как обработанные акры. Акры, обработанные с учетом полевых практик, могут совпадать с полевыми методами управления питательными веществами или покровными культурами, однако любая земля, снятая с производства в качестве буфера или другого края полевой практики, должна быть вычтена из исходных введенных акров пропашных культур. при сравнении сценариев.

Практика управления дренажными водами

Акры, обработанные методами управления дренажными водами, такими как биореакторы, насыщенные буферы или заболоченные земли, не могут превышать общее количество осушаемых акров.

Расчет веса почвы для плантаторов на крыше

Я строю рендеринговую сеялку (из легких бетонных блоков) на том, что будет фактически террасой на крыше, и поставщик крыши (балочная и блочная крыша) попросил меня подтвердить прилагаемую нагрузку. этих плантаторов. Для первоначального предложения они предполагали 7,5 кН / м2, поэтому я предполагаю, что они предполагают собственный вес 750 кг / м2.

Я думал, что у них будут свои собственные таблицы для расчета нагрузки, но я полагаю, что их инженеры перестраховываются, прося меня подтвердить вес.

Я могу рассчитать вес блоков, из которых будет построена сеялка. Но я не уверен в весе почвы. Используют ли обычно для таких целей специальный грунт, например:

https://www.gardentopsoildirect.co.uk/intensive-lightweight-green-roof-soil.html?gclid=CNKWtrmjzs4CFYkp0wodqwIC5w

Также мне нужно принять во внимание задержанную воду, так как они будут подвергаться воздействию элементов. Я планировал построить дренаж. Я сделаю это путем облицовки их слоем DPM (который также защитит внешнюю штукатурку), проложу несколько перфорированных дренажных труб до падения, засыпаю дренажным мелким гравием над трубами, покрываю геотексом, а затем засыпаю остальное землей.Кажется ли это разумным подходом к тому, чтобы они не пересыпались сильным дождем (я нахожусь в Великобритании).

Внешние размеры сеялки 7200 мм (длина) x 800 мм (ширина) x 645 мм (высота), внутренние размеры 700 мм (длина) x 600 мм (ширина) x 645 мм (высота) (заполнено примерно до 600 мм).

По моим расчетам (без учета дренажного слоя мелкого гравия):

Объем почвы: 7 м * 0,6 м * 0,6 м = 2,52 м3

Объем почвы / м2: 0,6 м3 почвы на м2

Некоторые "поисковые запросы" предполагают, что м3 почвы весит до 1700 кг (не уверен, что это учитывает удерживаемую воду).На основе этого:

Допустимая нагрузка на сеялку (исходя только из почвы): 1700 кг * 0,6 = 1020 кг / м2 = ~ 10 кН / м2

Если бы мне пришлось использовать «почву для крыши», с которой я связался ранее, оказалось, что я мог бы значительно уменьшить это. Я использовал их онлайн-калькулятор, поскольку они предполагают, что он учитывает уплотнение. И, по его оценкам, мне нужно 101 мешок 25 л / 25 кг (конечно, я бы купил большие мешки, но они не указывают их вес).

Общий вес почвы: 101 * 25 кг = 2525 кг

Площадь почвы в сеялке: 7 * 0.6 = 4,2 м2

Допустимая нагрузка на сеялку: 2525 кг / 4,2 м2 = 601 кг / м2 = ~ 6 кН / м2

Чтобы дать некоторую предысторию / контекст:

Я занимаюсь ремонтом своего маленького городского сада, который находится значительно ниже первого этажа моего дома. Я получил разрешение на строительство, чтобы поднять весь сад до уровня первого этажа дома, используя настил и искусственную траву.

Как часть этого, я также строю навес для хранения (подконструкция, вот с какой высотой мне нужно играть) на задней границе, на которой будет укладываться искусственная трава.Размеры навесов составляют 7200 мм x 3555 мм, они построены из железобетонного основания, железобетонных стен 1,2 м, затем стен из плотных бетонных блоков, чтобы довести их до высоты 2 м. Крыша будет балочно-блочной, стяжкой 100мм.

Пока все было просто, но сеялка также должна быть установлена ​​на задней части этой крыши.

Я приложил базовый чертеж дизайна сада, который может помочь вам лучше визуализировать план.

Заранее благодарим за любую помощь 🙂

Определите размеры опор палубы | Колоды.com

Чтобы определить подходящий размер для ваших опор, вам необходимо определить, какой общий вес они будут выдерживать и какую почву они покрывают. Чтобы рассчитать нагрузку, вы должны использовать 40 фунтов на квадратный фут для динамических нагрузок (это переменные динамические нагрузки, такие как вес людей и мебели) и 15 фунтов на квадратный фут для статических нагрузок (это вес используемых материалов. для конструкции настила) для общего веса нагрузки 55 фунтов на квадратный фут.


Например, если вы строите настил 10x10, прикрепленный к дому с двумя опорами по углам, вы можете рассчитать нагрузки на опоры следующим образом. Сначала нарисуйте линию, разделяющую палубу на две половины между домом и опорами. Нагрузка на ближайшую к дому секцию будет перенесена обратно на бухгалтерскую доску и перенесена на фундамент дома. Оставшаяся половина настила снова будет разделена на две части, которые будут поддерживаться двумя угловыми опорами.Это называется вторичной нагрузкой. Если вы умножите площадь этого участка на 5 футов на 5 футов, вы получите 25 квадратных футов. Вы можете умножить эту площадь на 55 фунтов на квадратный фут нагрузки, чтобы получить общую нагрузку 1375 фунтов. Как только вы узнаете общую нагрузку, вы можете использовать приведенную ниже таблицу, чтобы определить размер опоры для ваших почвенных условий. Перед копанием обязательно проверяйте свои расчеты в местном отделе строительной инспекции.

Круглые опоры

Максимально допустимая нагрузка на опору, фунтов

Тип почвы Гравий Песок Глина
Допустимое давление (фунты / кв. Фут) 3000 2000 1500
Размер опоры (дюймы) 12 2300 1500 1100
13 2700 1800 1300
14 3200 2100 1600
15 3600 2400 1800
16 4100 2700 2000
17 4700 3100 2300
18 5300 3500 2600
19 5900 3900 2900
20 6500 4300 3200
21 7200 4800 3600
22 7900 5200 3900
23 8600 5700 4300
24 9400 6200 4700

Уравнение и калькулятор несущей способности почвы

Связанные ресурсы: гражданское строительство

Уравнение и калькулятор несущей способности почвы

Уравнение и калькулятор несущей способности почвы

Связанный: Документ анализа несущей способности почв

Предварительный просмотр Калькулятор несущей способности почвы

Приблизительная предельная несущая способность длинной опоры на поверхности почвы определяется уравнением Прандтля:

Где:

q u = предельная несущая способность грунта, фунт / фут 2 (кг / м 2 )
c = сцепление почвы, фунт / фут 2 (кг / м 2 )
Φ = Угол внутреннего трения, градус
γ сухой = Удельный вес сухой почвы, фунт / фут3 (кг / м3)
b = Ширина опоры, фут (м)
d = Глубина опоры под поверхностью, фут (м)
е = 2.718 ....
K p = коэффициент пассивного давления


Для фундаментов, находящихся под поверхностью, предельная несущая способность грунта может быть изменена на коэффициент 1 + Cd / b

Коэффициент составляет около 2 для несвязных грунтов и около 0,3 для связных грунтов. Повышением несущей способности связных грунтов с глубиной часто пренебрегают.

Коэффициенты земного давления Ранкина

φ (град)

Ренкин Ка

Ренкин КП

28

.361

2,77

30

.333

3,00

32

. 307

3,26


Кулоновский коэффициент активного и пассивного давления грунта получается из более сложного выражения, которое зависит от угла задней части стены, значения трения грунт-стена и угла засыпки.Хотя это выражение не показано, эти значения легко получить в таблицах учебников или с помощью запрограммированных компьютеров и калькуляторов. В таблице ниже приведены некоторые примеры коэффициентов кулоновского активного и пассивного давления грунта для конкретного случая вертикальной задней стенки уголка и горизонтальной поверхности засыпки. Таблицы показывают увеличение углов трения грунт-стенка (δ).

Кулоновский коэффициент активного давления

φ (град)

δ (град)

0

5

10

15

20

28

.3610

. 3448

.3330

. 3251

. 3203

30

. 3333

. 3189

. 3085

. 3014

,2973

32

.3073

,2945

. 2853

. 2791

. 2755

Кулоновский коэффициент пассивного давления

φ (град)

δ (град)

0

5

10

15

20

30

3.000

3,506

4.143

4,977

6.105

35

3,690

4,390

5,310

6,854

8,324

Предоставлено: Университет Прашанта Киена, Монреаль, Пуна, Индия

© Авторские права 2000-2021, Engineers Edge, LLC www.Engineersedge.com
Все права защищены
Заявление об ограничении ответственности | Обратная связь | Реклама | Контакты

Дата / Время:

.